
A% dp_address info $a
128.84.154.8 0 {alvin.cs.cornell.edu fw.cs.cornell.edu alvin.cs alvin
fw.cs fw}

The return value shows that the IP address offw.cs.cornell.edu is 128.84.154.8 , and
that it is known by a variety of names, includingalvin , alvin.cs , and
fw.cs.cornell.edu . The dp_address command can be used to create a function that
returns the IP address given a host’s name, or vice versa, as shown in the two functions below.

A% proc InetAddress {hostname} {
set addr [dp_address create $hostname 0]
set x [dp_address info $addr]
dp_address delete $addr
lindex $x 0

}

A% proc Hostname {inetAddr} {
set addr [dp_address create $inetAddr 0]
set x [dp_address info $addr]
dp_address delete $addr
lindex [lindex $x 2] 0

}
A% InetAddress alvin.cs.cornell.edu
128.84.154.8
A% Hostname 128.84.154.8
alvin.cs.cornell.edu

By the way, as shown in the next to last line of each of the procedures above, you should execute
thedp_address delete command to free up the memory associated with an address when you
are finished with it.

Learning More

That concludes our tour of the Tcl-DP extension to Tcl/Tk. There are a few other features in Tcl-
DP that we haven’t discussed, but we have covered the main ones here. We hope you have gained
an appreciation for how simple it is to build distributed programs using Tcl-DP and that you have
enough background now to explore on your own. To learn more, study the examples in the
examples subdirectory, post articles to thecomp.lang.tcl newsgroup, and read the manual
pages in thedoc subdirectory.

Tcl-DP is the result of the efforts of many, many people. Some of the major contributors are Steve
Yen, Pekka Nikander, Tim MacKenzie, Lou Salkind, R. Lindsay Todd, Peter Liu, Ulla Bartsich,
Mike Grafton, Jon Knight, Gordon Chaffee. You can help, too. If you add a new feature to Tcl-DP
or port it to a new platform, please send mail totcl-dp@cs.cornell.edu so that we can
incorporate the changes into the source.

can be set usingdp_socketOption :

• Loop Back: When a message is sent to a group address, the sender also receives a copy of
the message. This property, calledloopback, can be toggled by setting theloopBack
property of the socket usingdp_socketOption . LoopBack is a boolean valued prop-
erty (yes or no).

• Time to Live (TTL) : When an IP-multicast message is sent, one of the fields in the packet
is called the time-to-live, or ttl, field. When the packet is routed through a gateway, the ttl
field is decremented. If the ttl field is ever zero, the gateway drops the packet. The ttl field
thus limits the lifetime of a packet, preventing packets from forever wandering through the
network.

The default value forttl is specified when the socket is created and can be changed later
by setting the ttl property on the socket. For example, the following fragment sets thettl
of socket to 128:

dp_socketOption $socket ttl 128

The ttl property can be used to limit the range of a multicast. For example, to send to
only hosts on you local area network, use attl value of 0. To reach all hosts within 2 net-
work hops, setttl to 2.

• Adding and Dropping Membership: A single IP-multicast socket can belong to several
groups at once. When an IP-multicast socket is created, an initial group and port number
are specified. You can join other groups by callingdp_socketOption with the
addMbr command. For example, the following three lines of code create a socket that
belongs to three groups

set socket [lindex [dp_connect -mudp 225.28.199.17 2120 16] 0]
dp_socketOption $socket addMbr 224.2.12.187
dp_socketOption $socket addMbr 235.102.89.5

The same port number is used for all three addresses. You can usedropMbr to remove
yourself from a group

dp_socketOption $socket dropMbr 235.102.89.5

The Domain Name Service

One use of thedp_address command is to specify the source or destination of addresses for
UDP and IP-multicast sockets. Another use is to find out information about hosts and services
using thedp_address info command. For example, suppose you create the following address:

A% set a [dp_address create fw.cs.cornell.edu 0]
addr1

You can find information about that address using thedp_address info command:

load , which contains the load average of each machine in the pool. The multicast group address
and port number, 225.28.199.17 and 2120, respectively, were chosen arbitrarily.

Given this structure, you can find the most lightly loaded machine by searching through theload
array. Alternatively, you could use Tk to build an interface that graphically displayed the contents
of this array.

Note that, in the example above, each machine also receives load average reports from itself. For
some applications this behavior, which is calledloopback, may be undesirable. Loopback can be
turned off using theloopBack socket option.

IP-multicast sockets and UDP sockets can be used to send data to each other. That is, you can use
a UDP socket to send to a multicast address, and a multicast socket to send to a UDP socket. For
example, the following code uses a UDP socket to report the load average to the multicast group
(assuming the procedureSendReport is defined as above).

set udp [lindex [dp_connect -udp 0] 0]
set address [dp_address create 225.28.199.17 2120]
SendReport $udp $address

IP-multicast Socket options

IP-multicast sockets have the same socket options as UDP socket, and four other properties that

proc GetLoad {} {
set info [split [exec uptime] ,]
lindex [lindex $info 3] 2

}

proc SendReport {socket address} {
set msg “[dp_hostname] [GetLoad]”
dp_sendTo $socket $msg $address
dp_after 1000 SendReport $socket $address

}

proc RecvReport {mode socket} {
global load
set info [dp_receiveFrom $socket]
set x [lindex $info 1]
set hostName [lindex $x 0]
set hostLoad [lindex $x 1]
set load($hostName) $hostLoad

}

set socket [lindex [dp_connect -mudp 225.28.199.17 2120 16] 0]
set address [dp_address create 225.28.199.17 2120]
dp_filehandler $socket r RecvReport
SendReport $socket $address

Figure 13: A load monitor using IP-multicast

B% dp_socketOption $udpB sendBuffer
9000
B% dp_sendTo $udpB [format %12000d 10] $dest
error writing file3: Message too long
B% dp_socketOption $udpB sendBuffer 15000
15000
B% dp_sendTo $udpB [format %12000d 10] $dest
B%

If the receive buffer is too small, the message will be dropped silently.

As with TCP sockets, each system imposes certain restrictions on the maximum size of the
buffers.

• Blocking Behavior: Dp_receiveFrom normally blocks if there is no data waiting to
be read. This behavior can be changed by using thenoblock property.Noblock is a
boolean valued property (yes or no). Dp_sendto never blocks.

IP-multicast

IP-multicast sockets are similar to UDP sockets, in that they transmit whole messages unreliably
usingdp_sendTo , dp_receiveFrom , anddp_address , but they have the advantage that
they can efficiently send data to several clients with one function call and a single address.

To use IP-multicast, you must first understand the concept of agroup address. A group address
looks like an ordinary IP address, except the range is 224.0.0.1 to 239.255.255.255 and it is not
associated with a single machine, but with a group of machines. When a process sends a message
to a group address, all machines that have created a multicast socket with that group address will
receive it8. A machine becomes part of a group by creating a socket by callingdp_connect with
the -mudp flag, passing in three additional parameters: the group address, the port number, and
thetime-to-live (ttl). We will explain the meaning of the ttl parameter shortly.

For example, suppose you have a pool of Unix machines on your network that can be used for
general purpose computing. You decide to use Tcl-DP to build a load monitor that reports the load
on each machine in the pool to every other machine in the pool once a second so that you can find
an unloaded machine. The code in figure 13 shows an implementation of this service that uses IP-
multicast to send the load average of each machine to every other machine. The procedure
GetLoad returns the load average on each machine, obtained from parsing the results of the Unix
uptime command. The procedureSendReport sends a message containing the hostname and
load average on the local machine to every machine in the group, and then schedules another call
to SendReport using thedp_after command, which is equivalent to Tk’safter command.
SendReport takes two parameters, an IP-multicast socket and a group address. The
ReceiveReport procedure is called by a file handler whenever the IP-multicast socket becomes
readable (i.e., when a report has been received).ReceiveReport updates the global array

8. Unless, of course, the message is lost in the network. In this case, only some of the machines will receive
the message.

