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Figure 1: Left: fancy pair of women’s dress shoes with a glittery finish modeled using our discrete microfacet BRDF. Right: Christmas
ornaments illustrating a range of model parameters including different particle counts, surface roughness, and anisotropy.

Abstract

This paper investigates rendering glittery surfaces, ones which ex-
hibit shifting random patterns of glints as the surface or viewer
moves. It applies both to dramatically glittery surfaces that contain
mirror-like flakes and also to rough surfaces that exhibit more sub-
tle small scale glitter, without which most glossy surfaces appear
too smooth in close-up. These phenomena can in principle be sim-
ulated by high-resolution normal maps, but maps with tiny features
create severe aliasing problems under narrow-angle illumination. In
this paper we present a stochastic model for the effects of random
subpixel structures that generates glitter and spatial noise that be-
have correctly under different illumination conditions and viewing
distances, while also being temporally coherent so that they look
right in motion. The model is based on microfacet theory, but it re-
places the usual continuous microfacet distribution with a discrete
distribution of scattering particles on the surface. A novel stochastic
hierarchy allows efficient evaluation in the presence of large num-
bers of random particles, without ever having to consider the parti-
cles individually. This leads to a multiscale procedural BRDF that
is readily implemented in standard rendering systems, and which
converges back to the smooth case in the limit.
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1 Introduction

Many surfaces have a glittery appearance, characterized by bright
glints that suddenly appear and disappear with changes in the light-
ing and view directions. Obvious examples include materials de-
signed to glitter, containing small mirror-like flakes distributed on
the surface (craft glitter used in decorations, glitter in eye makeup)
or below the surface (metallic car paint). Many natural materials
also look glittery due to surface or internal reflections from crystals
(mica flakes in rock, ice crystals in snow or frost).

But literal mirror flakes are not actually necessary to create a glit-
tery appearance. The random surface features on roughened shiny
surfaces (bead blasted aluminum, fine-textured plastic, matte finish
photo paper) also produce glints that come and go with changes in
reflection geometry. Indeed, a smooth BRDF is only a convenient
idealization of a statistical process that is assumed to happen at a
scale much smaller than pixels. The model proposed in this paper
is based on the idea of discrete mirror flakes, but it can also model
the material appearance due to features on smoother surfaces.

To understand the behavior of glitter patterns, consider a surface
sprinkled with flakes and illuminated by an area source. Each flake
has a position and a normal, and some reflect the light to produce
glints. This happens when a flake’s position is inside the pixel’s
footprint on the surface and its normal vector is halfway between
the view direction and the direction to some point on the light. Thus
the contribution of glitter to a pixel is determined by the number of
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flakes whose position lies in a particular area of surface and whose
normal also lies in a particular solid angle—we are counting points
in a volume of the 4D space of surface positions and flake normals.

The appearance of glitter in the image depends on the average num-
ber of points found. For example, on an ornament covered in craft
glitter, there are relatively few flakes with normals broadly dis-
tributed, so if the light source is small the average number of glints
per pixel is much less than 1, leading to occasional, widely sepa-
rated glints. In a metallic car paint under the same lighting, flakes
are more numerous, so there are many glints in every pixel, result-
ing in a spatial noise pattern rather than individually distinguishable
points. With the same car under an overcast sky there will be orders
of magnitude more glints per pixel, so the relative variation in their
number will be low and the surface will appear smooth.

The appearance of glitter also changes with viewing distance (pix-
els in closer views see fewer particles, resulting in more dramatic
glitter), with the area density of particle positions (fewer particles
per unit area looks more glittery, more particles looks smoother),
and with the density of flake normals (more aligned flakes look
smoother). Temporal appearance is another very important aspect
of glitter: with smooth motion of camera or object, each glint will
appear, persist for a time (dependent on the lighting as well as the
speed of motion), and then disappear.

One approach to rendering glittery surfaces is to use high resolution
normal maps. However, when the details are much smaller than
pixels, this can create difficulties with pixels containing very tiny
bright highlights that standard antialiasing methods can only dis-
cover by chance. On the other hand, when all structure is subpixel,
the expressive power of a normal map is unnecessary (Figure 2).

In this paper we introduce a new kind of reflectance model that cre-
ates a glittery appearance without the need to model surface details
explicitly. Like the microfacet model, we treat a surface as a col-
lection of microscopic facets. But instead of assuming an infinite
collection of facets, leading to a smooth and invariant BRDF, we
use a fixed, finite collection of flakes, leading to a non-smooth and
spatially varying BRDF. A different specific set of flakes is seen at
each pixel, giving rise to the characteristic glints.

A simple but impractical way to implement our model would be to
generate such a collection, each flake having a random position and
normal, and store them in a list. Then, to decide how many glints
lie in a pixel, simply check each flake to see if it lies in the pixel
and reflects the light. This will produce the correct kind of spatial
patterns, and when the camera or object moves over time, glints will
appear and disappear at the right rate as individual flakes start and
stop reflecting the source. This search for contributing flakes could
be accelerated with a 4D position-normal hierarchy, but it would
still take too much memory to store the particles and the hierarchy.

A more practical approach for still frames is to analytically work
out the statistical distribution of per-pixel flake counts under given
viewing and illumination conditions. Since disjoint regions on the
surface are uncorrelated, the flake counts for each pixel could be
generated independently, without generating the flakes and count-
ing them. This is far more efficient, but it cannot be used for an-
imation because frames will be independent, rather than showing
the distinctive temporal effects of glitter.

Our method combines these two ideas: 4D search using a position-
normal hierarchy and randomly generating particle counts rather
than counting particles. The key algorithmic novelty is to do both
at once, to define a pseudorandom hierarchy that can be generated
on the fly while it is searched. It uses very little memory and can
efficiently decide how many flakes fall in any given area, in a way
that is consistent from one query to the next.

(a) Path tracing using an explicitly gener-
ated Gaussian height field

(b) Gaussian height field (correlation
length reduced by a factor of 16)

(c) Standard smooth microfacet model (d) Discrete stochastic microfacet model

Figure 2: Comparison between a smooth microfacet model, Gaus-
sian random heightfields, and our discrete stochastic microfacet
BRDF. (b) and (d): our model works best when the material’s cor-
relation length is much smaller than the distance between pixels.
(a): when this is not the case, the correlations can lead to visible
structure in reflections that our method does not simulate. In this
case, the approach of Yan et al. [2014] may be preferable.

