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Figure 1: A guitar model featuring a couple different wood materials: quilted maple on the body and walnut on the neck. The image is
rendered using our comprehensive, volumetric, procedural model of wood. We simulate most of the significant wood features: growth rings,
pores, rays, and growth distortions. Furthermore, our model can produce the anisotropic specular highlight arising from reflection from the
subsurface fiber structure, as seen in the quilted maple figure. The fiber directions are automatically derived from the growth distortions.
Model by Nikos Natsios. Inset: A photograph of real quilted maple.

Abstract

Wood is an important decorative material prized for its unique ap-
pearance. It is commonly rendered using artistically authored 2D
color and bump textures, which reproduces color patterns on flat
surfaces well. But the dramatic anisotropic specular figure caused
by wood fibers, common in curly maple and other species, is harder
to achieve. While suitable BRDF models exist, the texture param-
eter maps for these wood BRDFs are difficult to author—good re-
sults have been shown with elaborate measurements for small flat
samples, but these models are not much used in practice. Further-
more, mapping 2D image textures onto 3D objects leads to distor-
tion and inconsistencies. Procedural volumetric textures solve these
geometric problems, but existing methods produce much lower
quality than image textures. This paper aims to bring the best of all
these techniques together: we present a comprehensive volumet-
ric simulation of wood appearance, including growth rings, color
variation, pores, rays, and growth distortions. The fiber directions
required for anisotropic specular figure follow naturally from the
distortions. Our results rival the quality of textures based on pho-
tographs, but with the consistency and convenience of a volumetric
model. Our model is modular, with components that are intuitive to
control, fast to compute, and require minimal storage.
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1 Introduction

Wood is a common decorative material in our surroundings, par-
ticularly in indoor scenes full of wooden floors and furniture, and
also used in the design of many products (Figure 1). The conven-
tional way to render wood is to use high-resolution 2D textures.
These are commonly authored by using photographs to control the
diffuse color, a microfacet model for the surface reflection, and a
bump map derived from the color maps to introduce surface normal
details. However, this approach has several shortcomings.

First, wood is fundamentally a volume phenomenon (see Figure 2).
Texture maps derived directly from 2D photographs serve well for
flat surfaces (including wood veneer), and these are easily trans-
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ferable from one flat surface to another. However, curved and
other more complex-shaped surfaces carved out of wood are dif-
ficult to photograph; the alternative of simply wrapping a flat tex-
ture around such a surface is often unsatisfactory. In addition to
the inherent topological challenges in doing so, wood has distinc-
tive, large-scale, volumetric structures such as growth rings whose
surface patterns depend on the shape of that surface.

Furthermore, wood is composed of long, thin cells (fibers) that re-
flect light very anisotropically, which (with a clear smooth finish)
causes a dramatic subsurface specular highlight. Previous work
[Marschner et al. 2005] has shown that the surface reflectance of
finished wood can be represented well by a model that includes a
diffuse component and a separately colored fiber-reflection compo-
nent that is controlled by a direction texture giving the 3D direction
of fibers at every point on the surface.

Procedural 3D textures for color variation in wood have been
demonstrated before, and very realistic wood appearance has been
demonstrated using color and direction textures acquired using
many images under controlled illumination, but both types of prior
work have important limitations: previous procedural wood tex-
tures do not to justice to the beauty of the material, and measured
textures are expensive in terms of time and equipment and cannot
easily be transfered to models of different shape and size than the
one measured.

This paper aims to get the best of both worlds. The first contri-
bution is to define a 3D procedural texture that produces realistic
finished wood with all visually important features included. We
present methods to simulate growth rings, fibers, pores and rays,
including their effects on both diffuse and surface and subsurface
specular components of the reflectance. These features are proce-
dural, so they naturally adapt to any geometry or sawing plane, and
they are modular, in that they admit a variety of possible methods
for specification, which can easily be transferred, combined, and/or
replaced.

Second, we demonstrate how to achieve realistic wood figure, i.e.
anisotropic secondary highlights that vary in the patterns character-
istic of particular highly prized types of wood. The core challenge
is defining 3-dimensional distortions of the fiber structure, which
result in fiber orientation fields that closely approximate their natu-
ral counterparts. This gives rise to results seen in Figure 1.

2 Related work

Our method builds directly on previous work in wood appearance
and texture synthesis.

Wood BRDF. The BRDF of our method is that of [Marschner et al.
2005], with minimal changes and with added importance sampling.
This BRDF is the sum of a surface reflection component, a diffuse
component and a subsurface, anisotropic specular component. (In
this paper, by “specular’” we mean glossy, not delta reflection.) For
the subsurface specular component the BRDF models the reflection
from subsurface fibers in much the same way reflection is modeled
for hair and fur. The effect is that incoming light is scattered into
a cone with some spread. Please refer to the original paper for the
detailed definition and rationale behind the BRDF model.