The last parameter is created using thedp_address command.

Dp_address creates, deletes, and queriesaddresses. To create an address, you must specify the
host address and a port number. For example, assuming process A is running on
mayo.sandwich.com , the following command creates an address for the socket on port 2020:

B% set dest [dp_address create mayo.sandwich.com 2020]
addr0

The return value ofdp_address create can then be used as a parameter todp_sendTo , as
shown below:

B% dp_sendTo $udpB “Hello there” $dest

Process A can read the message usingdp_receiveFrom :

A% set x [dp_receiveFrom $udpA]
addr0 {Hello there}

Dp_receiveFrom returns a list of two values. The first is the address of the sender and the
second is the message. The address can be used for replies:

A% dp_sendTo $udpA “Pleased to meet you” [lindex $x 0]

An important feature of UDP sockets is that they areconnectionless. That is, a pair of TCP sockets
is needed for each pair of processes that communicate. The two sockets areconnected. In contrast,
a single UDP socket can be used to communicate with an unlimited number of other processes,
since the destination address is specified in the message. Since many operating systems place
rather stringent limits on the number of open sockets in a process, but almost no limit on the
number of addresses that can be created, UDP sockets are useful in applications that communicate
with many other processes.

The standard functionsclose , dp_atclose , dp_isready , dp_filehandler , and
dp_socketOption can be used with UDP sockets. The following properties can be set on UDP
sockets usingdp_socketOption :

• Buffer Sizes: Setting the buffer size of a UDP sockets determines the maximum message
size. For example, if the send or receive buffer is 8 KBytes and you try to send a 12 KByte
message, the message will not get through and you will get an error message:

UDP

TCP sockets provide reliable, in-order data delivery with a stream interface. In contrast, UDP
sockets provide no guarantees on whether data will get through but preserves message boundaries.
That is, when a message is sent by one application to another using UDP, either the entire message
will get through and the receiver will receive it in as a single unit, or the message will not get
through at all. There is a chance that a message may be duplicated using UDP, but such duplication
is rare.

To create a UDP socket using Tcl-DP, you calldp_connect with the-udp flag and port number
of the socket. For example, the following command creates a UDP socket with port number 2020
in process A:

A% set info [dp_connect -udp 2020]
file3 2020
A% set udpA [lindex $info 0]
file3

As with TCP sockets, an identifier for the socket (file3) and the port number of the socket
(2020) are returned. If you can pass in a port number of0, the system will chose (and return) an
unused port number.

For the examples that follow, we will need another UDP socket in process B:

B% set info [dp_connect -udp 4100]
file3 4100
B% set udpB [lindex $info 0]
file3

You can use thedp_sendTo command to send a message using UDP.Dp_sendTo takes three
parameters: the socket identifier (file3), the message (“hello ”), and the destination address.

a. The range varies from system to system, as does the default. This is a typical value.

Table 3: TCP Socket properties set by thedp_socketOption command

property
legal

values
default Description

sendBuffer 1-64Ka > 8192 Size of TCP send buffer

recvBuffer 1-64K > 8192 Size of TCP receive buffer

noblock yes, no no Will calls on the socket will block?

autoClose yes, no yes Will the socket will automatically close and remove
file handlers if the connection is broken?

linger >= 0 0 Blocking time onclose to ensure data delivery.

reuseAddr yes, no yes Allow local address reuse?

A% puts “Send buffer size: [dp_socketOption $s1 sendBuffer]”
Send buffer size: 8192
A% puts “Receive buffer size: [dp_socketOption $s1 recvBuffer]”
Receive buffer size: 8192
A% dp_socketOption $s1 sendBuffer 32768
32768
A% dp_socketOption $s1 recvBuffer 32768
32768

Each operating system imposes certain restrictions on the maximum size of the buffers
(it’s rarely greater than 64 Kbytes). In some cases, when and how you can resize them is
also restricted. The best way to figure it out for your personal configuration is by experi-
mentation.

• Blocking Behavior: By default, calls that write data to a socket will block if there is not
enough room left in the send buffers, and calls that read data from a socket will block if
there is no data waiting to be read. These behaviors can be changed by using thenob-
lock property.Noblock is a boolean valued property (yes or no).

The first line below queries the current value of thenoblock property. The second line
makes the socket non-blocking, so that subsequent calls todp_receive do not block.

A% dp_socketOption $s1 noblock
no
A% dp_socketOption $s1 noblock yes
A% dp_receive $s1

• Automatic socket cleanup: By default, dp_send and dp_receive automatically
close a socket and removes its file handlers when the connection is broken. If an applica-
tion programmer wants to close the file manually, this behavior can be suppressed by set-
ting theautoClose property of the socket.AutoClose is a boolean valued property
(yes or no).

• Reusing Port Numbers: When a process with an open socket crashes, the operating sys-
tem prevents other processes from opening a socket with the same port number until
enough time has passed that any old packets floating around in the network that are des-
tined for the dead process have expired. If the boolean propertyreuseAddr is set to
yes , processes can reuse the port number in question immediately.

• Buffer Sizes: When a process writes data to a socket, the operating system copies that data
into an internal buffer, called thesend buffer, where it remains until its transfer is acknowl-
edged by the receiver. As long as there is sufficient free space in the send buffer, calls like
dp_send that write data to the socket will not block. Similarly, the receiver’s operating
systems has an internal buffer (thereceive buffer) where it stores incoming data until the
client executes a call such asdp_receive to read it.

You can set or query the size of the send and receive buffers for each socket using the
sendBuffer andrecvBuffer properties. For example, the following code prints out
the current size of the send and receive buffers and then sets them both to 32 KBytes

1 dp_MakeRPCServer 1905
2 proc SendFile {host port filename} {
3 set inFile [open $filename r]
4 set info [dp_connect $host $port]
5 set socket [lindex $info 0]
6 while {![eof $inFile]} {
7 set data [read $inFile 8192]
8 dp_send $socket $data nonewline
9 }
10 close $inFile
11 close $socket
12 }

Figure 11: Server code for Tcl-DP FTP example

1 proc Connect {serverHost} {
2 return [dp_MakeRPCClient $serverHost 1905]
3 }
4
5 proc GetFile {server remoteFilename localFilename} {
6 set outFile [open $localFilename w]
7 set cInfo [dp_connect -server 0]
8 set cSocket [lindex $cInfo 0]
9 set cPort [lindex $cInfo 1]
10 dp_RDO $server SendFile [dp_hostname] $cPort $remoteFilename
11 set dInfo [dp_accept $cSocket]
12 close $cSocket
13 set dSocket [lindex $dInfo 0]
14 while {1} {
15 if [catch {dp_receive $dSocket} data] {
16 break;
17 }
18 puts -nonewline $outFile $data
19 puts -nonewline “#”
20 flush stdout
21 }
22 puts ““
23 close $outFile
24 }

Figure 12: Client code for Tcl-DP FTP example

The Tcl-DP code in figures 11 and 12 implement this protocol. The client usesdp_RPC to
implement step 2 by calling theSendFile function in the server.

TCP Socket options

A socket has many parameters that affect its behavior. Tcl-DP sets these parameters to reasonable
default values when the societe is created.Socket options give you control over these options. They
can be used to specify whether function calls block, how data is buffered, and the reliability of the
connection. They are accessed usingdp_socketOption , which takes two or three parameters,
similar toconfigure requests on Tk widgets. The first parameter is the socket identifier (e.g.,
file4), the second is aproperty of the socket you want to examine or modify, and the third
parameter, if present, is the new value for the property. If the third parameter is not supplied, the
current value of the property is returned. The paragraphs below discuss the properties relevant to
TCP sockets, which are summarized in table 3.