Our model is easy to use because it generalizes the widely used
microfacet reflectance model by adding an intuitive parameter—
the number of particles per unit area—that gives access to a range
of appearances, from subtly glittery to dramatically sparkly, while
maintaining the same average BRDF.

In the following sections we develop this discrete stochastic re-
flectance model, which involves the following contributions:

• We introduce the notion of a multiscale BRDF that is queried
not at single points and directions but over finite areas and
solid angles. Within this setting, we define a new type of mi-
crofacet model based on a discrete microfacet distribution that
describes the reflectance of a surface with finitely many facets.

• We define a specific model based on a finite collection of mir-
rorlike scattering particles, or flakes, that is implicitly defined
by an efficient pseudorandom hierarchy.

2 Prior Work

The phenomenon of glitter is of great interest to manufacturers of
cars and car paints, and the perception of glitter has been studied
in that context in color science [McCamy 1996; McCamy 1998;
Kirchner et al. 2007; Dekker et al. 2010]. This work has identified
many salient perceptual effects, including the texture characteris-
tics of diffuse coarseness (contrast of the noise seen under diffuse
illumination) and glints (bright points seen under unidirectional il-
lumination). Cars are also an important rendering application, and
several models for realistic rendering of metallic car paints have
been proposed that handle glitter using procedural normal maps
[Günther et al. 2005], measured textures [Rump et al. 2008], or
noise patterns [Ershov et al. 1999; Ershov et al. 2001].

The probabilistic approach of Ershov et al. is closest to the present
paper: it calculates the parameters of a Poisson distribution describ-
ing the number of flakes contributing to a pixel, then chooses inde-
pendent Poisson deviates per pixel to simulate the reflection from
flakes. However, this method cannot be used for animation, because
there is no way to preserve consistency when the light or viewer
moves. By carefully computing the statistics of a particular, though
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Figure 3: The scenes from Figure 1 rendered using classical
smooth microfacet models (all other parameters are unchanged).
Note the overly smooth and synthetic appearance.

implicit, set of flakes, our method is able to overcome this problem.

The idea of using procedural noise to achieve a random but con-
sistent surface appearance is a common way to model spatial vari-
ations in materials [Perlin 2002; Cook and DeRose 2005; Lagae
et al. 2009]. Antialiasing for procedural textures that use these
noise functions is usually achieved by filtering high spatial frequen-
cies from the noise—an approach that does not work for variation
in surface normals.

As we have observed, our work is closely related to microfacet
models for reflection from rough surfaces [Cook and Torrance
1981; Walter et al. 2007]; we use the same framework but with
a discrete set of normals rather than a continuous distribution.

Our work is also related to techniques for antialiased rendering of
normal maps. Most of these techniques assume very smooth normal
distributions, such as Gaussians [Toksvig 2005; Olano and Baker
2010] or Gaussian mixture models [Han et al. 2007]. The only
normal-map rendering method capable of reproducing glittery ap-
pearance is our concurrent work [Yan et al. 2014]. That method
calculates accurate BRDF values for a normal map over arbitrary
regions of the surface by using a hierarchical search to locate nor-
mals that are close to the half vector. Because it makes minimal as-
sumptions about a pixel’s NDF, this approach can resolve the glints
that create glittery appearance.

Rendering with explicit normal maps works for any surface, even
when there is important spatial structure larger than the pixel scale,
whereas the stochastic model presented here assumes there is no
visible structure. When the normal map does not show any correla-
tions above the pixel scale, both methods can be applied and both
will produce an unstructured pattern of glints in the image. How-
ever, the normal-map rendering approach accurately renders a par-
ticular normal map and maintains the angular structure of the glints
produced by a smooth surface, whereas using our stochastic model
for this type of surface amounts to replacing the surface with a ran-
dom point set that has the same large-scale BRDF but will show
different angular structures at the pixel scale. On the other hand,
the stochastic method does not require an explicit normal map, in-
stead calculating the required statistics on the fly, and it is able to
answer large queries quickly without deciding where the particular
glints contributing to the total are, whereas the normal-map method
has to consider all the contributing parts of the surface.

3 Discrete Stochastic Reflection Models

The standard definition of the BRDF relates the scattered radiance
to incident irradiance for a pair of directions and a position on a re-
flecting surface. Section 3.1 introduces the concept of a multiscale
BRDF, which is defined analogously but involves reasoning about
the reflection within finite spatial areas and solid angles. Within
this framework, we propose a concrete model based on microfacet

theory. A key step in this process, and an important technical con-
tribution of this paper, is a mathematical characterization of the re-
flection of a cone of exitant directions, discussed in Section 3.2.

Our BRDF is also stochastic in the sense that its evaluation is driven
by a specially chosen stochastic process. In Section 3.3, we propose
an efficient way of evaluating the reflectance function along with
the stochastic process using a lazy traversal of a hierarchical data
structure. Finally, Section 3.4 explains the stochastic process in
more detail, including how to sample it deterministically to produce
coherent results in animations.

3.1 Multiscale BRDFs

To motivate our approach, we begin with the standard definition
of the BRDF: suppose a differential surface area dA containing the
position x is illuminated from direction ωi. The BRDF is defined as
the ratio of d2Φ, the differential power scattered into a solid angle
dωo containing ωo, to E, the incident irradiance. More formally,

fr(x,ωi,ωo) :=
d2Φ(x,ωo)

E(ωi) a(dA)σ(dωo) (nx · ωo)
. (1)

Here a(dA) is the surface area of the differential dA, σ(dωo) de-
notes the area of dωo on the unit sphere, and (nx · ωo) is a fore-
shortening term involving the surface normal nx. All areas and
solid angles in the above definition are infinitesimal.