This BRDF is able to capture effects seen in real wood that can-
not be reproduced by surface-only anisotropy such as the Ward
model [Ward 1992]. However, acquiring parameter data has long
been a practical problem in using this wood BRDF. Marschner et
al. [2005] use a specialized fitting process which requires specific
equipment and a large number of photographs per sample, resulting
in small amount of 2D texture. In contrast, our volumetric method
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Figure 2: A rendered comparison of a carved wooden cube (left)
and a veneered one (right). The carved block shows one face of
each of the three major cutting planes: tangential on the left, radial
on the right, and transverse on the top. The surface of the veneered
block is made of six distinct thin slices and shows a tangential face
on all sides. Clearly, it is substantially harder to produce the result
on the left using 2D texturing techniques. Public domain environ-
ment map by GiantCowFilms.

Figure 3: Generating solid texture by 2D-to-3D synthesis does not
work well for wood. Left: Rendering produced using 2D data from
[Marschner et al. 2005]. Center: Rendering of the 128x128x128
solid texture set from [Kopf et al. 2007 ], which was synthesized from
a crop of the same 2D data. The results lack the global correlations
found in real wood such as (approximately) cylindrical growth ring
surfaces. Right: Rendering from our model, voxelized to the same
texture resolution.

allows arbitrarily large synthesized texture and does not require 2-
dimensional UV-mapping. (Note, however, that we do not use vol-
ume rendering, but simply “carve” the parameters for the BRDF out
of the volumetric model.)

Solid textures. Solid textures [Peachey 1985] are a natural fit for
wood, as many features of wood, such as growth rings, are funda-
mentally solid phenomena. Using solid textures also obviates the
need for explicit surface parameterization. However, solid textures
generally have to be defined procedurally, and previous procedural
models for wood, often seen as demos or examples in rendering
systems, have not produced very realistic results. A 3D voxelized
representation could produce higher quality, but it is not clear where
the data would come from, and storing the volume naively would
be prohibitively expensive.

Noise functions. A key component of most procedural textures
is noise functions. A survey is given in [Lagae et al. 2010]. Ex-
cessive regularity in a texture looks unnatural and jarring, and in-
troducing (pseudo-)randomness helps produce pleasing variation in
the resulting texture. Modeling wood as a solid texture consisting
of cylindrical growth rings distorted by a noise function is a well-
known practical technique [Lewis 1989; Buchanan 1998; Lefebvre
and Poulin 2000]. However, previous techniques have stopped at



Figure 4: An example of progressive growth modeling, generated
using the level set model of [Sellier et al. 2011 ] coupled to a phloem
transport model [Sellier and Harrington 2014]. Such models are
able to model large-scale topological features such as branches and
knots but are comparatively computationally expensive per resolu-
tion.

approximating the diffuse color of wood growth rings.

Perhaps the most famous example of noise is Perlin noise [Perlin
1985; Perlin 2002]. Other types of noise include cellular noise
[Worley 1996] and wavelet noise [Cook and DeRose 2005]. There
is also the family of sparse convolution noises, which convolve a set
of impulses with a kernel, first introduced by ([Lewis 1984; Lewis
1989]) and further developed by [van Wijk 1991]. More recently,
the Gabor kernel has emerged as an attractive choice [Lagae et al.
2009; Lagae et al. 2011; Galerne et al. 2012] due to its excellent
spatial and spectral properties. In addition to these “continuous”
noise functions, it is also possible to generate a field of scattered
impulses in order to place objects. It is easy to use a white noise
(uniform) distribution of impulses; for our purposes we have found
this to be sufficient. If less clumping is desired, one may consider
blue noise distributions such as [Lagae and Dutré 2005; Lagae et al.
2008]. We have tested most of these noises and found they work
well in breaking symmetry of a naive, perfect wood model. How-
ever, these generic noise functions have difficulty adequately repre-
senting the distinctive shape of various types of figure seen in real
wood, such as the quilted maple shown in the teaser (Figure 1).