7. Of course, the connection could be lost for other reasons, such as the server crashing. A better implemen-
tation of the client and server would handle this case but complicate the example.

server

A

client

B

Figure 10: Mechanics of an FTP-style file transfer using Tcl-DP

server

A

server

A

client

B

Step 1: Client connects to server using

Step 2: Client sends its hostname, port

Step 3: Server connects to client, begins

number of the connect socket,

Tcl-DP and creates the connect
socket ().

client

B

and filename to server

server

A

client

B

Step 4: Client accepts connection, closes

data transfer

connect socket, and transfers data
to local file.

If ‘ w’ is used for this parameter, the function will be called when the socket becomes writable.

If an error occurs when a file handler callback executes, the file handler is automatically removed
to prevent the program from going into an infinite loop if the file handler does not consume the
data at the socket. You can manually remove a file handler by callingdp_filehandler without
themode or callback parameters.

Another way of detecting if a file is readable or writable is to use thedp_isready command.
Dp_isready takes a file handle as a parameter and returns a list of two boolean values (0 or 1).
The first element of the return value indicates whether the file is readable. If it is0, then any call
that attempts to read data from the file (e.g.,gets or dp_receive) will block. The second
element of the return value indicates whether the file is writable. If it is0, then any call that
attempts to write data to the file (e.g.,puts or dp_send) will block.

For example, if a call to read data ons1 would block,dp_isready returns0 1 :

A% dp_isready $s1
0 1

If B sends some data to A:

B% dp_send $s2 “hi there”

a call to read data ons1 would not block, sodp_isready returns1 1 :

A% dp_isready $s1
1 1
A% dp_receive $s1
hi there

Example: A Simple FTP Server

Suppose you wanted to implement a simple FTP style server using Tcl-DP. One way to implement
it is to create a new TCP connection for each file transfer, which would be a four step process, as
illustrated in figure 10.

1. The client opens the output file and creates a listening socket (theconnect socket)
2. The client sends the following information to the server: the client’s hostname, the port

number of the connect socket, and the filename to transfer.
3. The server opens the input file and a TCP connection to the client’s connect socket, which

gives the server adata socket. It then enters a loop where it repeatedly reads the input file
and sends the data over to the client. It then closes the data socket and input file.

4. Meanwhile, the client accepts the connection on the connect socket, closes it, and enters a
loop where it receives data from the server and write it to the output file. Ifdp_receive
ever returns an error, it means the connection was broken, presumably because the transfer
is complete7. Sincedp_receive automatically closes the file when the connection is
broken, the client only has to close the output file before returning.

A% dp_packetReceive $s1
message 1
A% dp_packetReceive $s1
message 2

It is possible that only part of the message is available at the timedp_packetReceive is called.
In this case,dp_packetReceive will buffer the partial result internally and return an empty
string. A subsequent call todp_packetReceive will return the entire packet.

To preserve message boundaries,dp_packetSend attaches a binary header onto the message,
whichdp_packetReceive strips. The presence of this header means that applications must be
careful about intermixing calls todp_packetSend anddp_packetReceive with dp_send
anddp_receive , and other data transmission functions.

File handlers

So far, the socket functions we have seen block if no data is present on the socket. That is, the
function call will not return until some data arrives. Blocking can cause problems, for example, if
a program needs to read data from several connections at once. To address this problem, Tcl-DP
provides a mechanism calledfile handlers that arranges for a Tcl function to be called whenever
the file becomesreadable or writable. A socket becomes readable when another process attempts
to connect to it, in the case of a listening socket, or when it has data waiting at its input, in the case
of a data socket. A data socket become writable whenever a call todp_send , puts, or
dp_packetSend will not block.6

File handler callback procedures take two parameters. The first parameter, called themode,
indicates whether the socket has become readable or writable. It will be ‘r ’ if the socket is readable,
or ‘w’ if the socket is writable. The second parameter is the handle of the socket. For example, the
following fragment arranges for A to accept a new connection whenever one is requested on its
listening socket. The procedureMyAccept callsdp_accept to accept the connection, prints a
message on the screen, and adds the new socket to thesocketList variable.

A% proc MyAccept {mode file} {
global socketList
set info [dp_accept $file]
set newSocket [lindex $info 0]
puts “Accepted connection from [lindex $info 1]”
lappend socketList $newSocket

}
A% dp_filehandler $listeningSocket r MyAccept

The call to dp_filehandler arranges for MyAccept to be called whenever
listeningSocket becomes readable. The second parameter todp_filehandler (‘r ’ in
the example above) indicates that the file handler should only be called when the socket is readable.

6. Such calls can block if they are communicating over a particularly slow connection, since the system will
only buffer a limited amount of data. The amount of data buffered can be adjusted using the
dp_socketOption command, discussed below.

Sending and receiving data

The simplest way to send data from one application to another is to use the Tcl functionsgets ,
read , andputs . For example, in the following fragment B sends the string “Hello world” to A:

B% puts $s2 “hello world”

To receive the string, A callsgets :

A% gets $s1
hello

Another interface for sending and receiving data isdp_send anddp_receive . Dp_send takes
the same arguments asputs and serves the same function.Dp_receive is similar to the Tcl
read command, except it takes an optional-peek flag indicating that the data should be read
from the socket, but not consumed, so that a subsequent call todp_receive will see the same
data. In addition, if the connection is ever broken,dp_send anddp_receive automatically
close the socket.

TCP sockets provide a stream interface, which can cause unexpected results if you want to use
them to send messages between processes. For example, suppose B sends several messages to A.
When A reads its socket, the messages might be concatenated or only part of a message may be
present. The following code fragment shows this effect in action. If B executes the following
commands

B% dp_send $s2 “message 1”
B% dp_send $s2 “message 2”

When A callsdp_receive , it gets both messages at once:

A% dp_receive $s1
message 1
message 2

Since some applications want to preserve message boundaries and want the reliability of TCP, Tcl-
DP provides two functions,dp_packetSend and dp_packetReceive , that provide
message-oriented delivery. For example, suppose B usesdp_packetSend instead ofdp_send
in the example above:

B% dp_packetSend $s2 “message 1”
B% dp_packetSend $s2 “message 2”

When A callsdp_packetReceive , it gets one message per function call.

After creating the listening socket, the server typically waits for a connection to arrive by calling
dp_accept , which will return when another process attempts to connect to the socket. For
example, the following code causes A to block while waiting for a client:

A% set newClient [dp_accept $listeningSocket]

Another process connects to A using another form ofdp_connect . In this form, the hostname
of the machine on which the server is running, and the port number of the server socket, are passed
as parameters todp_connect . If the hostname of A ismayo.sandwich.com , the following
code will connect machine B to A:

B% set info [dp_connect mayo.sandwich.com 1905]
file4 3833
B% set s2 [lindex $info 0]

As with the previous call todp_connect , a handle to the socket (e.g.,file4) and the operating
system selected port number of the socket (3833) are returned.

B’s attempt to connect to A will cause A’s call todp_accept to return, setting thenewClient
variable to the handle of the new socket (e.g.,file5) and the Internet address of the connecting
process (e.g.128.83.218.21)

A% set newClient [dp_accept $listeningSocket]
file5 128.83.218.21
A% set s1 [lindex $newClient 0]
file5

Unix Domain Sockets

The example above createdInternet domain sockets. That is, B uses an Internet address and port
number to rendezvous with A’s socket. On Unix systems, another naming scheme, calledUnix
domain sockets, can be used to available for connecting processes if they reside on the same
machine. In this case, a file name (e.g.,/tmp/mysocket) is used to name the socket. The
following example shows a connection using Unix domain sockets.

Server code:
% set f [dp_connect -server /tmp/mysocket]
file4
% set s1 [dp_accept $f]

Client Code:
% set s2 [dp_connect /tmp/mysocket]
file4

Regardless of whether Unix or Internet domain sockets are used, processes communicate using the
handles of the sockets as arguments to Tcl-DP function. In the examples, these handles are stored
in the variabless1 ands2 .

will discuss the primitives associated with unconnected (UDP and IP-multicast) sockets later.