A property of fr that is characteristic of glinty scattering behav-
ior is that the function contains many very narrow spikes dispersed
throughout the (x,ωi,ωo) space. It is in principle possible to
model such effects using a standard BRDF model, but undesirable
in practice due to the difficulty in resolving the spikes using point
queries when computing integrals involving fr .

A multiscale BRDF then expresses the power that the finite area A
around x scatters into a finite solid angle Ωo around ωo:

f̂r(A,ωi,Ωo) :=
1

a(A)σ(Ωo)

∫
A

∫
Ωo

fr(x, ωi, ωo) dωo dx. (2)

Due to the way that multiscale BRDFs are integrated into our sys-
tem, we still use a single incident direction ωi rather than a set Ωi

around ωi. However, this latter variant could be an interesting av-
enue for future research.

The ability to compute averages over regions of the domain is ef-
fectively a form of antialiasing to approximate relevant integrals
with a lower number of function evaluations. Like other antialias-
ing methods (e.g. filtered texture lookups), this introduces a small
amount of bias into the computation. We can also draw an analogy
to weak formulations of mathematical problems, which result from
integrating the underlying system against a family of test functions.
In our case, these are the indicator functions on the sets A and Ωo,
whose precise shape will be clarified shortly when we show how a
multiscale BRDF can be integrated into an actual rendering system.

To derive a multiscale BRDF based on Equation (2), we must first
specify the nature of the underlying classical BRDF model fr . We
use microfacet theory for this purpose.

Microfacet models calculate the light reflected from a surface made
of randomly oriented microscopic facets, a subset of which reflect
from a source to a receiver under a particular illumination and view-
ing geometry. The amount of light reflected over a large area is de-
termined by calculating the expected total area of reflecting facets,
producing a smooth function. Microfacet BRDFs are defined as a
product of terms that account for different physical effects. In the



context of computer graphics, the expression for the reflective case
is usually written as [Cook and Torrance 1981; Walter et al. 2007]

fr(x,ωi,ωo) =
F (ωi · ωh)D(x,ωh)G(ωi,ωo,ωh)

4 (ωi · nx) (ωo · nx)
(3)

where ωh := (ωi + ωo)/‖ωi + ωo‖ is the half angle, F denotes
the Fresnel reflection coefficient, D is the microfacet distribution,
and G models shadowing and masking.

Our new model treats surfaces as being made up of a specific set
of finitely many randomly oriented facets, and we therefore define
a discrete microfacet distribution as

D(x,ωh) :=
1

N

N∑
k=1

δA(x, xk) δΩh(ωh, ω
k
h),

where xk and ωk
h are the positions and normals of a list ofN facets.

The Dirac delta functions above are defined with respect to the nor-
mal integration measures on A and the half vector space Ωh. Next,
we insert this definition into Equation (3) and substitute the result-
ing expression into Equation (2), at which point the integrals over
positions and outgoing directions simplify to a sum over facets. We
must remember to apply a change of variables factor of 4 (ωi ·ωk

h)
to account for the different integration measures: Equation (3) in-
tegrates over outgoing angles Ωo, whereas the delta function in D
is defined with respect to half-direction vectors on the set Ωh [Tor-
rance and Sparrow 1967]. The resulting expression reads

f̂r(A,ωi,Ωo) =
1

N a(A)σ(Ωo)

[
N∑

k=1

1Ωh(ωk
h) 1A(xk)

(ωi · ωk
h)F (ωi · ωk

h)G(ωi,ω
k
o ,ω

k
h)

(ωi · nxk ) (ωk
o · nxk )

]
(4)

where Ωh := {(ωi + ωo)/‖ωi + ωo‖ | ωo ∈ Ωo} is the set of mi-
crofacet normals that reflect from ωi into the solid angle Ωo and
1X denotes the indicator function on the set X . The directions ωk

o

are defined as the outgoing directions after specular reflection by
microfacet k i.e. ωk

o = 2(ωi · ωk
h)ωk

h − ωi.

The indicator functions in Equation (4) determine which facets in
a given spatial region reflect light into a solid angle of outgoing di-
rections. When just a few facets participate, there is considerable
variation from pixel to pixel, producing a strongly glittery appear-
ance; when many facets participate, there is less dramatic variation
and the surface reflectance appears smoother and more like a tradi-
tional BRDF.

The sets A and Ωo are generally small in size: A is related to the
footprint of a pixel, and we use sets Ωo no larger than 0.034 stera-
dians. Consequently, various terms in the sum (Fresnel, geometric,
and foreshortening terms) only vary minimally between different
facets, and the dominant effect is caused by the indicator functions.

For this reason, we introduce an approximation that will lead to an
efficient implementation later on: we remove all superscripts in-
volving k from the fraction term on the second line of Equation (4).
The corresponding quantities without superscripts are defined as the
centerpoints of their respective sets. Following this, the term can be
moved outside the sum, which yields the final form of our BRDF:

f̂r(A,ωi,Ωo) =

(ωi · ωh)F (ωi · ωh) D̂(A,Ωh)G(ωi,ωo,ωh)

a(A)σ(Ωo) (ωi · nx)(ωo · nx)
, (5)

where D̂ is a multiscale version of the microfacet distribution:

D̂(A,Ωh) :=
1

N

N∑
k=1

1Ωh(ωk
h) 1A(xk). (6)

This function resolves the fraction of particles located in the query
area A × Ωh. Most of the remainder of the paper focuses on how
to evaluate it efficiently.

Usage in a rendering system: In our implementation, A is de-
fined as a parallelogram in texture space, which approximates the
region of the surface visible through a pixel and is readily com-
puted using ray differentials [Igehy 1999]. We define the finite
solid angle into which surface microfacets may reflect light as a
cone of radius γ centered around a central outgoing direction ωo.
The smaller the angle γ, the fewer particles will be found, though
the σ(Ωo) = π(1 − cos γ) term in the denominator of f̂r com-
pensates for this by weighting each particle higher. In this way, the
γ parameter offers some control over the variance of the integrand
that is exposed to the rendering system. Another interpretation of
its effect is as a smoothing kernel that convolves the lighting with a
circular unit step function. We use a constant γ between 0.5 and 6
degrees in our scenes (Table 1). More involved approaches that de-
compose the incident lighting into different-sized cones that drive
the γ parameter are conceivable, but we leave this as a future work.

