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Abstract

In designing and building distributed systems, it is common engineering practice to separate steady-state (“nor-
mal”) operation from abnormal events such as recovery from failure. This way the normal case can be optimized
extensively while recovery can be amortized. However, integrating the recovery procedure with the steady-state
protocol is often far from obvious, and can present subtle difficulties. This issue comes to the forefront in mod-
ern data centers, where applications are often implemented as elastic sets of replicas that must reconfigure while
continuing to provide service, and where it may be necessary to install new versions of active services as bugs
are fixed or new functionality is introduced. Our paper explores this topic in the context of a dynamic recon-
figuration model of our own design that unifies two widely popular prior approaches to the problem: virtual
synchrony, a model and associated protocols for reliable group communication, and state machine replication
(in particular, Paxos), a model and protocol for replicating some form of deterministic functionality specified as
an event-driven state machine.
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1 Introduction

Our work deals with a style of distributed services that uses elastic sets of replicas to achieve availability, scalability,
and long term durability. These replica sets can vary widely over time: expanding as the service confronts load
surges or replaces failed server instances, and contracting as load drops or members crash. Thus, the contemporary
distributed systems developer, or service developer, is unavoidably faced with issues of dynamic service replication.

Service replication and reconfiguration confront the developer with a series of tough choices. One can evade
these choices by abandoning consistency, but there are many kinds of services for which consistency guarantees
are important and must not be violated simply because the service replica set is elastic. For services of this type,
reconfiguration remains a murky black art, error prone and associated with complex, subtle bugs. Moreover, among
the correct, rigorously analyzed solutions there are all sorts of hidden tradeoffs, representing deliberate compro-
mises between performance and complexity during steady-state operation of the service (when reconfiguration isn’t
happening) and the complexity of the reconfiguration event itself, which may also entail some period of service
unavailability.

Our treatment of this problem is tutorial in style, but aimed at a sophisticated audience. We suspect that
any developer confronting this topic will have had a considerable amount of experience with distributed systems.
Accordingly, we target a reader who knows how one creates distributed services, has some familiarity with the
classical papers on asynchronous consensus and communication protocols and impossibility results such as the
FLP theorem, and who may even have worked with the virtual synchrony [8] or the state machine replication
methodologies [19, 32, 20]. Our premise is that even knowledgeable readers be surprised to learn of some of
the pitfalls, anomalies and tradeoffs that the prevailing methodologies tacitly accept. Our work unifies what had
previously been different models using a single overarching methodology and formalism which we name Dynamic
Service Replication (DSR).

Our goal will be to design services that can be reconfigured without disrupting correctness, up to some maxi-
mum tolerable rate of service membership changes, beyond which it becomes unavailable. We assume that recon-
figuration is triggered by a reconfiguration command, issued by the system management layer, and either removing
some members from a service, or adding some, or perhaps doing both at once. Reconfiguration could also change
application parameters, or even be used to upgrade to a new version of an application or a protocol while keeping
the service as available as possible.

Building a reliable service using the DSR approach entails three fundamental steps.

Safety. The first is to provide a service-oriented safety definition. A good specification must abstract away from
implementation details, and describe the service using the methods clients can access, and expressing properties
in terms of guarantees that those methods will offer. Two example services are interwoven throughout the body
of our paper. The first example is a Reliable Multicast service, for which we give a service-oriented description.
Our definition exposes a Get() API call that provide clients with a full, consistent history of messages that clients
Add(). This definition lets us focus on the matter of preserving service state consistently while transitioning
through configuration changes. Conversely, it is stripped of internal details such as clients joining and departing
the service, delivery duplication, etc.; those can be added as various filters and add-ons, as discussed below. We
use the well known State Machine Replication (SMR) problem [19, 32] as our second primary example. For
completeness, in Section 8 we also briefly flesh out an Atomic Read/Write Storage service.

Liveness. The second ingredient of our treatment is an appropriate failure model. In the distributed computing
arena, reliability is often expressed as the requirement to tolerate a threshold t failures out of an initial system of n
processes. This classical fault model ignores the ability of a dynamic system to out-live such an initial setting via
administrative decrees, e.g., to deploy new processes, or to remove faulty ones from consideration. For example,
an initial system configuration of four processes, {A,B,C,D}, may tolerate a single failure. However, through
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an administrative decree to reconfigure, say removing A after a failure, the remaining set {B,C,D} can tolerate
an additional single failure. But as this example suggests, although we have increased the overall fault tolerance
through dynamism, we can’t simply say that we have a system of four processes, any two of which may crash at
any time. We need a more subtle condition that gives the system “sufficient time” to reconfigure. In our example,
two crashes can be tolerated over the total period the system is running, but during the early part, before the
system had been reconfigured, only one of {A,B,C,D} may fail. This notion of a dynamically-defined majority
appeared implicitly in various prior works, including [30, 31, 37, 24, 20, 26], but the conditions always involved
solution-specific details. Here, we adopt the principles of the DynaStore liveness model [1], which gives an opaque
Reconfig() handle for (administrative) clients. We then enhance this model to suit our more general framework.

Reconfiguration recipe. The third component is an algorithmic foundation for solution. Briefly, a DSR epoch-
by-epoch reconfiguration starts with a consensus decision by the current configuration (say, C1) on a new config-
uration (C2). The reconfiguration procedure proceeds with a transfer of control from C1 to C2, which entails (a) a
decision to suspendC1; (b) a snapshot of completed and potentially-completed operations inC1; (c) a state transfer
of the snapshot to C2. The reconfiguration completes with a decision to enable C2 for processing new operations,
with the initial state of C2 determined by step b.

In our methodology, the developer deals with one epoch at a time. An epoch terminates with a configuration
change decision. The next configuration is uniquely determined in the current epoch, and transition to it is irre-
versible. When an epoch ends, a new epoch starts a new incarnation of the same algorithm (albeit with a non-empty
initial service state), whose participants and messages do not mix with the current epoch. If an epoch starts in a
configuration that already includes some failed nodes, it might make progress in that state, or it might initiate a
further round of reconfiguration to remove those nodes; indeed, it can initiate reconfiguration as its first action.
The new configuration operates completely separately from the current one; the messages in it are not confused
with messages in the current configuration; and it can consist of an entirely new set of machine. Any number of
reconfigurations can be chained in this manner.