TCP sockets

Connecting two processes using TCP is a three step process, illustrated in figure 9. First, one
process, say A, creates alistening socket with an associatedname so that other processes can
contact it. The name can be either a Unix filename or an Internet address and port number. Second,
another process (B) creates another socket andconnects to A’s listening socket. Third, Aaccepts
the connection, which creates a new socket so that other processes can contact A using the A’s
listening socket.

In Tcl-DP,dp_connect is used for steps one and two, anddp_accept is used for step three.
Dp_connect will create a listening sockets if the-server flag is provided. For example, the
following command creates a listening socket on port 1905 and assigns the socket identifier
(file4) to the variablelisteningSocket .

A% set info [dp_connect -server 1905]
file4 1905
A% set listeningSocket [lindex $info 0]
file4

The third parameter todp_connect is the port number. Only one socket can be associated with
a given port at any time. If another socket is already open on that port,dp_connect will return
an error. You can have the operating system select an unused port by specifying a port number of
0 todp_connect . No matter who selects the port number,dp_connect will return a list of two
values: the identifier for the socket and its port number.

server

A

client

B

Figure 9: Connecting processes using TCP

server

A

server

A

client

B

Step 1: A creates a listening socket

Step 2: B requests connection

Step 3: A accepts connection,
creating a new socket
as a result.

to A

ns_Register addService /demo/whiteboard mayo.sandwich.com \
“dptcl -f /home/tcldp/ns/wbServer.tcl”

ns_Register aliasService /demo/whiteboard /wbServer

The name server can associate several names, called aliases, with a single process. A call to
NS_GetServiceConn will search through service names and their aliases for a match. The
name server supports pattern matching on service names similar to Unix file name matching to
locate servers. The interface to this pattern matching function isNS_FindService .
NS_FindService returns a list of all the matching names, similar to the way the Tclglob
command returns a list of file names that match a pattern. For example, the following call locates
all servers in the demo tree:

B% set demoServers [NS_FindService /demo/*]

The use of the slash (“/”) character to give a hierarchical structure to the process names is only a
convention.NS_FindService uses the Tcl string match command to search for matches.
Consequently, you can establish any naming scheme you like, but we encourage you to use the
naming convention presented above (i.e., use slash characters) to ensure uniformity.

The name server is a network wide service built using Tcl-DP. It runs on a well known host and
port number in your network. The exact host and port are specified in the file$dp_library/
ns/nsconfig.tcl . This immediately bring to mind the following questions: who starts the
name server and what happens if the machine that runs the name server crashes? The answer to the
first question is that the name server is typically started by an entry in/etc/rc.local when a
designated machine boots. The answer to the second question is that backup copies of the name
server can be run at the same time as the primary server. The machines on which the backup server
are run are specified in the file$dp_library/ns/nsconfig.tcl . All name server functions
accessible from the client, such asNS_GetServiceConn andNS_FindService , will locate
the primary server and connect to it. If the primary name server crashes, the backups elect a new
primary name server. More details on the design and implementation of the name server are
available elsewhere [tcl-95 ref].

Tcl-DP Communication Services

This section shows you how to use Tcl-DP’s interfaces to TCP, UDP, and IP-multicast. It also
shows you how to query and set various properties of sockets, such as buffer sizes and blocking
properties, to gain more control over the properties of the communication channel. Finally, this
section will show you how to access the Internet Domain Name Service (DNS) using Tcl-DP. The
DNS maps internet addresses (e.g., 128.32.149.117) to host names (e.g., toe.cs.berkeley.edu).

Review of Berkeley Sockets

Before discussing Tcl-DP’s mechanisms for connecting two processes, we will briefly review
Berkeley sockets. Sockets come in several varieties, distinguished by the communication protocol
(e.g., TCP or UDP), how the socket is identified, and whether or not the socket is the connection
initiator. In this section, we will discuss the primitives used forconnected (i.e., TCP) sockets. We

A% proc Subscribe {} {
global dp_rpcFile clients log
lappend clients $dp_rpcFile
dp_atclose $dp_rpcFile append \

“set clients [ldelete $dp_rpcFile $clients]”
foreach cmd $log {

eval dp_RDO $dp_rpcFile $cmd
}

}

The Name Server

As distributed applications get more complex, starting and stopping servers, locating a server and
the port on which it is listening, and keeping track of the server state becomes more of a problem.
For example, in our whiteboard program, we want to start the client application and have it connect
to a running server if one is available or start one if it is not running. The problem is how do we
locate a running server or start one if it is not running? The Tcl-DPname server solves this
problem.

The name server associates a name with each process which are patterned after Unix file names.
For example, the name of the whiteboard server might be/demo/whiteboard .

When the server starts up, it uses the procedureNS_SrvcInit to contact the name server and
declare its name5. For example, the following commands tells the name server that the whiteboard
server is running onmayo.sandwich.com , port 4500:

A% NS_SrvcInit /demo/whiteboard mayo.sandwich.com 4500

Registering a name with the name server adds it to the list of server that the name server knows
about. We call a registered name aservice. When a whiteboard client wants to locate the
whiteboard server, it issues anNS_GetServiceConn call to find the service.
NS_GetServiceConn takes the name of a service as an argument, contacts the name server, and
returns a host and port number where the server can be contacted. For example, the code

B% set whiteboardServer [NS_GetServiceConn /demo/whiteboard]

queries the name server to get the host and port number of the whiteboard server which can be
passed todp_MakeRPCClient .

If the server is not running whenNS_GetServiceConn is called, the name server can start the
process for you if the service is registered as anautostart service. Only processes marked as
autostart in the file$dp_library/ns/nsconfig can be started automatically. For example,
adding the following line to this file makes the whiteboard an autostart service:

5. The prefix for all name server commands isNS_

allow inbound RPC’s to be checked on any socket (client side or server side), use the
dp_SetCheckCmd function. For example, to add client side command checking, the client can
execute the following command:

dp_SetCheckCmd $server ClientCheckCommand

where ClientCheckCommand is a command checking procedure similar to
WhiteboardCmdCheck in figure 8. Alternatively, the client check command can be specified
when the connection is made:

set server [dp_MakeRPCClient $host 4544 ClientCheckCommand]

Cleanup

In distributed programs like the whiteboard example, clients and servers crash or shutdown without
warning. These crashes can cause unexpected, often fatal, errors to occur. For example, if a
whiteboard client dies unexpectedly, the server wants to remove the client from theclients
variable. Thedp_atclose command is designed to handle such clean up actions automatically.

Dp_atclose associates a list of Tcl commands with a file. Just before the file is closed, which
happens automatically if a connection is broken, each command in the list is called. The first
argument todp_atclose is a file identifier (e.g.,$server) that specifies the target file or
connection and the second argument is a command. Valid commands are:append , remove ,
appendUnique , insert , and list . Append adds a new callback to the end of the list.
Remove deletes a previous appended callback.AppendUnique adds a callback to the end of the
list, but only if it is not already part of the list.Insert places a callback at the beginning of the
list, andlist returns the current callback list. Table 2 lists the valid commands and arguments for
dp_atclose 4.

We can usedp_atclose in the whiteboard program to remove a client that has crashed from the
clients variable by making the following change to theSubscribe command. The modified
code is shown in boldface:

4. Tcl-DP has another cleanup command,dp_atexit , that is similar todp_atclose . Dp_atexit
callbacks execute just before the program exits.

Table 2: Arguments for dp_atclose and dp_atexit

Command Arguments Description

append callback Invokecallback when file closes

appendUnique callback Invokecallback precisely once when file closes

list - Return file closing callback list

remove callback Removecallback from file closing callback list

insert callback Insertcallback at beginning of callback list

other commands are disallowed.