The parameter N specifies the total number of facets, which are in
essence points in a 4D domain: two dimensions of surface posi-
tion and two of normal direction, with a distribution that’s uniform
in space and defined by a microfacet distribution in direction. We
postpone a full discussion of how these points are generated until
Section 3.4. Because of the additional parameter dependences, and
because the set of microfacet normals Ωh is a function of ωi,ωo,
and γ, we will from now on write the multiscale microfacet distri-
bution D̂ using the arguments D̂(D,N,A,ωi,ωo, γ).

The key to achieving a practical model is having the ability to
quickly count the facets that fall within a query region (spatial re-
gion + angular cone), which implies that we cannot afford to ever
enumerate them individually. In the remainder of this section, we
will develop the ingredients necessary to achieve this goal, culmi-
nating in an efficient hierarchical data structure that supports lazy
evaluation of Equation (6).

3.2 Reflection Geometry

Consider the problem of identifying which microfacet normals m
reflect light from a specified incident direction ωi into a cone of out-

Figure 4: When illuminating a surface by sphere sources, changing
the query radius parameter γ of our model is equivalent to scaling
the source radius while keeping its power constant. A higher query
radius will select more particles, producing less glinty appearance.



(b) Spherical circle (0°)

(d) Spherical hyperbola (170°)(c) Spherical ellipse (140°)

(a) Planar view for one facet

Figure 5: (a) The microfacet normals m that reflect light from a
fixed incident direction ωi into a cone of radius γ around ωo (green
set) form a spherical conic section (blue set). (b)-(d) show three
cases for different angles between ωi and ωo (in parentheses).

going angles of radius γ around a central direction ωo (Figure 5a).

By the law of specular reflection, the reflected direction ωr after
scattering from a microfacet with normal m is given by

ωr = 2(m · ωi)m− ωi. (7)

We may generalize this relationship by considering the set of direc-
tions that scatter into the cone around ωo:

ωr · ωo > cos γ

⇔ 2(m · ωi)(m · ωo)− ωi · ωo > cos γ

⇔ mT (I( cos γ + ωi · ωo)/2− ωiω
T
o

)
m ≤ 0 (8)

Equation (8) specifies a second-order cone [Boyd and Vanden-
berghe 2004], and the set Ωh thus is the intersection of such a cone
with the unit sphere (Figure 5). In analogy to the planar case, this
is referred to as a spherical conic section.

Spherical conic sections have been studied before; a good starting
point are two articles by Booth [1844; 1852]. However, we could
not find any reference of this particular spherical conic section and
its relation to the reflection geometry in the literature and believe
that it has not been analyzed before. To obtain some intuition about
its shape, we use a more natural coordinate frame in terms of the
half and difference vectors of ωi and ωo:

x̂ =
ωi × ωo

‖ωi × ωo‖
, ŷ =

ωi − ωo

‖ωi − ωo‖
, ẑ =

ωi + ωo

‖ωi + ωo‖
,

In this frame, and after scaling Equation (8) to normalize the third
eigenvalue, we obtain the standard form of the conic section:

‖m‖ = 1 and mTCm ≤ 0, where C = QΛQT and (9)

Q =

 | | |
x̂ ŷ ẑ
| | |

 , Λ =

λ1

λ2

−1

 ,
λ1 =

ωi · ωo + cos γ

1− cos γ
, λ2 = cot 2 γ

2
.

The first two eigenvalues are the squared cotangents of the princi-
pal angles, leading to the following observations: when ωi = ωo,
the conic section starts off as a spherical circle with radius γ/2. As
the directions become increasingly separated, the circle becomes
a spherical ellipse and, finally, a spherical hyperbola that wraps

around the sphere in the shape of a band. The transition from the
elliptic to the hyperbolic case occurs when λ1 becomes negative,
i.e. when ωi · ωo = − cos γ, which happens when −ωi enters the
cone around ωo. Figure 5 visualizes these three cases for different
angles between ωi and ωo with γ fixed at 30◦.

3.3 Hierarchical Traversal

Recall that the search query consists of the Cartesian product of
a spherical conic Ωh and a parallelogram in texture space. For
now, we assume that the locations of the particles in the spatial-
directional domain are known ahead of time, and that they are orga-
nized in a 4D spatial subdivision acceleration data structure. Briefly
disregarding lines 11 and 12, Algorithm 1 implements a standard
breadth first search traversal. In each iteration, the algorithm pops
a 4D tree node from a queue and checks for overlap with the query.
If the node contains no particles or does not overlap the query, it is
immediately discarded. If the node is fully contained in the query
region, the number of particles within it, |node |, is added to a run-
ning counter. Otherwise, the node’s children are obtained via the
split() operation and pushed onto the queue for later process-
ing. The final line returns the number of detected particles divided
by their total number on the full domain.

Adaptive error criterion: In the form described above, the count-
ing algorithm would traverse the hierarchical data structure until
the exact answer is obtained. However, this level of precision is
often unnecessary and incurs a heavy cost in terms of total render-
ing time: when the query covers tens of thousands or even millions
of particles, it is excessive to accurately resolve the result down to
the last particle. Therefore, we use an approximation in line 12 of
Algorithm 1 that stops the recursive expansion of a node when the
expected error relative to the current particle count is small. In this
case, a fraction of the particles contained in a node are added to
the running particle count based on how much it overlaps the query,
where .vol() computes the 4D volume of a set.