Solutions. While the general framework – decide, suspend, state transfer, resume – may appear obvious, there
are numerous design choices and potential pitfalls when realizing any specific service. Underlying any choice of
reconfiguration solution are inherent tradeoffs. One wants to maximize availability and performance, but without
violating safety, and it isn’t easy to accomplish all of these simultaneously. This does not mean that protocols need
to be overly cumbersome. To the contrary, in six Figures, 4-10, we give succinct pseudo-code solutions for six
service variants, each frame containing a entire solution including precise safety and liveness definitions.

We’ll see that we can trade steady-state simplicity with continuous availability: A fault-recovery approach
utilizes servers in steady-state in an uncomplicated manner, disregarding the possibility of failure. It can be highly
optimized, but requires reconfiguration to unblock the service in case of a failure. Figure 4 illustrates this method-
ology within the context of Reliable Multicast and Figure 8 does so for SMR. The alternative is a fault-masking
methodology, which crafts steady-state protocols with built-in redundancy for high availability; it adds reconfigu-
ration functionality for even greater agility in a long-lived system. Figures 5, 6, 9 and 10 demonstrate fault-masking
for multicast, SMR and read/write storage, respectively.

Reconfiguration itself presents another interesting design tradeoff. The reconfiguration procedure entails form-
ing two consensus decisions – one on the next configuration and another on the closing state of the current. These
may be obtained either among the group of servers themselves, or using a separate consensus engine. Even the lat-
ter case requires careful integration with the steady-state protocol, and we give the recipes for doing so in Figures 4
and 8. Fully distributed reconfiguration protocols are detailed in Figures 6, 10 and 9.

In general, any new members will need to catch up: for this we use the term state transfer; it entails packaging
the state of the service of the service into some sort of external representation, copying that data to the new
member(s), and them loading the state before starting to process new requests. The benefit of forming agreement
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on a closing state is explained below in Section 6, using a novel formulation of an old idea, virtual synchrony.
Without agreement, we’ll see that a service might exhibit various forms of unexpected behavior. For example, one
standard approach leads to services that are correct, but in which unfinished operations can linger in a concealed
form, suddenly becoming complete “retroactively” arbitrarily far in the future, as discussed in Section 9. An
alternative approach to this problem was explored in systems like RAMBO [24] which seek to offer continuous
availability, to do so they must keep both the old and the new configurations active for a potentially extended
period until the new one can take over entirely. Our methodology explains such behaviors, clarifies the associated
design choices, and offers simple tradeoffs that let the developer select the properties needed, and to understand
the associated costs and implementation issues.

We also explore a number of misconceptions regarding reconfigurable SMR. For example, when using the
reconfigurable Paxos protocol, developers find themselves forced to choose between a simple solution with poor
performance and a far more complex one that runs at higher speed (corresponding to the choice of value for the
Paxos concurrency window parameter). However, a higher concurrency window may result in undesirable behavior
where the sequence of state machine commands contains a mix of decisions out of their intended order. In fact,
our paper grew out of a project to create a new “Virtually Synchronous Paxos” protocol, and our dynamically
reconfigurable version of state machine replication in Section 7.2 achieves this objective (in particular, Figure 9
can be recognized as a virtually synchronous version of the Paxos protocol).

More pitfalls and anomalies of existing approaches are discussed in Section 9. This section contrasts our DSR
method with respect to the three most relevant methodologies, namely, implementations of virtually synchronous
protocols, implementations of the Paxos protocol for state machine replication, and dynamic atomic storage proto-
cols.

Finally, we briefly sketch a correctness argument for a sample of our solutions in the Appendix.

Contribution. While some methodologies lead the developer to some single best solution, that won’t be the case
here; not only will the solutions we develop be incomparable in some ways, they even include application-specific
considerations: the best protocols for implementing a reconfigurable reliable multicast turn out not to be directly
mappable to state machine replication solution, and this illustrates just one of many such examples. Thus, readers
of this paper will draw different conclusions based on the utility they individually assign to the various tradeoffs
involved. Our contribution isn’t some single answer, but rather a more principled treatment of the question. The
methodology we offer here offers confidence in correctness, and for any given set of application-specific goals,
enables steady-state performance similar to the best known hand-crafted solutions to the same problems. Also, our
solution assumes less than is assumed when creating state machine solutions, and for this reason may be applicable
to problems for which state machine replication is inappropriate.

In summary, our paper offers an overarching and unified reconfiguration framework, which reveals relation-
ships between a number of prior works that led to correct and yet seemingly incomparable reconfigurable solutions
in this space. Doing so helps the developer understand reconfiguration against a broad spectrum of choices, to
understand the implications of those choices, and also makes it possible to see protocols that might previously
have been portrayed as competing options as different realizations of a single overall goal.

2 Liveness Model

Our aim is to provide services in asynchronous systems whose set of servers is changed through explicit recon-
figurations. We assume an additional set, potentially overlapping, of clients. We do not assume any bounds on
message latencies or message processing times (i.e., the execution environment is asynchronous), and messages
may get lost, re-ordered, or duplicated on the network. However, we assume that a message that is delivered was
previously sent by some live member and that correct members can eventually communicate any message.
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In order to capture a formal execution model with changing memberships, we borrow concepts which ex-
press explicit dynamism from [1], but modify the treatment for weaker requirements. We proceed with a formal
definition, and follow with examples.

A fixed system membership consists of some set of servers and liveness conditions. As usual, our goal is to
build systems that are guaranteed to make progress as long as the conditions on the servers hold. If too many
servers fail (violating the conditions for liveness), safety will not be impaired, but the system might need to stop
responding to client requests until reconfiguration occurs. We further refine our liveness conditions by breaking
them into two parts, one for performing read requests, and one for performing updates; by doing so, we can
sometimes continue to support one kind of operation even if the other kind is temporarily unavailable. Example
memberships are ‘f + 1 servers, f may crash on any read, no crash tolerance on update’, and ‘n servers, any
minority of which may fail for either read or write tolerance’.