Exemplar-based methods. Exemplar-based methods (see [Wei
et al. 2009] for a general survey) have been successful in generating
a larger amount of texture from a single exemplar and are applica-
ble to a wide variety of exemplars, though they generally struggle at
reproducing large-scale coherent structures such as tree rings with-
out some form of supervision. Works such as [Kopf et al. 2007] are
even capable of generating a 3D texture from 2D exemplars. Figure
3 shows an example generated using [Kopf et al. 2007]. Unfortu-
nately, the results do not respect the structure of the material, and
the appearance is not satisfactory. Furthermore, as mentioned be-
fore, materializing a high-resolution 3D texture over a full regular
Cartesian voxel grid is too expensive for many applications. We in-
stead only ever materialize 2D textures, which we use to produce a
final 3D texture procedurally. Volume effects are captured by noise
and by the interaction between components rather than by full 3D
materialization.

Progressive growth modeling. Another approach is to progres-
sively simulate the growth of the tree over time. Examples include
voxel-based approaches [Buchanan 1998], level-set methods [Sel-
lier et al. 2011], and L-systems [Terraz et al. 2009]. Since these
methods have greater access to global information, they are able to
model large-scale topological features such as branches and knots
as shown in Figure 4 . However, they are very computationally
expensive per resolution compared to random-access methods as
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transverse plane fibers vessels

rays

fibers radial plane tangential plane

Figure 5: Scanning electron micrograph of red maple, showing
vessels, rays, and fibers, as well as the radial, tangential, and trans-
verse planes. [NC Brown Center for Ultrastructure Studies, SUNY
College of Environmental Science and Forestry, Syracuse, NY]

defined in [Lefebvre 2007], which can compute the texture at any
point in a constant amount of time regardless of the coordinates of
the point or what parts of the texture have been previous computed.
Our method is closer to the latter category, though we hope to be
able to handle some of these large-scale topological features in the
future.

3 Wood anatomy background

Our model is organized around the anatomy of wood, so we begin
with some discussion of the relevant features (see Figure 6 for an
illustration of the planes used to describe these features: transverse,
radial and tangential). We will focus on hardwoods (trees belong-
ing to the angiosperms; not necessarily harder wood) because they
contain a greater variety of anatomical structures than softwoods
and also contain nearly all woods that are prized for their appear-
ance. Softwoods generally contain a subset of the same features
and can also be handled by our model, but other woody plants used
for lumber (such as bamboo) are entirely different in structure and
are not within the scope of this paper [Hoadley 1980; Panshin and
De Zeeuw 1970].

3.1 Seasonal growth

The most obvious feature in the appearance of most woods is
growth rings. Growth rings result from the contrast between ear-
lywood, which is produced during the spring, grows quickly, tends
to be lighter in color, has larger and thinner-walled cells, and some-
times has larger pores (see below); versus latewood, which is pro-
duced during the summer and is the opposite. There are some
species with indistinct growth rings, including many tropical hard-
woods that grow in climates without strong seasonal variations.

3.2 Longitudinal and ray fibers

The majority of cells in wood (about 90% by volume depending
on species) run in the longitudinal direction. However, there are
also ribbon-like cells or clusters of cells which grow outward in the
radial direction, called rays. Rays are typically very narrow in the
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Figure 6: The principal cutting planes of wood. Diagram cour-
tesy of Alabama Agricultural Experiment Station [Beals and Davis
1977].

Figure 7: Vessel density may be uniform in diffuse-porous woods
(left), only visible in the earlywood in ring-porous woods (right),
or somewhere in-between in semi-ring-porous woods (center) as
shown in these rendered diagrams.

circumferential direction and wider in the longitudinal direction.
Depending on species, they may be too small to be seen easily by
the naked eye or up to as large as about a millimeter thick and a few
centimeters tall [Hoadley 1980].

Rays can produce a striking visual effect since their fibers run in a
direction perpendicular to the main mass of fibers, thus producing
a different reflective effect on the surface. On the tangential plane
rays generally appear dark, whereas on transverse and radial planes
they can be very bright for certain illumination configurations.

3.3 Pores

Pores (vessels) are hollow longitudinal tubes only found in the hard-
woods. When cut, they produce openings or indentations on the
surface of the wood. Pores often show up as grooves on the surface
of the wood, with the length of the grooves depending on the cut.
Unless the pores are filled, such indentations will remain even after
the wood is coated. If a staining finish is applied to the wood, the
pores will tend to absorb more of the finish, giving them a darker
color than the rest of the wood.

The seasonal size and distribution of vessels depends on the species.
In diffuse-porous species, the size of pores is independent of the
season. At the opposite extreme are ring-porous species, where
large pores occupy most of the volume of the earlywood, but the
latewood pores are negligibly tiny. In these species the pores rather
than the inherent color of the wood may be the primary feature of
growth rings. Still other species lie between these two extremes,
with larger pores in the earlywood and smaller but still significant
pores in the latewood. See Figure 7 for an illustration.
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Figure 8: Left: Distortion in the radial direction produces vari-
ation in the shape of growth rings and is responsible for types of
figure such as blister and quilted. Right: Distortion in the tan-
gential direction does not affect the shape of growth rings, but is
responsible for certain kinds of curly figure. Diagrams courtesy of
Alabama Agricultural Experiment Station [Beals and Davis 1977].