Let us denote the overlap as p ∈ [0, 1], and let n be the number
of particles in the node. Under the assumption of a uniform dis-
tribution within the cell, the probability of an individual particle
falling inside the query is equal to p. Since there are n particles,
the number of particles contained in the query follows a binomial
distribution with parameter p and n draws. Our approximation is
to replace the actual number of particles in the intersection with the
expected number. This introduces an expected error equal to the
distribution’s standard deviation and leads to a simple adaptive er-

Algorithm 1 Breadth-first search evaluation of D̂

1 function D̂(D,N,A,ωi,ωo, γ)
2 query← A× ConicSection(ωi,ωo, γ)
3 queue← { root node of tree }
4 count← 0
5 while queue 6= ∅ do
6 node← queue.pop()
7 if node ∩ query = ∅ or |node | = 0 then
8 pass
9 else if node ⊆ query then
10 count← count + |node |
11 else if error criterion (10) satisfied then
12 count← count + |node | ·

(node ∩ query).vol()/node.vol()
13 else
14 for c in node.split() do
15 queue.push(c)
16 return count / N
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Figure 6: (a) Our multiscale BRDF models the radiance that region A (marked in red) scatters into a solid angle around ωo (marked in
green). Scattering is due to small mirror facets, each of which has a position and an orientation (we indicate their projections onto the
spatial and directional dimensions as black dots). For a particle to reflect light from ωi into the cone around ωo, its normal must lie in the
highlighted blue set. Evaluating the BRDF thus entails counting the number of particles that are contained in both the blue and red sets.
(b)-(e) show iterations 1, 2, 3, and 5 of a breadth first search that implements this counting operation (particles hidden for clarity).

ror criterion: we only use the approximation when the underlying
smooth microfacet distribution is close to uniform within a node
(more on this later), and when√

np(1− p) < ε · count, (10)

where ε is a relative error threshold. We initially chose ε = 1%,
but found that we could use values as high as 10% without notice-
able errors. All of our results thus use ε = 10%. This error crite-
rion is the reason why breadth first search is the preferred traversal
method: we want to increase count as quickly as possible so that
the criterion can be used in more cases.

Data structure: Thus far, Algorithm 1 is fully generic and could
be implemented using a range of different tree data structures.
The only operations that must be supported by its nodes are inter-
section “∩” and containment “⊆” tests, enumerating children via
split(), and overlap computations against the query.

We experimented with different tree constructions and found the
following to work best from an implementation effort and perfor-
mance perspective: the footprint of a tree node is defined as the
Cartesian product of a bounding box in texture coordinate space
and a spherical triangle in direction space. Each node has four
children that are obtained by splitting the node either in space or
direction. In the first case, the bounding box is cut into four equal-
sized sub-boxes, and in the second case the spherical triangle is cut
into four sub-triangles by inserting vertices at the midpoints of the
edges. The root of the tree is the Cartesian product of texture space
and the unit hemisphere, i.e. [0, 1]2 ×H2. Since the hemisphere is
not a spherical triangle, the first directional subdivision is a special
case: here, we simply cut the hemisphere into four quadrants. A
node is split in space if

E [A(query)] /A(node) < E [σ(query)] /σ(node) (11)

and in direction otherwise. A and σ measure the texture space area
and subtended solid angle, respectively. The expected values in
Equation 11 are obtained by collecting statistics during a brief prior
run of the algorithm; they ensure that the data structure is built to ef-
ficiently handle queries with the expected footprint in space and di-
rection. Figure 6 illustrates the first traversal steps, where boxes and
triangles highlight the nodes that are visited in each iteration and
dark patches mark regions classified as being inside the query (thus
needing no further refinement). For simplicity, the figure shows the
spatial-directional recursion as occurring in lock-step, but in prac-
tice the sequence of spatial and directional splits alternates accord-
ing to Equation (11).

Intersection and overlap computations: Due to the Cartesian
product structure, all intersection, containment, and overlap com-

putations can be implemented separately for the spatial and direc-
tional dimensions. The part that occurs in texture space involves
standard methods (rectangle-parallelogram intersection), hence we
will not discuss it here (see e.g. [Schneider and Eberly 2002]). For
direction space, we need to determine the intersection of a spherical
conicC with a spherical triangle T . If ∂C and ∂T are disjoint, then
C contains T if it contains any of its vertices; otherwise T contains
C if T contains a point in C; otherwise C and T are disjoint. If the
boundaries intersect, C and T partially overlap.

To test if a point lies inside a conic section, we simply evaluate
Equation (8). Determining if a point lies in a spherical triangle in-
volves three plane-point sidedness tests, where each plane contains
one of the triangle edges and the center of the sphere. Next, we
need the ability to intersect the edge of a spherical triangle, i.e. a
spherical arc, against the edge of the conic section. Here, we ben-
efit from our representation of the conic section: the spherical arc
from a to b intersects the spherical conic section iff the straight line
from a to b intersects the second order cone. This leads to a simple
quadratic equation. We use the following symmetric formulation
for its good numerical behavior:

p(t)TCp(t)=0 where p(t) :=c+td, c :=a+b, d :=a−b.

The corresponding quadratic equation is given by

dTCdt2 + 2dTCct+ cTCc = 0,

and the edge intersects the conic iff there is a root in [−1, 1].

Finally, we must implement a routine that computes the overlap
between a spherical triangle and a spherical conic section. Even
fairly basic area computations on spherical conic sections involve
complex reductions to elliptical integrals of the third kind [Booth
1852], but the overlap is only needed when error criterion (10) is
satisfied, at which point the triangle’s edges have small radii of a
few degrees (and thus low spherical excess). In this setting, the
spherical triangles are flat enough to ignore the spherical excess
and simply do the overlap computation in the plane containing the
triangle vertices, involving the corresponding planar conic section.
After a suitable nonuniform scaling transformation, this problem
reduces to the intersection of a 2D triangle against the unit circle
or unit hyperbola, which may be solved via Stoke’s theorem. This
entails finding all linear and curved segments of the intersection and
integrating the 1-form xdy − ydx over them.

3.4 Stochastic Process

So far, we have described the model as if the input was an explicitly
enumerated set of facets organized in a hierarchical data structure.



While this is certainly possible, such an approach would be cum-
bersome and could easily exceed the available memory for large
numbers of microfacets (e.g. N = 109 in Figure 4 or even more).

To avoid these large space and time demands, we never explicitly
store individual microfacets and instead generate them on the fly
using a stochastic process that is evaluated while traversing the hi-
erarchy. To ensure temporal coherence, we seed the process in a
deterministic way so that repeated queries will give consistent re-
sults. This is important even when rendering still frames: a Monte
Carlo rendering algorithm that takes multiple samples per pixel will
average out any “true” randomness in the reflection model, converg-
ing to a smooth BRDF without glitter. Making model evaluations
deterministic avoids this issue.