We assume an initial membership M0. Clients are provided with a membership-changing API function
Reconfig(M), where M is a new membership. A call to Reconfig(M) must eventually complete, and returns an
ACK response some time after its invocation. Clients might issue concurrent Reconfig(M) calls, and when this
occurs, the protocol orders the reconfigurations through the sequence of ACK responses. Thus, a system might
perform M0,M1,M2, . . . even though Reconfig(M2) was invoked before Reconfig(M1). We will view issues
such as pre-conditions for invoking Reconfig, and any access restrictions (e.g., to designated administrative users)
on using the Reconfig API as falling outside of the scope of our treament.

In our model, two execution events are associated with each Reconfig call, marking its invocation and its
completion. Both events change the liveness conditions, so they could be thought of as ‘model-changing’ events
in that they transform a fixed liveness-condition into another liveness-condition. For clarity, we will continue
referring to them as Reconfig invocation and response events. The first event occurs upon invocation of Reconfig.
It changes the current liveness condition to incorporate the requested new membership, including its set of servers
and its corresponding liveness conditions. The second event in our model marks a completion of a Reconfig call.
This event signifies that the system has re-organized to switch the service to the new set of servers and transferred
all necessary information to it, so that the old membership may be garbage collected.

We define the startup of a membership Mk to begin with the Reconfig(Mk) invocation and end with its re-
sponse event (for M0, this is defined as the point the system starts). We define the lifetime of a membership Mk to
begin with the Reconfig(Mk) invocation (or with the start time of the system, forM0) and end when the succeeding
reconfiguration Reconfig(Mk+1) startup is completed.

Liveness: For every membership Mk in the sequence of Reconfig calls, the following holds:

1. Throughout the lifetime of Mk, its read-resilience is not violated.

2. There exists a future membership M`, where ` > k, such that the update-resilience of M` holds
throughout the startup of Reconfig(M`).

Note that it follows inductively from the definitions above that memberships Mk+1, ...,M`−1 maintain their
read-resilience condition until the response event of Reconfig(M`).

To illustrate the features of our liveness model, let’s apply it in three simple scenarios. In the first, we have a
system implemented by a single server which may be replaced as needed. Each membership consists of a singleton
set. The read and update resilience conditions are identical here: Zero failures. Plugging these bounds into our
liveness condition implies that, not surprisingly, a server must remain alive until a new one is installed. Moreover,
the new server must be alive during its startup procedure. For example, say that initially we have M0, which
contains a singleton set of servers {q0}. A client wishes to replace q0 with an upgraded server q1 by invoking
Reconfig(M1), with M1 containing the set of servers {q1}. Internally, the startup procedure of Reconfig(M1)
suspends q0, copies data from q0 to q1, and redirects clients to q1. Note that this startup procedure will be successful
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under the assumptions of our liveness model, because both q0 and q1 remain alive while Reconfig(M1) is in
progress. Once q1 stores the system state, the Reconfig(M1) procedure completes and we model this as an abstract
response event. From here on, q0 may safely shut down.

The second example is a service implemented byN = F+1 servers for F -tolerance, such as a primary-backup
setup. Here, the read and the update thresholds are substantially different. The update-threshold is F + 1. That is,
in order for the service to store updates durably, it requires participation of all servers. In case of a failure, updates
become stalled, and we use the reconfiguration manager to facilitate progress. Such a service must include another
system component in charge of reconfiguration, because it impossible to form a consensus decision on the next
membership among the F + 1 processes alone. To reconfigure, we need both one server to be available, in order
to persist the service state; and the reconfiguration manager must be available in order to initiate the Reconfig
procedure.

For example, say that M0 has a set of servers S0 and M1 has S1, each consisting of F + 1 servers. Upon invo-
cation of Reconfig(M1), our liveness requires read availability in both S0 and S1 and that some later membership
has update availability. More specifically, our model says that at most F out of each of the sets S0, S1 fail. This
suffices to suspend M0 and transfer the closing state of M0 to at least one server in S1. When the closing state of
M0 has been transferred to all F + 1 servers of M1 our model schedules the Reconfig(M1) response event. At
that time, our liveness model changes: it drops any resilience assumption on M0. Indeed, it would be safe for all
servers of S0 (that are not in S1) to shut down.

To re-iterate a point made above, Reconfig calls may overlap. Hence, this scenario could develop quite dif-
ferently. Say that there is a failure in S1 before we complete the state transfer to it. Hence, a client may issue
Reconfig(M2) to remedy this, before Reconfig(M1) completes. In our formal model, another event occurs, mark-
ing the invocation of Reconfig(M2) and changing the liveness assumption to ‘F out of each of the sets S0, S1
and S2 may fail’. Now servers in S2 suspend M1 and obtain its state. Note that our read-resilience assumption
implies that this is possible, despite having failures in M1 already. When all F + 1 servers in S2 obtained their
state, Reconfig(M2) becomes completed. In this case, the completion of Reconfig(M2) also pertinently marks the
completion of Reconfig(M1). Consequently, both M0 and M1 will be retired by this completion.

In our last example, a membership consists of a set of N = 2F + 1 servers, F of which may crash for either
read or update. Here, the read and update resilience thresholds are identical. The liveness condition is simple
here: During the lifetime of a membership, at most F of its servers may crash. A membership Mk ends with the
completion of Reconfig(Mk+1), when the closing state of Mk is stored on F +1 members of Mk+1. At that time,
Mk may be retired.

Finally, we note that in order to reach a unique Reconfig decision, we are obviously bound by the impossibility
of consensus: in order to guarantee termination for Reconfig decisions, we require an eventual leader with timely
communication to a majority of the membership.

3 The Dynamic Reliable Multicast Problem

Let’s jump in by exploring the reconfiguration question in the context of a simple but general form of reliable
multicast. A reliable multicast protocol is simply a service (perhaps implemented by a library that its clients
employ), which allows clients to send new multicast messages to groups of receivers, and to receive messages
within groups. Multicast is a popular technology, both in the explicit form just described, and also in implicit
forms, such as publish-subscribe or content-based communication infrastructures, so called enterprise message
bus technologies, and many kinds of data replication and caching technologies. In three accompanying break-out
boxes (Figures 1, 2, and 3) we discuss the possible mappings of our simple multicast API to more standard ones
that might be used in such services.