A% proc CheckCmd {cmd args} {
case $cmd in {

Subscribe return;
puts{

set file [lindex $args 0]
if {[string compare $file stderr] != 0]} {

return -code break
}
return;
}

set{
if {[llength $args] != 1} {

return -code break
}
return;
}

eval {return -code continue}
catch {return -code continue}
if {return -code continue}

}
return -code break;

}

We will now use both features to make the whiteboard program more secure. We will only allow
clients whose IP-address is in thewhiteboard-clients file to connect, and we will verify
that the clients are executing legal commands. The modified code is shown in figure 8.

Of course, the server can still execute commands in the client. This capability can cause problems
in environments where the user can not verify that a server is authentic. For example, a client can
innocently connect to a server and the server can remove all files in the client environment. To

1 # Set the list of allowed clients from whiteboard-clients
2 set f [open whiteboard-clients r]
3 dp_host -
4 while {[get $f host] != -1} {
5 dp_host +$host
6 }
7 close $f
8
9 # The only allowed commands are Subscribe and Publish
10 proc WhiteboardCmdCheck {cmd args} {
11 case $cmd in {
12 Subscribe return
13 Publish return
14 }
15 return -code break;
16 }
17
18 dp_MakeRPCServer 4545 dp_CheckHost WhiteboardCmdCheck

Figure 8: Extra Commands for Secure Tcl-DP Shared Whiteboard Server

A% proc CheckConnection {file addr} {
if {[string match $addr 128.32.134.*] != 1]} {

error “Host not authorized”
}

}
A% dp_MakeRPCServer 4545 CheckConnection

The default login procedure for Tcl-DP isdp_CheckHost , which provides a simple access
control list mechanism, similar toxhost in the X window system, for limiting connections to a
set of IP host addresses. The access control list is modified by thedp_host command. For
example, the following Tcl-DP commands allow connections from machines in the128.32.134
subnet except128.32.134.117 , or from the machine namedmayo.sandwich.com .

A% dp_host -
A% dp_host +128.32.134.*
A% dp_host -128.32.134.117
A% dp_host +mayo.sandwich.com
A% dp_MakeRPCServer 4567

By default, connections from any host are allowed (equivalent todp_host +). Thedp_host
command and its associatedloginFunc are implemented entirely in Tcl. They can be found in
the file $dp_library/acl.tcl in the distribution. This code can be used as an example for
building more complex login security functions. For example, a server could maintain a list of
authorized users and passwords and require a client to explicitly login. Or, a server could use a
system such as PGP or Kerberos to authenticate clients.

The login procedure can prevent rogue users from accessing a server, but even innocent users can
accidentally run commands with horrible side effects. Such mistakes are particularly disastrous if
the server is running as root. For example, we all want to stop someone from accidentally running

B% dp_RDO $server exec rm -rf /

To prevent such catastrophes,dp_MakeRPCServer takes a second optional argument, called the
check command, which checks each command from adp_RPC or dp_RDO call before it is run.
The return code from the check command specifies whether to disallow the command, to continue
checking sub commands, or to allow the command to be executed with no further checking. If the
procedure returns a normal value, the command is allowed and no further checking is performed.
If the option-code break is used with thereturn , the command is disallowed. If-code
continue is used, the command is allowed but nested commands are checked. Notice that the
nested checking allows commands such as

B% dp_RPC $server eval rm -rf /

to be caught.

To illustrate the use of check commands, the following code defines a procedure that allowsputs
to be run on standard error,set to be run with one argument,Subscribe to be run with now
further checking, andeval , catch , andif to be run with embedded command checking. All

1 #!/usr/local/bin/dpwish -f
2 puts “Enter hostname of server:”
3 gets stdin host
4 set server [dp_MakeRPCClient $host 4544]
5 dp_RDO $server Subscribe
6 proc DoCmd {args} {
7 global server
8 eval dp_RDO $server Publish $args
9 }
10 wm grid . 1 1 1 1
11
12 # Create menu bar:
13 frame .menubar -relief ridge
14 menubutton .menubar.file -text “File” -menu .menubar.file.menu
15 pack .menubar.file -side left
16 menubutton .menubar.object -text “Objects” -menu .menubar.object.menu
17 pack .menubar.object -side left
18 pack .menubar -side top -fill both
19 menu .menubar.file.menu
20 .menubar.file.menu add command -label “Exit” -command exit
21 menu .menubar.object.menu
22 .menubar.object.menu add command -label “Clear” -command “ DoCmd .c delete all”
23 .menubar.object.menu add command -label “Circle” -command “ DoCmd CreateCircle”
24
25 # Create canvas, procs, bindings
26 canvas .c -background green
27 pack .c -fill both
28
29 proc CreateRect {x y} {
30 DoCmd .c create rectangle $x $y $x $y -width 4 -outline white
31 }
32 proc CreateCircle {} {
33 set i [.c create oval 150 150 170 170 -fill skyblue]
34 .c bind $i <Any-Enter> “ DoCmd .c itemconfig $i -fill red”
35 .c bind $i <Any-Leave> “ DoCmd .c itemconfig $i -fill SkyBlue2”
36 .c bind $i <2> “ DoCmd plotDown .c $i %x %y”
37 .c bind $i <B2-Motion> “ DoCmd plotMove .c $i %x %y”
38 }
39 proc Clear {} { DoCmd .c delete all}
40 proc plotDown {w item x y} {
41 global plot
42 $w raise $item
43 set plot(lastX) $x
44 set plot(lastY) $y
45 }
46 proc plotMove {w item x y} {
47 global plot
48 $w move $item [expr $x-$plot(lastX)] [expr $y-$plot(lastY)]
49 set plot(lastX) $x
50 set plot(lastY) $y
51 }
52
53 bind .c <B1-Motion> {CreateRect %x %y}

Figure 7: Tcl-DP Shared Whiteboard Client

connect the client to the server. TheDoCmd procedure defined in lines 6-9 usesdp_RDO to call
Publish in the server, which sends whiteboard commands to the clients. TheCreateRect ,
CreateCircle , andClear routines useDoCmd.

Security

One problem with this server is that any client can connect, and a connected client can execute any
command. Tcl-DP uses two mechanisms to handle these two different security holes.

The first level of defense Tcl-DP provides is an optional “login” procedure that can be supplied
with the dp_MakeRPCServer command,. This procedure allow a server to specify a Tcl
procedure that will be executed when a client connects to the server. The procedure is called with
the file handle and IP address of the new client (e.g.,file4 and 128.32.133.117) as
arguments. For example, the following server logs all connection requests to a file.

A% set logFile [open /tmp/connect.log w]
A% proc LogConnection {file addr} {

global logFile
puts $logFile “Connection accepted from $addr on $file”

}
A% dp_MakeRPCServer 4545 LogConnection

The login procedure can be used to prevent illegal connections. If the connection is determined
illegal, the login procedure should return an error. For example, the following server only allows
connections from hosts in the128.32.134 subnet.

1 #!/usr/local/bin/dpwish -f
2 dp_MakeRPCServer 4544
3
4 set clients {}
5 set log {}
6
7 proc Subscribe {} {
8 global dp_rpcFile clients log
9 lappend clients $dp_rpcFile
10 foreach cmd $log {
11 eval dp_RDO $dp_rpcFile $cmd
12 }
13 }
14
15 proc Publish {args} {
16 global clients log
17 lappend log $args
18 foreach i $clients {
19 eval “dp_RDO $i $args”
20 }
21 }

Figure 6: Tcl-DP Shared Whiteboard Server

to the whiteboard by executingdp_MakeRPCClient and calling theSubscribe procedure.
The server maintains a list of all clients connected in the global variableclients and a history
of all whiteboard commands in the global variablelog . When a new client is added, the
commands in thelog are sent to the new client so that it’s display is brought up to date with the
other clients. The commandPublish is called when a client executes a whiteboard command. It
writes the command to thelog and broadcasts the command to all the clients.