The main idea of our new stochastic process is to generate par-
ticle counts from the top down, always respecting choices that
were made higher in the tree. The process is easiest to visual-
ize in 2D space; the 4D case is completely analogous. Suppose
we start with a rectangle known to contain n uniformly distributed
points. Dividing the rectangle into four equal subrectangles causes
the points to be partitioned into four subsets, each with expected
size n/4. Given no further information, the set of possible parti-
tions X = (X1, . . . , X4) can be seen to follow a multinomial dis-
tribution with probability vector p = (1/4, 1/4, 1/4, 1/4) and n tri-
als. So when traversing the hierarchy, we draw a sample from this
multinomial distribution, at which point the numbers of points, or
counts, for the four child nodes become known.

This process applies recursively to child nodes, thereby procedu-
rally defining a count for every node in the (infinite) tree, starting
with N at the root. Using the multinomial distribution ensures that
the counts of the children always sum to the count of their parent,
so any cut through the tree will always find the same total number
of points. With further subdivision, counts will eventually be 1 or
0, and every point can be localized as precisely as needed, since re-
cursion can be continued arbitrarily far, trapping the points in ever-
smaller regions. Thus, this algorithm can be seen to define a set
of N uniformly distributed points while allowing the number con-
tained in any node to be found without generating the points. The
traversal is entirely procedural; the nodes of our hierarchy never
need to be stored.

Another way to think about this is that the initialN particles within
the root node are “fuzzy” in the sense that their positions and ori-
entations have not been individually resolved; the only knowledge
we have about them is their number in aggregate. Each splitting
operation reduces the uncertainty by one bit, and our traversal al-
gorithm continues splitting nodes until the number of particles that
fall within the query region is known to sufficient certainty.

Generating a multinomial sample is slightly more complicated in
the case of a directional split, since the particles follow a nonuni-
form distribution over the hemisphere. Our goal is that the discrete
reflectance model reduces to the traditional smooth case in the limit
of small γ and N → ∞, which implies that the probability vector
p for a directional subdivision is found by integrating the smooth
microfacet distributionD over the four child spherical triangles and
renormalizing so that the four probabilities sum to one.

Doing this analytically is difficult and restrictive in the sense that
it would limit our method to certain distributions—hence we take
a numerical approach. Before the rendering process, the function
integrate (Algorithm 2) is invoked on the four spherical tri-
angles corresponding to quadrants of the hemisphere. This func-
tion integrates the microfacet distribution using both a midpoint
and corner-based quadrature rule. When these two results differ by
more than a specified error threshold, our algorithm recurses and
returns the sum of the integrals of the triangle’s four sub-triangles.

Algorithm 2 Numerical integration of D over a spherical triangle

1 function integrate(T)
2 rule1← T.area() ·D(T.center())
3 rule2← 1/3 · T.area() · (D(T.v1) +

D(T.v2) +D(T.v3))
4 if |rule1− rule2 | < δabs or

|rule1− rule2 | /rule2 < δrel then
5 return rule2
6 else
7 rule3← 0
8 for c in T.split() do
9 rule3← rule3 + integrate(c)
10 hashtable[T.id]← rule3
11 return rule3

Importantly, for each spherical triangle that required such a com-
posite integration step, the function creates an entry in a globally
accessible hash table on line 10.

At render time, whenever we need to integrate the microfacet distri-
bution over a spherical triangle, we simply check if the triangle has
an entry in the table. If so, the stored entry is returned. Otherwise,
we are “allowed” to treat the distribution as close to uniform and
perform the integration using a simple 1-point rule (if this was not
sufficient, an entry would have been created). This memoization
approach is quite efficient, since only nonuniform triangles must
be stored in the hash table. Depending on roughness, our example
scenes used between 500-1000 entries when δabs = δrel = 10−5.

Optimizations: The breadth first search traversal (Algorithm 1)
is key to the efficiency of our algorithm, and we experimented with
different ways of accelerating it. Sampling the multinomial dis-
tribution exactly, even using an elaborate high-performance imple-
mentation [Galassi 2009; Kachitvichyanukul and Schmeiser 1988],
proved to be a serious performance bottleneck. Instead, we use
a simple but quite accurate approximation: whenever the number
of particles in a node, n, exceeds 8, we draw a sample from the
continuous analog of the multinomial, a multidimensional normal
distribution with mean np and covariance n(diag(p)−ppT ). This
produces a realization X that sums to n but does not generally have
integer entries. We round X to the nearest positive integer 4-vector
and keep randomly incrementing (or decrementing) component i
with probability pi until

∑
Xi = n. When n < 8, we sample

exactly by simply choosing n integers using the probability vector
p and counting the frequencies. We implemented the sampling rou-
tine, including 8 rounds of the Tiny Encryption Algorithm [Wheeler
and Needham 1995] as the original source of pseudorandomness, in
branchless 4-lane SIMD arithmetic using Intel SSE instructions.

The Tiny Encryption Algorithm depends on an index that acts as the
random seed when using it as a pseudorandom number generator;
we use a unique number that is assigned to each tree node (the root
is labeled 1, and child j of node i is labeled 4i+ j − 2).

Importance sampling: To effectively use our new BRDF model
in a modern rendering system, we require a way of sampling di-
rections from a distribution that is close to the BRDF. We experi-
mented with approaches that directly sample the discrete integrand
by means of another tree traversal but ultimately found that a simple
technique based on a different smooth density function had better
efficiency in the scenes we considered. Such an approach is per-
missible in a Monte Carlo sampling context, as long as we account
for the discrepancy between the target BRDF and the used density
function in the underlying statistical estimator.

To sample ωo for a given incident direction ωi we first use the sam-
pling method of the corresponding smooth microfacet model (refer



49.3s 51.9s 56.6s 65.6s

54.1s 57.3s 63.17s 74.73s

55.9s 59.4s 63.7s 76.3s

59.6s 62.7s 71.7s 99.6s

Figure 7: A diffuse object sprinkled with dielectric flakes of differ-
ent density (left to right: N = 105, 106, 107, and 108 flakes) and
spread (top to bottom: α = 0.81, 0.29, 0.09, and 0.03), postpro-
cessed with a bloom filter. The bottom left of this matrix approaches
traditional smooth microfacet models, whereas the top right repro-
duces the sporadic bright reflections observed in craft glitter.