3.4 Figure

The default direction of the fibers in a tree is longitudinal (paral-
lel to the tree axis) in what is termed straight grain. Variations in
the fiber direction cause distinctive visual effects known as figure.
Waves in the fiber can cause deviations in the radial and/or tangen-
tial directions (see Figure 8), which is termed curly or fiddleback
figure. Bumps in the radial direction may also result in blister,
quilted, or birds-eye figure depending on their shape [Beals and
Davis 1977]. With a clear finish, these features produce the prized
secondary specular highlight patterns.

4 Simulating wood features

In this section, we provide an overview of all wood features mod-
eled by our approach.

4.1 Coordinate systems

Below, we will assume all computation is happening in tree space:
the z-axis of this space is aligned with the axis of the tree. We can
parameterize the space using Cartesian coordinates x,y and z, or
cylindrical coordinates 7,6 and z. In our implementation, we as-
sume the units of tree space are centimeters; this is important to
maintain correct real-world scale for all wood features. An illustra-
tion of tree space can be found in Figure 9, left. The relationship
between tree space and world space can be expressed as a 4 x 4
affine matrix transformation for every object in the scene with the
wood material.

4.2 Basic growth rings

A core ingredient in the color of wood at a point p is the time
at which the point was laid down during the growth process. In
the simplest case, the color can be chosen as a binary decision be-
tween specified earlywood and latewood colors. We model this as a
square wave as a function of radius r; the widths of the rings can be
user-specified. However, the earlywood-latewood transition is of-
ten fuzzy, so we allow for controllable smoothing between the high
and low values. The resulting simple growth rings are shown in
Figure 10 (a).



Figure 9: Left: an illustration of tree space. Right: We model
distortion as a function f : R® — R®, mapping a position p in the
distorted tree to a position p' = f(p) in the undistorted tree. The
distorted fiber direction d is mapped to the undistorted direction
d’ = Jed.

4.3 Diffuse and specular color

While we can specify earlywood and latewood colors indepen-
dently, we hypothesize that much of the diffuse color variation in
wood can be explained by varying levels of concentration of the
same absorptive pigment(s). Therefore, we assume that all colors
are drawn from a single Beer’s law curve ¢*®P)_ The base color ¢
(for example, the earlywood color) represents the color of the ab-
sorptive pigment(s), while a(p) > 0 is proportional to the optical
depth, with a higher value representing a greater concentration of
pigments.

Given a single photograph of a target wood, we can produce an es-
timate of the colors by taking the 25th and 75th percentiles of each
channel and treating those as the earlywood and latewood colors;
we can also find the exponent « that approximately turns early-
wood into latewood color. These estimates can be further adjusted
by the user if needed.

From here, « for any given point is determined by the sum of a few
factors. First, the season of the wood determines the blend between
earlywood and latewood «. To this, we add 1D noise based on
radius on the scale of years (i.e. square wave wavelength) so that
the growth color varies from year to year. Then we add 3D noise to
provide additional variation.

Secondary highlight color (i.e. the RGB weight of the fiber re-
flection BRDF component) is computed from the diffuse color by
raising to a power less than 1. Intuitively, this color follows the
same patterns as the diffuse color, but is less saturated, because it
corresponds to shorter light paths through the wood than the diffuse
component. This intuition is confirmed by inspecting the measured
data of Marschner et al. [2005].

4.4 Color and ring width modulation

Furthermore, we use a 1-dimensional Perlin noise to modulate the
earlywood and latewood colors of different growth rings, and a 3D
anisotropic Perlin noise, providing small-scale color detail. The
modulation is achieved through modulating the power «, as op-
posed to the color values directly. We also allow random variation
in the growth ring sizes, by modulating with a 1-dimensional Perlin
noise function of r. The effect of these additional modulations can
be seen in Figure 10 (b).

4.5 Distortion and fiber direction

Real wood departs from the idealized cylindrical shape assumed
above, both in terms of distinctive figure and less distinct random
variations. To model these, instead of looking up points p directly,
we apply a differentiable distortion field f : R® — R to all lookups
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before querying the idealized (undistorted) tree. In other words, f
is a mapping from the distorted into the undistorted tree; this can
be seen as the inverse of the intuition of building an idealized tree
model and finally distorting it. This is illustrated in Figure 9, right.

