
Motivation
Symmetry is a powerful feature in the structure of our world, evident in the shape and appearance of 
many natural and man-made scenes. For computer vision applications, analysis of symmetry is 
attractive for a number of reasons: symmetries are potentially a stable and robust feature of an 
object, yet, when considered at all scales and locations, are also potentially quite descriptive. 
Observe, for instance, the images below. It is clear that they all depict the Eiffel Tower, even though 
there is dramatic change in appearance. One can observe though that many of the local symmetries 
are preserved, like the vertical bilateral symmetry or the smaller bilateral symmetries of the metallic 
structure. 

Contributions
• A simple and flexible definition of local symmetries. 
• A scale space definition based on local symmetries.
• Two multi-scale feature detectors based on local symmetries.
• A new descriptor based on local symmetries.
• A challenging new dataset with a collection of images of man made structures that are rich in 

symmetries and vary widely in appearance.

De!nitions
For a given location (x,y) and scale s 
we want to determine if a window of 
size λ*s around (x,y) exhibits 
rotational or bilateral symmetry.

Key Observation
Slices through a symmetric 
image (in green) can be seen 
as even functions (plot in the 
bottom). Detecting symmetries 
can be posed as determining 
whether these slices are all 
approx. even functions.
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Scoring Local Symmetries
To compute the Symmetry Distance (SD) for a given window we need three components: a weight 
mask (e.g. gaussian), a remapping function gsp(x) that computes the symmetrically opposing point to 
x for symmetry type s (e.g. rotational, horizontal, or vertical), and a pairwise distance d(x,y) that 
compares the image at locations x and y (e.g. absolute difference between image intensities).

Pairwise Distance Function
• SYM-I: absolute difference in intensities.
• SYM-G: the dot product between (appropriately reflected) histograms of oriented gradients for 

each point.
The following figure shows our symmetry distance measure for three different symmetry types for 
SYM-G.

Local Symmetry Features
Detectors
In order to detect features at multiple scales we fix the window size and vary the image size. Local 
maxima with respect to scale and location are then used as our interest points. The following figure 
shows detection for SIFT and the two detectors we define. Note how the symmetry-based detectors 
more reliably fire on features such as the ring of circles around the clock’s circumference.

An important difference between our two detectors is that SYM-I uses rotational symmetries to 
detect local symmetries while SYM-G uses the product of the horizontal and vertical symmetries.

Descriptor
Similar to encoding proposed by [Shechtman & Irani 2007], imposes a log polar grid around the 
interest point and records max symmetry score within each cell resulting in one descriptor per 
symmetry type. Repeating the process for different symmetry types and concatenating the resulting 
descriptors results in our final descriptor. We compute this descriptor for SYM-I only and compute 
horizontal, vertical, and rotational symmetries.
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Dataset
We present a new dataset consisting of 
46 image pairs that exhibit large 
variation due to illumination, rendering 
style (e.g., paintings and drawings), 
and capturing technology (e.g., old vs. 
new pictures).

Results
Detector Evaluation
The following plots show the fraction of matched detections for the top n keypoints for one pair of 
images. Keypoints are ordered by either detector score or scale so that the detections with 
strongest response or largest support region come first. The table on the right shows aggregate 
results for the full dataset.

ScaleScale ScoreScore
100 200 100 200

MSER 0.087 0.103 -- --
SIFT (DOG) 0.144 0.153 0.050 0.078

SYM-I 0.135 0.184 0.173 0.206
SYM-G 0.173 0.228 0.227 0.281
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Descriptor Evaluation
The following plots show the precision-recall curves for a single pair of images from the dataset for 
various sets of feature points. Grid feature points are perfect detections, which allows us to measure 
descriptor performance isolated from the detector. The table on the lower left corresponds to 
averages over the entire dataset.
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GRID SIFT (DOG) SYM-I SYM-G
SELF-SIMILARITY 0.29 0.14 0.12 0.16

SIFT 0.49 0.21 0.28 0.25
SYMD 0.41 0.22 0.20 0.25

SIFT-SYMD 0.58 0.28 0.35 0.36

Mean average precision for different combinations of detector and 
descriptor. Each column corresponds to a different detector, and each row 

to a different descriptor.

Mean Average Precision for our Dataset
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For the full paper, dataset, and code visit the project website at

www.cs.cornell.edu/projects/symfeat

http://www.cs.cornell.edu/projects/symfeat/
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