97.0s 112.4s 137.1s 171.7s

Figure 8: It is possible to extend our BRDF model by associating
additional state with each particle. Here, they have spectrally vary-
ing interaction cross-sections that modulate their contribution. The
other parameters are set to match the second row of Figure 7.

to Walter et al. [2007] for details), producing a direction ω′o. Like
Walter et al., we also use a scaled roughness parameter to reduce the
variance of the resulting sampling method. In our case, a relatively
large scale factor (αsample = 2α) is necessary due to the discrete
nature of our model: with low probability, some particles can end
up in spherical triangles that have very low integrated D, causing
occasional but very noticeable high variance pixels at the fringe of
highlights. The scaling widens the lobe so that these directions are
sampled with sufficiently high probability.

Afterwards, ωo is found from ω′o by uniformly choosing a direc-
tion in a cone of radius γ around ω′o. The density function of this
sampling method is the density function of the smooth model with
scaled roughness, convolved with a circular kernel. We evaluate the
density function by performing the convolution using Quasi Monte
Carlo integration; for the range of angles γ used in this paper, 64
samples of a (0, 2) rule [Keller et al. 2012] proved adequate.

Additional state: Our approach can be extended to allow for ad-
ditional per-particle state, such as surface area or varying color due
to albedo or interference coatings. The added state of each particle
is modeled as a sample from a distribution over states, and a node
splitting operation then draws a sample from a derived distribution.

Recall that thus far, each particle within the query region made a
contribution of 1/N to the value of D̂. To demonstrate how addi-
tional state can be integrated, we consider an example where each
particle instead makes a contribution of ai—we can think of ai as
the fractional “area” of particle i (in quotes because we continue to
resolve particles as points in query operations). Suppose further-
more that the ai are independent and uniformly distributed on the
interval [0, 1], and that the particle area is merely redistributed but
not changed, i.e.

∑
ai = 1. As a consequence of the sum con-

straint, the particle areas take on a special conditional probability
density, which is described by a N -dimensional Dirichlet distribu-
tion with parameter (1, . . . , 1). One way to integrate these areas
into our method would thus involve generating and storing a sam-
ple from such a distribution during a preprocess step—but as be-
fore, this is generally infeasible due to the sheer size of N .

Instead, we prefer to determine surface areas on the fly while
traversing the acceleration data structure. Suppose that the set
of N particles into is partitioned into four subsets during a re-
cursive traversal operation, where the particle counts of the sub-
sets satisfy N1 +N2 +N3 +N4 =N . The Dirichlet distribution
has a convenient addition property which, in this case, states that
the total surface areas of the child nodes are distributed accord-
ing to another four-dimensional Dirichlet distribution with param-
eters (N1, N2, N3, N4). We therefore generate a sample from this
distribution (details in Devroye’s [1986] book) in every traversal
operation using the previously discussed approach to determinis-
tically seed the underlying pseudorandom number generator. Fig-
ure 8 shows a rendering where we track separate particle areas for
each color channel (i.e. spectral interaction cross-sections). This
adds chromatic variation to the glints, which slowly vanishes as the
their number within a pixel grows.

4 Results

We implemented our BRDF as a shading model plugin for the Mit-
suba renderer [Jakob 2010] using C++ and SSE intrinsics for the
performance-critical sampling code.

Our example images were rendered using Mitsuba’s backwards
path tracing integrator with multiple importance sampling [Veach
1997]. This integrator supplies texture space differentials to BRDF
implementations, but it only does so for the first scattering event
along a path. Our plugin detects this and reverts back to the smooth
case when no differentials are specified. In practice this means that
the first bounce of a rendering involving interreflecting objects re-
lies on the discrete stochastic model, whereas later bounces use the
smooth model.

Table 1 reports rendering time and other statistics collected on a
dual 2.2 Ghz Intel Xeon E5-2660 machine with 16 hyper-threaded
cores. Unless otherwise stated, we use the Beckmann microfacet
model as the underlying smooth distribution D, which has a sin-
gle roughness parameter α with lower values corresponding to

(a) Ground truth (b) Multinomial approx. (c) Equation (4)→ (5)

Figure 9: Effects of approximations in our model: switching to a
simpler sample generator in (b) results in a different realization of
the stochastic process and large image differences. Image (c) shows
the errors that result from the approximation to Equation (4). The
noise characteristics remain unchanged in both cases.



Figure 10: Reflection of a stained glass window on a shiny floor
(N = 108, Beckmann roughness α = 0.01). Left: as the number
of visible facets within an individual particle increases, our model
converges to a conventional BRDF. Right: under great magnifica-
tion, the reflection resolves into individual particles.

smoother surfaces. Except for Figure 7, we simulate metallic flake
particles without Fresnel effects (i.e. F = 1). Color-coated flakes
are obtained by simply multiplying the BRDF value f̂ with the
transmittance of the coating. Altogether, we rendered the follow-
ing scenes:

RED SLIPPERS: The left side of Figure 1 shows a fancy pair of
women’s dress shoes modeled as a linear combination of a red dif-
fuse BRDF and a monochromatic discrete stochastic microfacet
BRDF. The scene is lit by a mostly smooth interior environment
map with one strong directional source from the left. The supple-
mentary video shows how glints appear and disappear as the view-
ing position changes. The statistics are for an uncropped version of
this image rendered at full HD resolution (1920x1080 pixels) using
1024 samples per pixel to resolve single and multiple scattering.
Rendering interreflecting glossy objects under sharp illumination
remains a difficult problem in rendering, and our model is no dif-
ferent in this respect. To improve convergence, we use smoother
lighting when sampling the illumination on an object that is only
seen through a reflection

CHRISTMAS ORNAMENTS: The right side of Figure 1 shows a
range of glittery Christmas ornaments inside a box made of glossy
plastic. We modeled the plastic box as a diffuse layer coated with
a smooth microfacet BSDF (α = 0.1), and the ornaments use the
discrete stochastic model. Our model can work with any smooth
microfacet distribution, and in this rendering the top right ornament
uses the anisotropic D proposed by Ashikhmin and Shirley [2000].
The detailed parameters are as follows (from left to right, and top to
bottom): N = (8·105, 9·106, 8·105, 4·106, 4·105, 4·105, 2·106)
and α = (0.2, [0.1, 0.4], 0.1, 0.1, 0.2, 0.2, 0.2), where the two
numbers in brackets correspond to the tangential roughness values
of the anisotropic ornament. The parameter γ is set to a constant
value of 5◦. As before, statistics in Table 1 are for an uncropped
full HD version of this image. To resolve interreflections between
the plastic box and the ornaments, a relatively high number of 2048
samples per pixel was necessary for this scene.