To define the distortion f, we can use a generic noise model such
as Perlin noise. This works well to break the unnatural symmetry
and perfection of the undistorted tree; compare Figure 10 (b) and
(c). However, to achieve a natural secondary highlight, we found
that Perlin noise does not give satisfying results (Figure 11), and
neither do other constructions like Gabor or impulse noise. Instead,
we synthesize 3D distortions from 2D image examples; this is the
most involved part of our model, explored in the next section.

Distortion of vector fields. To distort a vector field, it is not suf-
ficient to merely modify the lookup into an undistorted vector field
U by replacing u(p) with d(f(p)). For example, merely chang-
ing the lookups into the fiber direction field does not result in any
change since the undistorted fiber direction is equal to (0,0,1)”
everywhere. Instead, we need to use the Jacobian of the distortion
function. Since f maps the distorted tree to the undistorted tree,
we observe that Jr maps the distorted vector V(p) to the undis-
torted vector U(f(p)). For nonsingular J¢, this can be inverted as
V=J

Fiber direction. Using the above, we can find the distorted fiber di-
rection by multiplying the inverse Jacobian Jg~ ! by the undistorted

fiber direction, which is normally (0,0, 1)7.

Jacobian computation. We found that central finite differences
work well in approximating the Jacobian, while requiring 6 eval-
uations of f. However, we can also compute it analytically, for
distortions of the common form

—

f(p) = p + m-(P)F(P) + mo(pP)0(P). M

Here ¥ and 6 are the normalized radial and tangential directions at
P, and m, and my are scalar functions describing the magnitude
of the distortion in the respective direction. (We will drop the p
dependence for clarity from now on.) We restrict the distortion to
be in the xy-plane, since the longitudinal direction is less interest-
ing as it does not affect fiber directions. This allows us to design
distortions that correspond qualitatively to the radial and tangential
distortion seen in real wood, as in Figure 8. The Jacobian of the
distortion function is then

Je=I+F@Vm, +0@Vme+ (Jem, + Jomg) (2)

where ® denotes an outer (tensor) product. The parenthesized
terms can be ignored in practice with no obvious visual impact.

This is because F and § change slowly except close to the tree axis,
so Jr and Jy have small values (inversely proportional to 7).

Dealing with foldover. Note that with zero distortion, f is the iden-
tity function, so the determinant of J¢ is 1. A conceptually subtle
but visually obvious problem happens when the magnitude of the
distortion is too large, and the determinant flips to negative, causing
a discontinuity in distorted fiber direction. While we can make the
distortion magnitudes m, and mg small enough that this does not
happen, it is not easy to guarantee this, especially with user adjust-
ments being allowed. If we need such a guarantee, we can compress
the sum of the radial and tangential terms from equation 2 to always
be less than 1, thus modifying the equation to

Je~T 4 rovm, +60® Vme 3)

VI 19m? + [

This ensures that J¢ has positive determinant everywhere and thus
never passes through a singularity. Meanwhile, small gradients are
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(a) basic growth rings (b) color/width variations

(c) distorted growth (d) pores/bump/roughness 7

Figure 10: Demonstrating the effect of the wood features modeled by our method.

Perlin distortion

synthesized from 2D exemplars

Figure 11: Our wood model produces secondary highlights
through fiber direction variations, which are determined by the
wood distortion function f. We observe that Perlin noise (left)
does not lead to natural curly maple highlight appearance. We in-
stead synthesize a more involved 3D distortion from 2D exemplars
(right); we give more details in Section 5.

nearly unaffected. Also note that the distortion itself is not affected;
just the Jacobians and the resulting fiber directions.

4.6 Pores and rays

We model pores (vessels) as straight lines through the undistorted
tree; the distortions affect them like the rest of the wood. More
precisely, we distribute the pore centers in the 2D cross-section of
the tree using stratified random sampling with a user-defined cell
size. We find the pore locations within a cell by hashing the cell
index using the Burtle hash; this makes the pore locations fully
procedural and alleviates the need to store them.

The effect of pores on the appearance is twofold. First, they cause
surface grooves, i.e. negative offsets on the surface heightfield,
which accordingly modify the shading normals. (Note, we do not
currently use displacement mapping, instead just modifying surface
normals according to the partial derivatives of the surface height-
field.) Second, they often cause darkening, especially if stain has
been applied to the wood. We achieve both effects by defining pore
weight, the influence of the pore on a given point in the undistorted
tree. The weight is a decreasing function of distance r, from the
pore. We use the Wyvill kernel w(r,) = max((1 — r;/rz,)*,0)
[Shirley and Marschner 2009, p. 387], where 7, is the distance at
which the pore influence decays to zero. We then directly use this
weight (scaled by a user-specified strength) to offset the heightfield
and to increase the color exponent. The effect is shown in Figure
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12 (b).