Reliable multicast is a good place to start because many distributed systems rely on some form of multicast-like
mechanism at a basic level, perhaps presenting it as a multicast, or perhaps hiding it in a data or file replication
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How can our service model be made available through a more standard multicast package? Our multicast API
is pull-based, but one could change it into a notification API by supporting an explicit group join operation. The
join itself would change the group membership using a reconfiguration command, and we’ll discuss these below.
The Send operation maps directly to our Add() interface. Receive would then be supported as a callback from the
multicast library into the application. When a process joins a multicast group for the first time, our durability rule
requires it to learn the state of the group. Thus the first event that occurs upon joining would be a Get() of the
sort we’ve included in our model: the Get(), in effect, embodies the state transfer. Subsequent receive operations,
in contrast, would be modeled as Get() operations that omit messages that were previously delivered to the caller.
View notification, if desired, would be implemented as an upcall that occurs when a new membership is initiated.

A real implementation would also garbage collect durable multicast messages once they are processed by the
group members and reflected into the group state. The needed mechanisms complicate the protocol, but have no
fundamental bearing on the reconfiguration problem, hence we omit discussion of them here. See [10] for details on
methods for detecting durability and using that information to drive garbage collection.

Figure 1: Our simple multicast service abstracts classical ones.

mechanism. But whatever form the end-user functionality takes, the multicast communication pattern arises. If
we can understand reconfiguration in a multicast protocol, we’ll have taken a big step towards understanding
reconfiguration as a general computing paradigm.

The multicast API. Our proposed service offers two interfaces to its clients, Add() and Get(). The Add()
primitive sends a new message and returns an ACK. A Get() call returns a set of messages. A message m of a
completed Add() or Get() operation becomes durable. The main requirement we have of a Get() call is:

Definition 1 (Multicast Durability) A Get() call returns a set of messages that contains all messages which have
become durable when the call was invoked.

In practice, Get() returns all durable messages of completed Add() operations and possibly also some addi-
tional messages associated with concurrently executing Add() operations. If a message m is returned by Get, it
becomes durable; hence every subsequent call to Get will also return m.

We don’t require any particular order on operations; in particular, two concurrent calls to Get() may return
disjoint sets of durable messages, and might order messages differently. We discuss this in more detail in Figure 2.

Epoch-by-epoch Solution. Our approach for dynamically reconfigurable reliable multicast has two parts: A
steady-state protocol for sending and delivering messages during normal, stable periods; and a reconfiguration
protocol. Each of these protocols is defined relative to a single epoch, which begins when a configuration of
the system becomes live and ends by running the epoch termination protocol given below. After the current epoch
ends, a new epoch starts, and we can understand it as hosting a completely new incarnation of this algorithm, whose
newly added messages do not mix with the previous epoch. Indeed, when changing epochs a system could modify
protocol parameters or even switch to a new protocol stack entirely incompatible with the prior one, reinitialize
data, agree upon new security keys (in a secured group [29]), and so forth.

A Single Server Solution. It may be helpful to begin with a degenerate solution that employs just a single server,
because by doing so, we create a form of reference implementation. Later when we explore distributed solutions,
we can reason about their correctness by asking ourselves what properties it shares with the single server solution.
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Multicast protocols and systems come in many forms and flavors. Variants may offer any of a wide range of
message ordering policies, such as FIFO, causal, atomic (total), etc. Several of these policies can be implemented as
a filtering policy over Get(). For example, a FIFO primitive would simply add a header to each message to represent
ordering information (namely, the sender’s sequence number). When Get() reports a durable message history to the
application, the filtering policy would suppress previously delivered messages, and then sort undelivered messages,
delivering them in sequence order, delaying any messages that follow a gap. Causal ordering can be done in the
same manner: here, the sender includes a vector timestamp or some other representation of the causal dependency
information, and Get() delays a given message until all causally prior multicasts have already been delivered. Total
ordering is more complex; we discuss the issues and how they can be solved below, when we look closely at support
for dynamically reconfigurable state machine replication.

Other multicast delivery primitives could implement delivery semantics beyond the model considered here. For
our work here, we require durability, but many multicast systems support “early” delivery of non-durable messages,
to reduce latency in situations where the application itself doesn’t need durability. Failure could cause such messages
to be lost, but there are applications that replicate various forms of soft or transient state and in which durability,
for those updates, is unimportant, but minimizing latency is paramount (see the discussion of this topic in [11]).
It is also possible to modify Get() to report non-durable messages, and the application could then manipulate its
filtering policy to control which ones it will see. Doing this typically entails offering two versions of Get(), one
with durability and one without. To give the application even more control, one can offer a Flush() primitive, which
pauses until every multicast that was pending when it was invoked has become durable. None of these variants
impose fundamentally different requirements on the underlying reconfiguration protocols, and hence for brevity, we
will not explore them in detail.

Figure 2: Alternative delivery functionalities.

To implement Add(), the client in the single-server case locates the server and sends it a store request for
whatever message m is being sent. The server adds m to the message history and acknowledges, and the client
considers the Add() complete when the acknowledgment is received.

To implement Get(), the client contacts the server and the server sends back the entire current message history.
Notice that this history will contain every completed Add(), and perhaps also a few more messages that were
recently stored but for which the corresponding client hasn’t yet received the acknowledgment. These requests are,
in a technical sense, incomplete, although the associated messages will in fact be durable. In particular, notice that
once a Get() includes m into a response, every future Get() will also include m.

Finally, how might we reconfigure the single-server implementation? The simplest solution would be as fol-
lows. A membership tracking module would receive a reconfigure command, specifying that henceforth, server
s′ will run the service. The membership service determines that s is currently running the service, and sends a
message to s that causes it to enter what we will call a wedged state, meaning that no further operations will be
accepted. Server s now transmits its final state to the membership service, which now sends s′ a message that
includes the final state. Having initialized itself from this transferred state, s′ becomes operational, accepting new
store operations. Meanwhile, s can terminate, discarding its state. The protocol, of course, isn’t tolerant of failures:
if s fails before the state is transferred, s′ will be unable to enter the normal operational state.