The modified client code is shown in figure 7, with the modified code in boldface. Lines 2-5

1 #!/usr/local/bin/wish -f
2 wm grid . 1 1 1 1
3
4 # Create menu bar:
5 frame .menubar -relief ridge
6 menubutton .menubar.file -text “File” -menu .menubar.file.menu
7 pack .menubar.file -side left
8 menubutton .menubar.object -text “Objects” -menu .menubar.object.menu
9 pack .menubar.object -side left
10 pack .menubar -side top -fill both
11 menu .menubar.file.menu
12 .menubar.file.menu add command -label “Exit” -command exit
13 menu .menubar.object.menu
14 .menubar.object.menu add command -label “Clear” -command “.c delete all”
15 .menubar.object.menu add command -label “Circle” -command “CreateCircle”
16
17 # Create canvas, procs, bindings
18 canvas .c -background green
19 pack .c -fill both
20
21 proc CreateRect {x y} {
22 .c create rectangle $x $y $x $y -width 4 -outline white
23 }
24 proc CreateCircle {} {
25 set i [.c create oval 150 150 170 170 -fill skyblue]
26 .c bind $i <Any-Enter> “.c itemconfig $i -fill red”
27 .c bind $i <Any-Leave> “.c itemconfig $i -fill SkyBlue2”
28 .c bind $i <2> “PlotDown .c $i %x %y”
29 .c bind $i <B2-Motion> “PlotMove .c $i %x %y”
30 }
31 proc Clear {} {.c delete all}
32 proc PlotDown {w item x y} {
33 global plot
34 $w raise $item
35 set plot(lastX) $x
36 set plot(lastY) $y
37 }
38 proc PlotMove {w item x y} {
39 global plot
40 $w move $item [expr $x-$plot(lastX)] [expr $y-$plot(lastY)]
41 set plot(lastX) $x
42 set plot(lastY) $y
43 }
44
45 bind .c <B1-Motion> {CreateRect %x %y}

Figure 4: A Simple Tcl/Tk Whiteboard

to a new position by pressing the middle button down while the mouse is over the circle and
moving the mouse. To clear the whiteboard, select theClear menu item in theObject menu.

This code can be adapted to a shared whiteboard by broadcasting every change to the canvas,
whether through bindings or procedure calls, to the other whiteboards. To handle the broadcasts,
we will use a centralized server process as a reflector. Each client connects and subscribes to the
whiteboard. The clients and server form a “star” with the server at the center as shown in figure 5.
When a client wants to execute a whiteboard command, it sends the command to the server, which
broadcasts the command to all the clients, where they are executed.

The Tcl-DP code to create the server is shown in figure 6. The call todp_MakeRPCServer on
line 2 initializes the server and listens for connections from clients on port 4544. A client connect

Figure 3: A simple whiteboard

server

client

client

client

client
draw
request

reflected
request

Figure 5: Architecture of the shared whiteboard example

B% proc Setup {} {
global server scode
dp_RDO $server -callback {set scode} Subscribe
dp_waitvariable scode
dp_RDO $server puts $scode

}
B% Setup

Dp_waitvariable calls Tk_DoOneEvent repeatedly untilscode changes value, which
happens when the server sends back the subscription identifier.

In addition to the-callback option,dp_RDO has an-onerror option that specifies a Tcl
fragment that will be evaluated if the remote procedure call terminates with an error. This option
can be used, for example, to trap errors that occur in the remote execution ofdp_RDO. To see-
onerror in action, try the following fragment:

B% dp_RDO $server -onerror puts Greeting arg1 arg2

Since theGreeting procedure only takes one argument, thisdp_RDO call will trigger an error,
which will be printed on the screen usingputs .

The final topic in this section describes how to close connections. Since the connection identifier
is an ordinary file descriptor, the Tclclose command can be used to terminate the connection.
For example, the command

B% close $server

shuts down the connection between B and A.

An Extended Example

To show how the functions described in this section are used in an application, we will show you
how to build a simple distributed whiteboard. Before showing how this application works across a
network, it is simplest to learn how the non-distributed version works.

The Tk code for a stand-alone whiteboard, which can be found in the filewb.tcl in the
examples/whiteboard subdirectory in the Tcl-DP distribution, is shown in figure 4. This
code creates a canvas and a menu bar, as shown in figure 3. The functionsCreateRect and
CreateCircle create rectangles and circles on the canvas. The functionClear deletes all
objects on the canvas. The functionsPlotDown and PlotMove work together to move a
previously created circle.

The whiteboard is used as follows. To create rectangles, press the left button down in the main
window and move the mouse while holding the button down. A trail of small, 4 by 4 pixel, squares
will follow the mouse on the canvas. Internally, this response is implemented by binding (at line
51) theButton-1-motion event to call theCreateRect function.

To create a circle, select theCircle menu item in theObject menu. You can move the circle

procedure usingdp_RDO and sets the local variablescode to the subscription code:

B% dp_RDO $server -callback {set scode} Subscribe
B% CreateUserInterface

When Subscribe completes, the Tcl fragmentset scode is evaluated in B with the new
identifier appended.

One problem that can arise using-callback is synchronizing the client and server. For example,
suppose the client, after creating the user interface, must execute theReady procedure on the
server which takes the identifier returned from theSubscribe function as an argument.

B% proc Setup {} {
global server scode
dp_RDO $server -callback {set scode} Subscribe
dp_RDO $server puts $scode

}
B% Setup
can’t read “scode”: no such variable

This code fails on the seconddp_RDO because the client has not processed the callback of the first
dp_RDO, which sets thescode variable. This problem is called a client/serversynchronization
problem. To understand the solution to the synchronization problem, we must take a brief detour
into the implementation of Tcl-DP.

Tcl-DP uses TCP sockets fordp_RDO anddp_RPC. In Unix, sockets are represented by files
which arereadable when the socket has data waiting to be read. Tk contains a mechanism, called
file handlers, that automatically invokes a C callback function whenever a file isreadable. The
callback is issued from theTk_DoOneEvent function, which invokes callbacks in response to X
window events, file events, and timer events.

Tcl-DP uses file handlers and TCP sockets to implement the RPC mechanisms. In particular,
dp_MakeRPCClient creates a socket and a file handler on the socket that reads strings that
come in on the socket, evaluates them as Tcl commands, and returns the result. But the file handler
associated with a Tcl-DP socket is not invoked until the client callsTk_DoOneEvent .

The implementation of-onerror and-callback usedp_RDO. In the example above, A uses
dp_RDO to setscode in B. Since the response by A is passed to B usingdp_RDO, scode is not
set until the client callsTk_DoOneEvent . So, to solve the synchronization problem, we have to
call Tk_DoOneEvent until the server’s response is received.

Tcl-DP provides two Tcl commands to callTk_DoOneEvent : dp_update and
dp_waitvariable . Dp_update callsTk_DoOneEvent repeatedly until no X, timer, or file
events are pending. Dp_waitvariable calls Tk_DoOneEvent until a specified variable
changes value. The solution to the synchronization problem above can usedp_waitvariable :

values. TheSubscribe procedure given above is an example of such a procedure. The purpose
in callingSubscribe is not to get a return value, in fact, it does not return a value, but rather to
modify a global variable in the server. Whenever a procedure is called that does not return a useful
value, it can be called withdp_RDO instead ofdp_RPC. For example, the following calls
Subscribe procedure usingdp_RDO:

B% dp_RDO $server Subscribe

Besides preventing deadlock,dp_RDO is also more efficient thandp_RPC. The difference can be
dramatic. Depending on the distance to the remote site, the load on the network, and the
responsiveness of the server,dp_RPC can take anywhere from 2 to 200 milliseconds (or more!) to
complete. In contrast,dp_RDO typically returns within a fraction of a millisecond. Moreover,
dp_RDO reduces load on the network, client, and server, since the server does not send back a
response, the client does not process a response, and the network does not transport the response.3

Another consequence of usingdp_RDO is that the client and server can run in parallel. For
example, in its initialization code, a typical client of our server will create a user interface and
subscribe to the server database. A typical calling sequence might look like:

B% dp_RPC $server Subscribe
B% CreateUserInterface

By replacing thedp_RPC call in the second line withdp_RDO, the client can create the user
interface while the server executes theSubscribe code.