To represent ring-porous woods, we can vary the parameters per
wood type, causing the pores to become much smaller and less
dense in the latewood. This effect can be observed in both oak
(Figure 12) and ash (Figure 13).

Modeling rays is similar to pores. Since rays run radially, we in-
stead use stratified sampling in 6 and z, but we reuse the idea of
hashing and also use a Wyvill kernel to define the ray weight as a
function of distance from the ray center (in Cartesian, not cylindri-
cal space). However, here we make the weight kernel anisotropic,
since we observe that rays are often not circular tubes, but resemble
“ribbons” with an elliptical cross section, broader in the z-direction.
We do not modify surface normals based on the ray weight. The ef-
fect of rays is shown in Figure 12 (c).

4.7 Additional effects

Below, we describe some additional simple effects, adding to the
expressive power of our model.

Earlywood bump. In addition to the indentations caused by pores,
in some species, earlywood is softer and absorbs more surface fin-
ish; this causes the surface heightfield to “sink™ lower in earlywood
regions. We model this effect by lowering the heightfield by scaling
the same smoothed square wave we used to determine the colors.

Earlywood and pore roughness. We observe that the recessed sur-
face areas (pores and earlywood rings) sometimes have higher spec-
ular roughness. We hypothesize that this is because the recessed
areas are softer and absorb more polish into the wood, so less is
available on the surface, or because prolonged use of a wooden ob-
ject leads to less mechanical polishing in the recessed areas. This
effect is easily modeled by using two user-specified roughness val-
ues for the recessed and non-recessed areas, with soft interpolation
at the boundaries.

Paint and stain. We optionally allow to specify the earlywood and
latewood colors manually (stain) or make them identical (paint).
Figure 13 shows an example of painted ring-porous ash wood. Note
how the ring effect is still important, even though the paint obscures
the difference between earlywood and latewood color.

5 Defining distortions for figure

We have presented a decomposition of the structure and appear-
ance of wood into simple features. Most of these features can
be satisfactorily modeled using random functions, including ring
width, color variation, and ray/pore placement. Random distortions
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(a) no pores and rays

(b) with pores added

(c) with rays added

Figure 12: lllustrating the effect of pores and rays on a small block of oak.

Painted ash wood sculpture rendering

Photo reference

Figure 13: A sculpture made of painted ash wood, illustrating a common ring-porous appearance of this species. The paint obscures the
difference between earlywood and latewood color, but the surface normal variations due to pores still reveal the growth rings. Sculpture by
Wendell Castle. Photograph and model of sculpture used with permission from Carl Bass.

also suffice to simulate the minor irregularities found in wood with
straight grain, but the abnormal growth patterns discussed in Sec-
tion 3.4, which lead to the beautiful figure seen on finished wood
surfaces, have specific structure that is not amenable to genera-
tion from noise. In this section we discuss how we author these
distortions—specifically m, and myg in Equation 1—which are re-
sponsible for both growth ring shapes and figured highlight pat-
terns. (Distortions in the z direction are not needed for common
types of figure, so we omit m.)

Our approach to modeling figure starts with the observation that the
patterns we need to model are generally functions of only two of the
three polar coordinates. Curly or fiddleback figure, as in Figure 11,
is produced by oscillations in the 6 direction that vary quickly in
the z direction and somewhat in the r direction, whereas blister,
quilted, and bird’s-eye figure are produced by distortions in the r or
0 directions that vary predominantly with z and 6.

We seek to provide a direct means of defining these patterns so
that they look correct when sliced along the relevant plane and re-
main consistent throughout the volume. We do this by using a one-
channel 2D texture to define the displacement magnitude in the r
or 6 direction, i.e. m, or my of Equation 1.

In the case where the distortion varies predominantly in 7 and z,
the texture respresents a function of r and z. The scheme is trivial:
simply revolve a one-channel 2D texture around the z-axis, and
interpret the value as a displacement in either the r or € direction as
shown in Figure 14.

The case where the distortion varies predominantly in 6 and z is
more difficult : we must define a globally consistent distortion mag-
nitude as a function of # and z. Simply making distortion a function

of these variables (i.e. wrapping the texture around a cylinder and
projecting along the r direction) leads to severe stretching of the
map as r changes. Our solution to this problem instead wraps the
2D texture onto an Archimedean scroll (again, shown in Figure 14)
and is outlined in the following section.

Example images for the four combinations of these two cases along
with displacement in the r or 6 direction are shown in Figure 16.
We also discuss how we can generate distortion textures by texture
synthesis in Sections 5.2.