Notice that we passed the new epoch state via the membership service. If this state is large, doing so might be
undesirable, because during the period between when s transmits the state and when s′ loads it, the service will
be unavailable. However, there are ways to reduce this gap. For example, we might have s′ speculatively copy
the state from s using Get() operations, before the reconfiguration is even initiated. Now only the recent delta of
messages that reached s subsequent to that preliminary transfer will be needed to bring s′ into sync with s. Indeed,
one could iterate, such that the membership service forms the new epoch, in which s′ is the new server, only when
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Readers familiar with protocols such as IP multicast, or gossip-based multicast, might be surprised to see
durability even considered as a property that a multicast protocol should offer. In many settings, durability is viewed
strictly as an end-to-end question, not something that belongs in a multicast layer. Moreover, there are many ways
for an application to satisfy objectives such as durability. For example, while our discussion looks at multicasts that
only deliver messages when they are safe in the sense of durable, there are some kinds of applications that operate
optimistically, accepting messages instantly upon reception, but then rolling back if necessary to back out of unsafe
states [28]. Why, then, are we treating durability as a multicast property?

Recall, however, that our overarching goal is to drill down on the question of reconfiguring a durable service,
with the hope of teasing out essential aspects of the required solution. We’re looking at multicast simply because
multicast is the communication pattern underlying data replication, hence applications that perform durable data
replication can be understood as if they were using a multicast for the data updates. By modeling the multicast
protocol as the source of durability, we avoid needing to explicitly model the application, and can isolate the interplay
between durability within the multicast protocol and reconfiguration of the multicast group membership.

Figure 3: Why should a multicast primitive offer durability?

the remaining delta is small enough; this way, if s′ tries to join during a burst of activity, it is delayed slightly
(during which it will continue to transfer chunks of state), until finally a brief moment of reduced load occurs,
when s′ can finally catch up relatively rapidly.

To use the terminology introduced above, we now have a fault-intolerant solution in which each epoch is
associated with some single server, begins with the initialization of that server, runs in a steady state by storing
messages, and ends when the next server takes over, wedging the previous one. The previous server can shut down
entirely once the state transfer has been carried out.

Fault-Recovery versus Fault-Masking Steady State. We are now in a position to replicate our service to
achieve such benefits as higher availability, load balancing of Get() operations over its members, etc. In what
follows, we start by designing the steady-state protocols and only then consider the protocol needed to reconfigure.
Two principal strategies suggest themselves:

1. The first is a fault-recovery approach, in which we store messages at all of the servers. If some server is
unresponsive, this version will become blocked until a reconfiguration occurs.

2. The second is a fault-masking algorithm, in which we store messages at a majority of the servers. We deliver
messages by reading from a majority and storing back messages at a majority. This version can continue to
complete operations of both types as long as no more than a minority of servers become unresponsive. We
need a majority of servers to remain available in order to transfer the state of the current configuration to any
future one, but after reconfiguration, the old configuration may be retired completely.

In the coming two sections, we first flesh out a fault-recovery solution (Section 4), then a fault-masking one
(Section 5).

4 Fault-Recovery Multicast

We start with the fault-recovery solution. The advantage of the a fault-recovery approach to the reliable multicast
problem is that it requires just N = F + 1 servers and maintains data durability in the face of up to F failures. In
case of a failure, we employ an auxiliary consensus engine to facilitate reconfiguration.
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API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S
if S′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of M , at least one server is correct; and
there exists a future membership M ′ in which all servers are correct throughout the startup of Reconfig(M ′)

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from all servers
return(ACK)

Upon 〈store,m〉 request at server and not wedged:
save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for reply Sq from each server q
return(∩qSq)

Upon 〈collect〉 request at server and not wedged:
return all locally stored messages

Operation Reconfig(M):
Send(〈wedge〉) request to servers
Wait for reply 〈suspended, Sq〉q

from any server q
Invoke consensus engine decide(M,Sq)
When all servers of new epoch have started

return(ACK)

Upon 〈wedge〉 request at server q:
stop serving store/collect commands
return 〈suspended, Sq〉 where

Sq contains all locally stored messages

At any server of new membership M ′

Upon learning (M ′, S)← decide():
store S locally and start service

Figure 4: Single Epoch Fault-Recovery Reliable Multicast Solution

Figure 4 gives a succinct summary of the entire problem definition and its fault-recovery solutions. We elabo-
rate further on them below.

4.1 Fault-Recovery Add/Get Implementation

Add: A client that wants to send a message m sends a store message containing m to all servers in a config-
uration. A server that receives the update inserts m to its local messages set (unless the server is wedged—see
Reconfiguration below). Each server acknowledges the store message to the client, and the Add call completes
when acknowledgments have been received from all servers.

Get: When a client invokes Get(), it sends a collect message to all servers in a configuration. A server that receives
a collect command returns its locally stored messages to the client (again, unless it is wedged). The client waits to
receive responses from all servers, and computes an intersection set S of message which appear in all of of these
histories (message order is unimportant). The Get call returns the set S.
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4.2 Reconfiguration Protocol

Recall that participants initiate reconfiguration by issuing a Reconfig command. Reconfiguration entails these
steps:

1. The issuing client sends a wedge request to servers in the current epoch. As in our single-server solution,
such a request causes a receiving server to become wedged (it may already be wedged from another Reconfig
command), and to return a representation of its state.

2. Since as many as F servers could be faulty, the client waits for just one response, but this response will
contain all durable messages (and possibly more). These messages are used for the initial state of each
server in the next epoch.

3. Reconfig employs some kind of a consensus engine to form a decision both on the next membership M and
on the set S of durable messages. For example, the consensus engine could be implemented by a centralized
authority, which itself could be made reliable by running Paxos among replicated state machines [20].

4. Servers s′ in a new membership M ′ learn the reconfiguration decision either directly from the auxiliary
authority, or indirectly from other members. Either way, they learn both the membership M ′ of the new
configuration and its initial message store S′. The initial state could also include application-specific infor-
mation, or even specify an upgrade to a new version of the application or the protocols it uses. As in the
single-server case, note that there are many ways to optimize state transfer so that the amount of information
actually passed through the membership service could be quite small. What matters here is that a server s′

in the new epoch should only process new requests after it has initialized itself appropriately.