Dp_RDO has two important options:-callback and-onerror . The-callback option is
used when the return value from the remote procedure call is of interest to the client, but you want
to use the parallelism provided bydp_RDO. For example, suppose we modify theSubscribe
procedure to return a subscription code that the client uses to identify itself to the server.

A% set code 0
0
A% proc Subscribe {} {

global dp_rpcFile clientList code
if {[lsearch $clientList $dp_rpcFile] == -1} {

lappend clientList $dp_rpcFile
}
incr code
return $code

}

You might think that the client can not usedp_RDO to callSubscribe because it needs to return
a value to the caller. The-callback flag to dp_RDO is designed to handle this case. The
argument to-callback is a Tcl script that is evaluated in the client with the return value from
the remote call appended. For example, the following code calls the modifiedSubscribe

3. That is, assuming the application does not request a return value using the-callback option, described
below.

B% dp_RPC $server -events {rpc x} Subscribe

Finally, to process all events, use the event typeall :

B% dp_RPC $server -events all Subscribe

A second way to prevent deadlock is to use the-timeout option todp_RPC. If thedp_RPC call
does not return within the specified timeout, which is given in milliseconds,dp_RPC returns with
an error. Since it can trigger an error,-timeout is typically used in combination with Tcl’s
catch command. For example, the following code calls theSubscribe procedure on A, but
prints a message on the screen if A does not respond within 100 milliseconds.

B% if [catch {dp_RPC $server -timeout 100 Subscribe}] {
puts “Couldn’t register with server”

}

As an alternative to catching the error, you can use the-timeoutReturn option to specify a
fragment of Tcl code to be executed if thedp_RPC call times out. The code is called with the
connection id of the failed callback appended. The example above could be expressed like this

B% proc HandleTimeout {file} {
puts “Couldn’t register with server”

}
B% dp_RPC $server -timeout 100 -timeoutReturn HandleTimeout Subscribe

The third way to prevent deadlock in Tcl-DP is to use a non-blocking RPC rather than a blocking
RPC. The commanddp_RDO, which stands for “remote do,” initiates the RPC but does not wait
for a response from the remote interpreter. Instead, it simply sends a message containing the
request to the remote interpreter and immediately processes the next command in the script.

Dp_RDO is ideal for procedure calls that are used for their side effects rather than their return

Table 1: Event types thatdp_RPC recognizes

Event type Meaning

x Events from the X window system (created with Tk’sbind command)

file Events that occur on a file or socket (created with Tcl-DP’s
dp_filehandler command).

rpc Same as the file event type

timer Timer events (created with Tk’safter command)

idle Events that correspond to when-idle events (such as display updates, window
layout calculations, and tasks schedules withdp_whenidle)

all Same as the list{x file timer idle}

none Don’t process any events; block

We will discuss each mechanism in turn.

The first way to prevent deadlock is to force processes to respond to inbound RPC requests while
waiting for a previously issued requests to return. If this feature was used in the example above, B
would process theputs “Pleased to meet you” call from A while waiting for the
dp_RPC call to return. Thus, A’s RPC to B would return, allowing the remote call toGreeting
to return, so that B’s RPC to A would return. The key to implementing this strategy is to get B to
process incoming RPC’s while waiting for an outstanding RPC to return.

Dp_RPC will process inbound RPCs while waiting for an outbound RPC to complete if it is called
with the-events option. In other words, if we used the following code to callGreeting on A,
the system won’t deadlock:

B% dp_RPC $server -events rpc Greeting “Hello there”

The -events option allows B to process inbounddp_RPC calls, but B will be unresponsive to
other Tk events, such as events from the window system (e.g., requests to redraw the screen) and
timer events (created using theafter command in Tk).

To make B responsive to other events while in an RPC, the-events option can be passed a list
of event types which B should continue to process while waiting for the RPC to return. Table 1 lists
the event types that can be processed with-events . For example, to force B to continue
processing events generated by the X window system while waiting for a response from A, thex
event type is used:

B% dp_RPC $server -events x Subscribe

To process timer events, usetimer as the event type:

B% dp_RPC $server -events timer Subscribe

To process multiple event types, such as RPCs and X events, pass a list to-events .

mayo.sandwich.com

server

dpwish A
lettuce.sandwich.com

client

dpwish B

Figure 2: Deadlock

puts “Hello there”

puts “Pleased to meet you”

Subscribe procedure that clients may call to subscribe to the database which will build this list.

A% set clientList {}
A% proc Subscribe {} {

global dp_rpcFile clientList
if {[lsearch $clientList $dp_rpcFile] == -1} {

lappend clientList $dp_rpcFile
}

}

After one or more clients have subscribed, the server can use the following code to broadcast a
message to all its subscribers:

A% proc Publish {msg} {
global clientList
foreach c $clientList {

dp_RPC $c puts $msg
}

}

This example brings up a subtle point that can cause your client/server application to deadlock. To
illustrate, suppose A contains the following procedure:

A% proc Greeting {msg} {
global dp_rpcFile
puts $msg
dp_RPC $dp_rpcFile puts “Pleased to meet you”

}

Now suppose B issues the following call:

B% dp_RPC $server Greeting “Hello there”

The expected behavior is that “Hello there” will appear in A’s window, and “Pleased to meet you”
will appear on B’s. Instead, both A and B hang because, while waiting fordp_RPC to return, B
blocks. But, while processing theGreeting call, A issues adp_RPC to B which cases it to block.
Since B is stopped waiting for A, and A is stopped waiting for B, the system isdeadlocked, as
shown in figure 2.2

Tcl-DP provides three mechanisms to prevent deadlock

• the-events option ofdp_RPC

• the-timeout option ofdp_RPC, and

• thedp_RDO procedure.

2. If you run this example, your processes won’t actually deadlock because Tcl-DP uses a default value for
the-events option ofdp_RPC, which is discussed below, that prevents deadlock.

B% dp_RPC $server set x 5
5
B% set y [dp_RPC $server expr {8*$x}]
40

The curly braces in thedp_RPC call are needed to prevent the Tcl interpreter in B from
substituting the local value ofx , which contains the first line of/etc/passwd .

If an error occurs while executing an RPC,dp_RPC sets theerrorInfo anderrorCode
variables in the originating interpreter and returns with an error. For example, the following call to
dp_RPC triggers an error sinceReadFirstLine requires a file name as a parameter.

B% set line1 [dp_RPC $server ReadFirstLine]
no value given for parameter “filename” to “ReadFirstLine”

The error is signaled using the standard Tcl mechanisms, exactly as if you had called
ReadFirstLine locally. For example, the error can be trapped using the Tclcatch command:

if [catch {dp_RPC $server ReadFirstLine /does/not/exist} line1] {
Handle error any way you want...
puts “Caught error: $errorInfo”
puts “line1: $line1”

}
Caught error: couldn’t open “/does/not/exist”: No such file or directory
 while executing
“open $filename r”
 invoked from within
“set f [open $filename r]...”
 (procedure “ReadFirstLine” line 2)
 invoked from within
“ReadFirstLine /does/not/exist”
 invoked from within
“dp_RPC $server ReadFirstLine /does/not/exist”
line1: couldn’t open “/does/not/exist”: No such file or directory

The examples thus far have shown how a client usesdp_RPC to execute a command in a server.
Now suppose the server needs to execute a command in a client. This function might be used, for
instance, to build an application that supports a publish/subscribe paradigm. Clients contact the
server to subscribe to a database, and servers issue callbacks to the clients when the database is
updated. The server can usedp_RPC to issue such a callback, but in order to do so the server needs
a connection identifier such as$server . Where does the server get the identifier for a client? The
answer is from thedp_rpcFile variable.