TWISTED TORUS: Figure 7 shows a matrix of direct illumination
renderings of a diffuse material test object that has been sprinkled
with dielectric flakes with an index of refraction of η = 1.5. This
figure illustrates the effect of the N and α parameters. For high N
and low α, evaluations of D̂ find more particles, leading to a vi-
sually smooth appearance that approximates traditional microfacet

models. For high α and low N , the appearance reproduces the
sporadic and very bright highlights also observed in craft glitter.
These images were rendered at resolution 768x768 pixels with 256
samples per pixel and post-processed using a bloom filter to better
indicate the intensity of the highlights.

SPHERE LIGHTS: Figure 4 shows a direct illumination rendering of
four different-sized sphere lights, each having the same power, over
a reflective floor, rendered with 256 samples per pixel. This image
illustrates how illumination from smaller sources produces more
glints, whereas illumination from large sources leads to reflections
that approximate the smooth case.

STAINED GLASS: The scene in Figure 10 shows the reflection of
one of the Tristram and Isoude stained glass panels by Morris, Mar-
shall, Faulker & Co. in a reflective floor having low roughness and
a high particle count (α = 0.01, N = 108). Statistics are reported
for the first HD frame of the animation, rendered with 512 samples
per pixel. From a distance, the floor appears visually uniform, but
its discrete nature becomes visible in magnifications and, as shown
in the video, when moving the camera close to the floor.

Comparison against smooth models: Figure 3 shows the RED
SLIPPERS and CHRISTMAS ORNAMENTS scenes once more, this
time rendered using classical smooth microfacet models. These im-
ages were faster to generate due to the considerably simpler query
operations. The corresponding renderings with the discrete stochas-
tic model took 1.62× and 1.44× longer, respectively.

5 Conclusion

This paper has introduced a new kind of multiscale BRDF model
that extends the widely used microfacet models to produce control-
lable, random spatial variation that exhibits all the characteristics
of glittery appearance, including temporal coherence in animation,
without explicitly storing any surface detail information.

One limitation of our current implementation is that it requires tex-
ture parameterizations to map surface area to texture-space area
with reasonable uniformity, for the observed particle density to be
constant across the surface (though preservation of angles is not re-
quired). Our method could be extended to allow spatially varying
particle density, which would remove this requirement and also add
additional expressiveness.

Currently, we set γ to a constant value per scene. As mentioned
earlier, it is potentially superior to cluster the lighting into a super-
position of different-sized cones that drive the γ parameter.

Our model can be used to create the intense glints of purposely
glittery surfaces in sunlight, but it can also be used in almost any
scene to add subtle visual richness to surfaces that just look a bit too
smooth and perfect without any noise. When using a Monte Carlo
renderer one is often drawn to less-than-converged renderings be-
cause surfaces look more realistic with some noise, and our model
provides a principled, controllable, and animation-compatible way
to introduce that noise.

A back-of-the-envelope analysis begins to explain why so few sur-
faces look correct in closeups with smooth BRDFs. A remarkable
number of glints per pixel is required to reach the threshold of
noise visibility—about 400 for around 5% RMS noise [Fairchild
and Johnson 2005]. In high-resolution closeups, pixel footprints
can easily be 100 microns or smaller, and fitting that many glints
begins to run up against the limits of geometric optics. Even fea-
tures just 5 to 10 microns in size (for example, the dents on a bead-
blasted aluminum notebook computer) will produce visible glitter
under sharp illumination. In a sense, smooth BRDFs simply don’t
exist in close-up views of glossy materials.



Scene N γ α nodes count Time

RED SLIPPERS 106 6◦ 0.1 17.19 0.11 9m 34s
CHR. ORNAMENTS 4·105-9·106 5◦ 0.1-0.4 50.32 1.51 36m 17s
SPHERE LIGHTS 109 0.5◦ 0.1 43 0.66 3m 25s
STAINED GLASS 108 1◦ 0.01 104 10.71 6m 0s
TWISTED TORUS 105-108 1◦ 0.03-0.81 9.6-36.6 3·10−6-0.53 54s-99s

Table 1: Scene parameters and statistics collected during render-
ing: N is the total number of particles, γ the query radius, and
α the Beckmann roughness. The overlined quantities denote the
average number of tree nodes visited and particles found per query.
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RUMP, M., MÜLLER, G., SARLETTE, R., KOCH, D., AND
KLEIN, R. 2008. Photo-realistic rendering of metallic car paint
from image-based measurements. Computer Graphics Forum
(EUROGRAPHICS Proceedings) 27, 2.

SCHNEIDER, P., AND EBERLY, D. H. 2002. Geometric tools for
computer graphics. Morgan Kaufmann.

TOKSVIG, M. 2005. Mipmapping normal maps. Journal of Graph-
ics Tools 10, 3, 65–71.

TORRANCE, K. E., AND SPARROW, E. M. 1967. Theory for
off-specular reflection from roughened surfaces. JOSA 57, 9,
1105–1112.

VEACH, E. 1997. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough
surfaces. In Proceedings of the 18th Eurographics Conference
on Rendering Techniques, 195–206.

WHEELER, D. J., AND NEEDHAM, R. M. 1995. TEA, a tiny
encryption algorithm. In Fast Software Encryption, Springer,
363–366.
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