After completing state transfer, the server enables itself for handling normal client requests in the new epoch.
Of course, if the server was also present in an earlier epoch, it remains wedged with respect to that epoch.

5. The Reconfig command is considered completed when all servers in the new configuration have enabled
themselves. Note that Reconfig may never complete. In that case, yet a further reconfiguration command
would be needed before system availability is restored.

The reader may wonder about reconfigurations that occur in response to a failure. In such cases, one or
more servers in the current epoch will be unresponsive. However, any durable message will have been stored in
all histories, and hence will be included in the initial state of all servers in the new epoch. On the other hand,
consider an uncompleted operation, corresponding to a message stored in just a subset of the histories. At this
stage, depending on the pattern of failures, that message could be missing from some of the surviving histories
and dropped. But it could also turn out to be included in the history of the server whose state is used for the next
configuration, in which case it would become durable even though the associated Add() operation may not have
completed.

It isn’t difficult to see that such problems are unavoidable. In effect, the outcome of a Add() that was pending
at the time of a reconfiguration is determined by the membership service: if the message is included into the new
epoch state, the Add() should be construed as successful, and if the message is not included, the Add() has failed
and should be reissued in the new epoch. The client can learn this outcome from any server in the new epoch, or
from the membership service itself. We leave the details of returning these out-of-band responses to clients out of
the discussion here.

5 Fault-Masking Multicast

We continue with a fault-masking, majorities-based solution. The majorities-based fault-masking approach to
the reliable multicast problem deploys N = 2F + 1 servers to maintain both data durability and non-disrupted
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API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S
if S′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from a majority of servers
return(ACK)

Upon 〈store,m〉 request at server and not wedged:
save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for replies Sq from a majority of servers q

send(〈store,∪qSq〉) to servers

wait for replies from a majority of servers

return(∪qSq)

Upon 〈collect〉 request at server and not wedged:
return all locally stored messages

Operation Reconfig(M):
Send(〈wedge〉) request to servers
Wait for replies 〈suspended, Sq〉q

from a majority of servers q
Invoke consensus engine decide(M, ∪q Sq)

When a majority of servers in M have started
return(ACK)

Upon 〈wedge〉 request at server q:
stop serving store/collect commands
return 〈suspended, Sq〉 where

Sq contains all locally stored messages

At any server of new membership M ′

Upon learning (M ′, S)← decide():
store S locally and start service

Figure 5: Majority-based Reliable Multicast Solution

operation in face of up to F failures. Figure 5 gives a succinct summary. For convenience, the differences from the
Fault-Recovery approach of Figure 4 are highlighted.

5.1 Majorities-Based Tolerant Add/Get Implementation

The steady-state fault-masking solution for Reliable Multicast works as follows.

Add: A client that wants to send a messagem sends a store message containingm to all servers in a configuration.
A server that receives the update and is not wedged inserts m to its local messages set. Each server acknowledges
the store message to the client, and the Add call completes when a majority of acknowledgments have been
received.

Get: When a client invokes Get(), it sends a collect message to all servers in a configuration. A server that receives
a collect command and is not wedged returns its locally stored messages to the client. The client waits to receive
responses from a majority, and computes a union set S of message which appear in any of these histories. The
client then stores back the set S at a majority by issuing a store message and waiting for acknowledgement from a
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majority. 1 The Get call returns the set S.

5.2 Reconfiguration Protocol for Majorities-Based Multicast

The same reconfiguration protocol as the fault-recovery one can be used in this case, but with a minor modification
to the rule used to compute the initial state of the new epoch.

Now, the issuing client must contact a majority of servers to discover all successful multicasts. Such a server
enters the wedged state, and then sends the message history to the client, as above. This was why we required that,
for the fault-masking case, the service include at least 2F +1 servers: if F fail, F +1 will still be operational, and
for any durable message, at least one of them will know of it. This, then, permits the client to include all durable
messages in the initial state of the new epoch.

Again, after completing state transfer, a server of the new membership enables itself for handling normal client
requests in the new epoch. However, it suffices for a majority of servers of the new configuration to become enabled
for the Reconfig operation to be considered completed. And just as we saw above, state transfer can be optimized
to transfer much of the data through an out-of-band channel, directly from the servers in the current epoch to the
ones that will be members of the next epoch.

5.3 Reconfiguration Agreement Protocol

We now “open” the consensus engine and flesh out a procedure that unifies forming agreement on the next epoch
with state transfer. Figure 6 summarizes a multicast solution that uses N = 2F +1 servers and contains a detailed
reconfiguration decision protocol combined with state transfer. (Only the Reconfig part is changed from Figure 5,
but for completeness, Figure 6 gives a full solution.)

The combined reconfiguration and state transfer protocol is based on the well-known Synod algorithm [20].
It is triggered by a client Reconfig command and uses a set of N = 2F + 1 servers of the current epoch. The
Reconfig procedure makes use of a uniquely chosen stake (for example, an integer or some other ordered type).
Clients invoking reconfiguration may repeatedly try increasingly higher stakes until a decision is reached. The
protocol of a particular stake has two phases. Although we could wait for the consensus decision and then perform
state transfer, it turns out that we can make efficient use of message exchanges inside the protocol to accomplish
state transfer at the same time.

More specifically, in Phase 1, a client performs one exchange with a majority of servers. When the client hears
back from a majority, it learns:

(1) Either a reconfiguration command RC, which might have been chosen. In case of multiple possibly chosen
RC’s, the one whose stake is highest is selected.

(2) Or that no reconfiguration command was chosen.

This exchange also tells the servers to ignore future proposals from any client that precedes it in the stake-order.
Coupled into this (standard) Phase 1 of consensus protocol is the collect phase of our state transfer. Namely,

the same exchange marks the servers wedged, which is done by obtaining a commitment from the servers not to
respond to any store or collect request from processes. In their responses in Phase 1, the client collects from each
server the set of messages it stores.

In Phase 2, the client performs another single exchange with a majority of servers. If case (1) applies, then it
tells servers to choose RC. Otherwise, in case (2), it proposes a new reconfiguration decision RC. The new RC
contains the configuration that the client requested, as well as a a union of the messages it collected in the first
phase.