5.1 Defining distortion as a function of >z and 6

The goal of this section is to extend a 2D texture to a 3D texture, in
such a way that slices of the 3D texture look like the input texture
where the slicing plane is nearly tangential. In order to maintain the
right look across a range of different positions, we wish to maintain
constant linear rather than angular feature sizes as we get further
from the z-axis. But since the circumference increases with radius,
this requires increasing the number of features as r increases. The
texture therefore cannot be completely constant in the 7 direction.

One solution might be to interpolate between textures defined on
a series of concentric cylinders, each with the texture defined at
the appropriate scale, and then interpolate between the cylinders.
However, under such a scheme it may not be possible to tile an
arbitrarily-sized texture around a given cylinder, and the uneven
number of elements around each cylinder complicates addressing.

Instead, we elect to use an Archimedean scroll (an extruded
Archimedean spiral), which has the advantage of unrolling into a
single plane, greatly simplifying addressing and tiling. See Figure
17 for diagrams of the spiral and the grid, offset, and interpolation

ACM Trans. Graph., Vol. 35, No. 6, Article 170, Publication Date: November 2016



170:8 + A.Liuetal

radial surface: fast r, z; slow 8

directinput

or E—— .
revolve .
—_—
I:‘ synthesize .
Cartesian 2D texture -
exemplar - A

Archimedean scroll: fast 8, z; slowr

direct input

—_—
or —_—
interpolate
——
|:| synthesize
Cartesian
exemnplar

Archimedean scroll

Figure 14: By assuming a cylindrical texture varies slowly along
at least one cylindrical direction, we can represent it using only
2D information. These 2D textures can either be input directly, or
synthesized using a small exemplar. The interpolation scheme for
the spiral case is shown in Figure 17.

Figure 15: Given a small exemplar texture, we can use standard
methods to synthesize a larger, tileable texture. This texture is then
placed on either the radial plane or Archimedean scroll as per Fig-
ure 14.

scheme described in the rest of this section.

Specifically, let ¢ be the total angle of the spiral starting from the
center; we parameterize the spiral by s = i — 1€ [-1,00), the
number of turns of the spiral not counting the innermost turn. Let
r1 be the spacing between turns—typically much larger than the

size of a texel. The equation of the spiral is

I ont=s+1 @)
T1
To actually index a point into the spiral, we use two parameters n
and a.

The radial parameter n is equal to one less than the number of turns
of the spiral crossed by a line between a the origin and a given
point; n is real valued and increases linearly along radii between
turns. For a point (r, 8) in polar coordinates, we have

n = % - % if ﬁ > % 5)
%"% —1 otherwise

where inside the innermost turn we interpolate linearly from -1 at
the origin to 0 at the innermost turn of the spiral.

After computing n, we can determine the s of the point on the spiral

ACM Trans. Graph., Vol. 35, No. 6, Article 170, Publication Date: November 2016

directly inside (r, 0) by

s=lnl+ o ©)

From here, we compute a, the circumferential parameter, which is
also real-valued. This is equal to the area between the origin and
the turn directly outside (r,8), not counting the area 7 /3 inside the
innermost turn. We choose to use the area instead of arc length, as
the area has a simpler expression and the difference is negligible
when not near the origin.

2 .
s (s + s) ifs >0
“= { T (s*+2s) otherwise @
Texel centers lie on the spiral, but they are indexed by the area
within one turn further away (see Figure 17). In practice, to avoid
sharp changes at the origin, we fix all texel values for a < 0 to be

the same as a = 0.

To interpolate a texture, we take the nearest points on the spiral on
each of the nearest turns (e.g. s and s + 1 for linear interpolation),
compute o for each nearest point, interpolate within each turn using
the fractional part of a, and then interpolate the resulting values
between turns using the fractional part of n.

In addition to texturing, these can also be used to define a grid
and offsets in order to produce Perlin, sparse convolution, or other
forms of noise, with anisotropy naturally aligned with polar coordi-
nates.

5.2 Synthesis

In addition to direct authoring of the entire texture, it is convenient
to be able to create tileable textures, and to synthesize a larger tex-
ture from a smaller one. The radial surface is already a 2D Cartesian
surface, and the Archimedean spiral can be unwrapped into one.
Synthesis of larger and/or tileable textures can therefore done effec-
tively for these using standard 2D-to-2D texture synthesis methods
such as those given in [Lefebvre 2014]. Since the viewer typically
only sees a 2D slice through the final 3D texture, and many different
features participate in the final result, naive tiling is not as obvious
as it would be on a 2D surface; however, if less regularity is desired,
on-the-fly texture synthesis (again as given in [Lefebvre 2014]) or
Wang tiling [Cohen et al. 2003] could easily be used.