Whenever Tcl-DP processes an RPC, it sets a global variable, nameddp_rpcFile , to the
connection identifier of the incoming RPC for the duration of the call. Servers can use
dp_rpcFile to identify the source of the call, which can be used to contact the client later.

For example, suppose you want to write a server that supports the publish/subscribe paradigm. The
server must maintain a list of all clients that have subscribed. The following code uses a

connection between the client and the server. The exact value of the identifier may be slightly
different on your machine.

When A receives the connection request on port 4567, it opens a new file in the server that handles
incomingdp_RPC requests. This leaves port 4567 free for accepting requests from other clients.
Figure 1(B) show the machine and process architecture after the connection is established.

You can execute a Tcl command in the remote interpreter using this identifier as an argument to
thedp_RPC command. For example, the following command prints “hello” in A’s window:

B% dp_RPC $server puts hello

The extra arguments todp_RPC (after$server) can be any Tcl command. For example, the
following RPC creates a procedure in A that returns the first line in a file.

B% dp_RPC $server proc ReadFirstLine {filename} {
set f [open $filename r]
set firstline [gets $f]
close $f
return $firstline

}

If B executes the following command, the variablex in B will contain the first line of the file
/etc/passwd on A.

B% set x [dp_RPC $server ReadFirstLine /etc/passwd]
root:r.shdrfURbfwu:0:0:Operator:/:/bin/csh

This example shows an important feature ofdp_RPC: the value returned by thedp_RPC call is
the value returned by the command executed on A. As another example, the following sequence of
commands creates a variablex in A, computes 8 times its value, and assigns the result to the
variabley in B:

mayo.sandwich.com

server

dpwish A

port 4567

mayo.sandwich.com

server

dpwish A

port 4567

lettuce.sandwich.com

client

dpwish B

file4
(B)(A)

Figure 1: Connection setup

proc PromptB {} {puts -nonewline “B% “}
set tcl_prompt1 PromptB

The prompt for A and B should now be “A%” and “B%”, respectively. In the examples that follow,
the prompt indicates in whichdpwish the example commands are to be executed. We will refer
to the processes as A and B.

The remainder of this chapter is divided into three sections. The first section summarizes Tcl-DP
functions for creating client/server applications. After reading this section, you will be able to write
robust distributed applications using Tcl-DP. The second section describes the socket level
communication primitives in Tcl-DP. After reading this section, you will know how to use sockets
and event handling. The third section describes the Tcl-DP distributed object system.

We assume that the reader is already familiar with Tcl/Tk.If not, the books by John Ousterhout and
Brent Welch [ref,ref] provide excellent introductions. We also assume the user is familiar with the
basic properties of Internet protocols like TCP/IP and UDP/IP, and has a superficial understanding
of the Berkeley socket abstraction. The book by Stevens [ref] provides more information than you
need to know on these topics.

Each section alternates between presenting a group of Tcl-DP functions and integrating them into
an example program (a distributed whiteboard) that shows them in use.

Client/Server Architectures in Tcl-DP

The most important feature of Tcl-DP is that it simplifies the creation of client/server applications.
For example, the following commands make A a server:

A% dp_MakeRPCServer 4567
4567

Dp_MakeRPCServer turns a process into a server listening on port 4567. The system will select
a port number for you if you omit the port number or specify 0 as the port number. The chosen port
number is returned, whether or not you specify it. The machine and process configuration is show
in figure 1(A).

A client connects to a Tcl-DP server using thedp_MakeRPCClient command.
Dp_MakeRPCClient takes two arguments: 1) the machine on which the server is running and
2) the port number on which the server will listen for client connection requests. For example,
suppose the name of the machine that A is running on ismayo.sandwich.com . The following
command will make B a client of A.

B% set server [dp_MakeRPCClient mayo.sandwich.com 4567]
file4
B%

The return value ofdp_MakeRPCClient , file4 in this example, is an identifier for the

Any command or script can be substituted in place of theGetId command. For example, the
commands

dp_RPC $server info tclversion
dp_RPC $server info procs dp_*

return the version of Tcl that is running in the server process and all the Tcl-DP procedures in the
server, respectively. Below, we will describe how a server can limit what machines can connect to
it and what commands a client can execute.

Dp_RPC is similar to thesend command in Tk. The primary difference is thatsend requires both
processes to be connected to an X server to communicate, whiledp_RPC can be run without an X
server. Becausedp_RPC does not use the X server for communication, it’s faster thansend -- 3
to 5 times faster for most commands.

Getting started

This chapter is designed to be used interactively. That is, although you can just read the chapter,
you will get more out of it by trying out the commands as you read them. In order to run Tcl-DP
scripts, you must run awish that has been extended with Tcl-DP. This extension can be retrieved
from

ftp://ftp.cs.cornell.edu/pub/tcl-dp/tcl-dp3.3.tar.gz

The distribution includes source code, instructions and scripts to configure, compile, and install the
system, and Unix manual pages and several examples that document the system. The files
README and INSTALL describe the distribution and how to make it.

Once installed, you can use the shell application calleddpwish to try out the commands in this
chapter. Type the command

dpwish

to your shell to invokedpwish , which behaves like an ordinarywish interpreter, reading
commands from standard input and writing the results to standard output.

Since Tcl-DP is intended for communicating applications, a seconddpwish simplifies the
examples. In another window on your machine, start up a seconddpwish . We will call the first
interpreter “A” and the second “B.” To help you distinguish the interpreters, we recommend that
you change the prompt of each interpreter. In A, use the following Tcl commands:

proc PromptA {} {puts -nonewline “A% “}
set tcl_prompt1 PromptA

Use these commands in B:

An Introduction To Tcl-DP

Brian Smith, Cornell University (bsmith@cs.cornell.edu)
Lawrence A. Rowe, University of California at Berkeley (larry@cs.berkeley.edu)

This document describes the Distributed Programming extension to Tcl/Tk, called Tcl-DP. Tcl-DP
is a scripting language for writing client/server applications using Internet protocols and sockets.
As with Tcl, the goal is ease of programming for applications, not maximal performance. In
particular, Tcl-DP provides the following features:

1. Reliable Remote Procedure Call (RPC)
2. Automatic cleanup on file close and program exit
3. A name server for locating, starting, and authenticating servers.
4. Event handling functions
5. Support for TCP, UDP, and IP-multicast transport protocols
6. Socket configuration primitives
7. Interfaces to DNS lookup functions that map machine names to IP addresses.

The following script will give you a feel for the power of Tcl-DP. It uses Tcl-DP’s RPC functions
to implement a trivial “id server” that returns unique identifiers in response toGetID requests:

set myId 0
proc GetId {} {

global myId
incr myId
return $myId

}
dp_MakeRPCServer 4545

All of the code in this script except the last line is ordinary Tcl code. It defines a global variable
myId and a procedureGetId that increments the variable and returns the next id. The
dp_MakeRPCServer command is part of Tcl-DP; it causes the application to listen for client
requests on a TCP socket (port 4545)1.

Other Tcl applications communicate with this server using scripts that look like the following:

set server [dp_MakeRPCClient server.company.com 4545]
dp_RPC $server GetId

The first command opens a connection to the id server and saves a reference to the connection in
the variableserver . The arguments todp_MakeRPCClient identify the server’s host and the
port on which the server is listening. Thedp_RPC command, whose arguments are a connection
and an arbitrary Tcl command, performs a remote procedure call.Dp_RPC forwards this command
to the server, which executes the script and returns a result (a new id in this case). The value
returned by the server is the value returned by thedp_RPC command.

1. All commands in the Tcl-DP extension begin with “dp_”