1Clearly, we can optimize to store S only at sufficiently many servers to guarantee that S is stored at a majority.
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The server’s protocol is to respond to client’s messages, unless it was contacted by a higher-stake client already:

• In phase 1, it responds with the value of a reconfiguration proposal RC of the highest-stake it knows of, or an
empty RC. It also incorporates into the response the set of messages it stores locally, and commits to ignore
future client store/collect requests.

• In phase 2, it acknowledges a client’s proposal and stores it.

Each server in the new membership waits to collect start messages with the same stake from a majority
of servers of the previous epoch. In this way, it learns about the next epoch decision, which includes the new
configuration and the set of messages that are now durable. It stores these messages in its message history and
becomes enabled for serving clients in the new epoch. Once a majority of servers in the new epoch are enabled,
the Reconfig() operation completes.

As an example scenario, consider a system with three servers {1, 2, 3}. Assume message a reaches {1, 2}, b
reaches {2, 3} and c reaches server 3. During Phase 1 of reconfiguration, a client sends wedge messages to the
servers. In response, server 2 suspends itself and sends {a, b}, and server 3 sends {b, c}. The client collects these
responses, and enters phase 2, proposing a new epoch configuration consisting of server-set {4, 5, 6} and message
set {a, b, c}. Although this set contains more than the set of completed messages (c’s Add() not having completed),
those extra messages pose no problem; in effect, they complete and become durable as part of reconfiguration.
Again, here we ignore the matter of sending out of band responses to the client which invoked Add(c).

Servers {4, 5} in the new epoch each learns the decision, stores {a, b, c} locally and become enabled. At this
point, it is possible that all the servers in the previous epoch are shut down. This poses no risk, as no information
is lost. In particular, every Get() request in the new epoch returns {a, b, c}.

Another possibility is that the client collects information from servers {1, 2}, and the reconfiguration decision
includes only messages {a, b}. In this case, message c disappears. This is legitimate, as no Add() or Get() with c
ever completes, in the past or in the future.

6 Coordinated State Transfer: The Virtual Synchrony Property

Consider what would happen in the Reliable Multicast service if we did not include in the reconfiguration decision
the set S of messages ever completed in the current configuration. Instead, imagine a protocol in which every
server in the new membership independently obtains the state from a read-set of the current configuration. For
those messages M whose Add or Get have completed, there will be no difference. That is, every server in the new
membership will obtain M before starting the new epoch. However, messages with partially completed Add/Get
may or may not be obtained by the new servers, depending on which member(s) of the current configuration they
query. Such messages could later become durable, by being transferred to all servers some epoch. Let’s study this
case in more detail by revising our fault-recovery approach.

For example, suppose that Add(a) has arrived at both servers {1, 2} of some initial epoch. Say that Add(b)
has reached {1} so far, and Add(c) has reached {2}. Let the reconfiguration manager establish a decision on a new
epoch set {3, 4, 5}. We may have server 3 suspend and pull messages {a, b} from {1}. Note that message a was
completed, and b may yet complete in the future; however, we cannot distinguish between these two situations. If
servers 4, 5 were to do the same state transfer, it would then be possible for a client to perform a Get() in the new
epoch, and return {a, b}. This is the only safe response, as Add(b) could complete meanwhile.

Alternatively, servers 4, 5 might pull {a, c} from {2}. At this point, because both 1 and 2 are wedged and will
not acknowledge further store requests, neither b nor c may ever complete in the current configuration. However,
this situation cannot be distinguished by the servers. Hence, when a client requests Get() in the new epoch, server
3 must responds with {a, b}, while 4, 5 must respond with {a, c}. This is fine, since the client will return the
intersection {a} in response to Get().
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API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S
if S′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from a majority of servers
return(ACK)

Upon 〈store,m〉 request at server and not wedged:
save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for replies Sq from a majority of servers q
send(〈store,∪qSq〉) to servers
wait for replies from a majority of servers
return(∪qSq)

Upon 〈collect〉 request at server and not wedged:
return all locally stored messages

Operation Reconfig(M):
Choose unique stake
Send(〈wedge, stake〉) request to servers
Wait for replies 〈suspended, stake, 〈st, RC〉, Sq〉q

from a majority of servers q
if any (st, RC) is non-empty

choose RC of highest (st, RC) pair;
else

let RC ← (M,∪qSq)
Send(〈accept, stake,RC〉)
When a majority of servers in RC have started

return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving store/collect commands
unless accessed by higher-stake leader already

return 〈suspended, st, 〈highst, highRC〉, Sq〉
Upon 〈accept, st, RC〉) request at server q:

unless accessed by higher-stake leader already
store highst← st, highRC ← RC
send 〈start, st, RC〉 to servers in RC

At any server in RC
Upon obtaining 〈start, st, RC = (M,S)〉

from a majority of previous epoch
store S locally and start service

Figure 6: Majority-based Reliable Multicast with 2F + 1 Servers: Full Solution
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The service remains correct with such ‘uncoordinated state transfer’. However, in some future epoch, events
might transpire in a way that causes all the servers to pull b and c from the preceding configuration. Suddenly,
b and c will become durable, and all future Get() requests will include them. We believe that this behavior is
undesirable. Indeed, in DSR we prevented such outcome by including in the consensus reconfiguration decision
a set of messages from the current configuration, such that no other messages may appear later. The connection
of the DRS approach to reconfiguration with the virtual synchrony approach to group communication may now
become apparent to readers familiar with that literature: DRS guarantees to terminate operations within the lifetime
of their invoking configuration. We now give a new formal definition of this old idea.

We’ll start by explicitly modelling the configuration visible to a client when it invokes an operation. Notice
that this is a reasonable addition to our model, since any client-side library must locate and interact with servers
of the configuration, and hence it makes sense to rigorously specify the behavior of the associated interface. In
addition to Reconfig invoke and response events, we model Reconfig notification events, which arrive at clients
individually. Clients may be notified at different times about the same configuration.

Definition 2 We say that a client invokes operation o in configuration C if C is the latest Reconfig-notification
event at this client preceding o’s invocation, or, in case no Reconfig-notification event has occurred, if C is the
initial configuration C0.