5.3 Appearance of figure

Figures 1 and 16 show the effects of distortions on the appearance
of the cut surface. Variation in the distortion shows in the color
patterns and also causes changes in the fiber directions that dramat-
ically change the appearance of the subsurface specular highlight.
Growth ring shapes are affected only by distortions in the r direc-
tion, since distortions in 6 only move points parallel to the rings.
For the fiber highlight, the most dramatic effects are caused by dis-
tortions perpendicular to the surface, since these cause the fiber di-
rections to swing out of the plane. Distortions parallel to the surface
(seen near the right side of each image in the r column and near the
left side of each image in the 6 column) only rotate the fiber direc-
tion in the surface, producing figure that is only noticeable when
the illumination is far from the normal. We used two distortion
maps to produce figure in this paper, one texture (Figure 15) con-
taining near-parallel ripples to produce curly, or fiddleback, figure
and one with more irregular sharp-bottomed valleys separated by
round-topped hills to produce quilted figure.
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Figure 16: Example renderings of the four combinations of displacement in the r versus 0 directions, and placing the input texture on the
radial plane versus on the Archimedean spiral. The top-right and bottom-left images correspond to the cases shown in Figure 8. The rendered
cut is tangential on the left side and near-radial on the right side. Figure is exaggerated and other features are simplified for exposition. See

the supplemental material for videos of the four cases.
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0
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Figure 17: Archimedean spiral. Left: n is the number of times a radial line crosses the spiral minus one (linearly interpolated if a point
lies between turns). Center: a is the area between the origin and the turn directly outside of a given point, not counting the area inside
the innermost turn. Note that while texels lie on the spiral, they are indexed by the area within one turn further away. Right: Interpolation
procedure. First, we interpolate within each of the nearest turns of the spiral. Then we interpolate between the results of each turn to get the

value at the queried point.

6 Additional results

We implemented our model in the Mitsuba renderer [Jakob 2010],
and also in Autodesk Fusion 360 , a commercial modeling and ren-
dering system. To evaluate rendering performance of our method,
we rendered the teaser image (Figure 1) on an Intel Xeon E5-2650
v2 machine (16 cores, 32 threads), which took 310 seconds. We
then re-rendered the same image, but replacing all wood materials
with a simple white plastic; this took 247 seconds. The render-
ing used a standard path-tracer with 512 samples per pixel and an
NL-means denoising pass. The algorithm runs on-the-fly during
rendering, so there is no precomputation time. After becoming fa-
miliar with the parameters, an experienced designer can create a
preset in about ten minutes.

Matching renderings to photographs. An important question is
how to set the parameters of our model to match physical wood
samples or their photographs. We created a GUI previewer for set-

ting the parameters of the wood model, shown in Figure 18. Using
this tool, combined with some skill and experience, it is possible to
obtain close matches between photographs and renderings of many
species, as seen in Figure 19. We also show a recording of this
process in a supplementary video. Automating this process is an
interesting and difficult problem left as future work.

Wooden floor. One common real-world application of wood is
flooring, ranging from simple parallel board patterns to elaborate
parquetry. A nested-square pattern is shown in the Sponza scene in
Figure 20. A board pattern can be defined by a different world-to-
tree affine transformation for each board; we define these by ran-
domization.
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Figure 18: A screenshot of our wood previewer. On the left is a
photograph of real wood, on the right is our result. We also show
a recording of the parameter-setting process in a supplementary
video.

7 Conclusion and future work

In this paper, we presented a comprehensive volumetric simulation
of the appearance of wood, including components such as growth
rings, pores, rays, and growth distortions. In addition, our model
fully supports anisotropic specular figure caused by wood fibers,
common in curly maple and other species. The fiber directions re-
quired for such secondary highlights can be derived directly from
the growth distortions introduced by our model; these 3D distor-
tions are generated from 2D exemplars using constructions de-
signed to match the look of radial and tangential cuts. The com-
ponents of our model are intuitive, easy to control, admit efficient
computation and require minimal storage.

There are several possibilities for future work. We could add sup-
port for deviations from the cylindrical growth model assumed in
this paper. These include knots, which are parts of small branches
embedded in the trunk of the tree; burls, areas of abnormal, chaotic
growth; and crotch figure, which occurs when the trunk splits into
two large branches. It may also be worth deriving or approximating
the wood BRDF using a more principled analysis of multiple scat-
tering through the wood fiber geometry. Finally, a more automatic
way of setting the parameters and input textures of our model from
photographs would be valuable.
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