For example, for some client, we may have the following sequence of events: invoke Add(m1), response from
Add(m1), invoke Add(m2), Reconfig(C1) notification, response from Add(m2), invoke Add(m3), response from
Add(m3). In this sequence, the Add() operations of m1 and m2 are invoked in the initial configuration (C0), and
that of m3 is invoked in C1.

Now for Reliable Multicast, virtual synchrony requires the following:

Definition 3 (Virtually Synchronous Multicast) If Add(m) was invoked in configuration Ck, then if ever Get()
returns m, then for all configurations C`, where ` > k, a Get() invoked in C` returns m.

It is not hard to see that our Multicast reconfiguration strategy satisfies this condition, because whether or not
m is stored in future configuration is determined by the reconfiguration decision itself.

For arbitrary services, we would consider operations which have an effect on others. In the Multicast case,
Add operations change the behavior of future Get requests: Get() must return all previously sent messages. More
generally, an operation o of type O which has an effect on operations o′ of type O′ changes the outcome of o′ if the
response event for o occurs before o′ is invoked. Conversely, we say that o′ reflects o.

The Virtual Synchrony guarantee implies the following:

Definition 4 (Virtual Synchrony) Consider an operation o of type O which has an effect on operations of type
O′. If o was invoked in configuration Ck, then if any operation o′ of type O′ reflects o, then for all configurations
C`, where ` > k, operations w′ of type O′ invoked in C` reflect o.
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7 Dynamic State Machine Replication and Virtually Synchronous Paxos

In this section, we take our Dynamic Service Replication (DSR) epoch-changing approach into the generic realm
of State Machine Replication (SMR). In the state machine replication approach, replicas are implemented as de-
terministic state machines. The state machines start with a common initial state and apply commands in sequence
order. This approach yields a protocol we refer to as Virtually Synchronous Paxos2. Paxos-users will recognize
the close similarity of the protocol to the standard Paxos, yet in contrast with Reconfigurable Paxos and other
reconfigurable SMR implementations, this solution achieves higher steady state performance with less complexity
around the handling of reconfiguration.

7.1 On Paxos Anomalies

SMR operates on an infinite sequence of commands. Even though the sequence of commands is logically active
all the time, in reality, systems progress in epochs: During each epoch, a fixed leader chooses a dense sequence of
commands. Then, the leader is replaced, and a new epoch starts. The new leader starts where the previous leader
stopped, and passes another subsequence of commands. And so on. If we envision the sequence of commands
as a horizontal axis, then each leader-epoch lasts a contiguous segment along the horizontal axis. Nevertheless,
abstractly, the same consensus protocol runs in the entire infinite sequence of commands, ignoring epoch and
leader changes. Each instance vertically runs a succession of leaders, though each leader takes actual actions only
in some instances, and none in others. The consensus-based point of view makes arguing correctness easy.

Unfortunately, the seemingly obvious intuition about epochs is wrong, and may lead to undesirable effects.
Consider the scenario depicted in Figure 7. We have two Leaders U and V contending for the same pair of offsets,
k and k + 1. U proposes uk at k and uk+1 and k + 1, intending that uk executes before uk+1. V proposes vk
and vk+1 for these offsets. Consider the case where neither Leader U nor V obtains acceptance of a majority to
their proposals. Hence, a third Leader W , starts after U and V are both retired. W finds traces of the command
uk+1, proposed by U , at offset k + 1, and of the command vk, proposed by V , at offset k. Paxos mandates W
to re-propose vk and uk+1 at k and k + 1, respectively. If W is a stable leader, then indeed vk and uk+1 will be
chosen. But this violates the intended ordering constraint of the proposers!

In the above situation, Paxos permits the intended ordering of commands to be violated. As noted by the
engineers who designed and built the Yahoo! ZooKeeper service [17], there are real-life situations in which leaders
intend for their proposed k+1 command to be executed only if their proposed k command is done first. To achieve
high performance many such systems are forced to pipeline their proposals, so a leader might propose command
k + 1 without waiting for a decision on command k. Paxos is quite capable of choosing k + 1 but not k, and
(as just noted) there are conditions under which it might choose both, but each one from a different leader. This
particular case was sufficiently troublesome to convince the ZooKeeper engineers to move away from Paxos and
to implement a virtually-synchronous, epoch-by-epoch type of leader election in their system.

So far, we have only discussed simple leader-changes. Our scenario turns out to have even more serious
ramifications for previous reconfigurable SMR solutions. Recall that vanilla Paxos allows reconfiguration of the
system that implements the state machine by injecting configuration-changing commands into the sequence of
state machine commands. This is a natural use of the power of consensus inherent in the implementation of
SMR. It entails a concurrency barrier on the steady-state command path: Suppose we form a reconfiguration
command, for example, at index y in the sequence of commands. The command determines how the system will
form the agreement decision on subsequent commands, for example, at index y + 1 onward. More generally,
the configuration-changing command at y may determine the consensus algorithm for commands starting at index

2This is a good juncture at which to note that Leslie Lamport was involved in an earlier stage of this research. Although he is not a
co-author on this paper, his help in the initial formulation of our problem was invaluable, and this choice of protocol name is intended to
acknowledge the strong roots of our protocol in his earlier work.
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Figure 7: Anomalous Paxos behavior.

y + α, for some pre-determined concurrency parameter α. We must wait for a reconfiguration decision at y
to complete before we inject additional command requests to the system, at index y + 1 onward (or y + α in
the general case). This barrier effectively reduces the system to one-by-one execution of commands, hence if
reconfigurable Paxos is used, it would normally be deployed with α greater than 1 [23].

But, now consider the behavior of a Paxos-based SMR solution with α > 1. Recall the scenario of contending
leaders in Figure 7 above, and suppose that commands vk and uk+1 are reconfiguration commands, which are
mutually incompatible. This may cause the current configuration to issue two (or more) Reconfig commands, up
to the maximum of α commands. Suppose that all of these were intended to apply to the configuration in they
were issued. The first to be chosen will update the configuration as usual. But what are we to do when a second or
subsequent command is chosen? These commands may no longer make sense. For example, a pending request to
remove a faulty server from the configuration might be chosen after one that switches to a configuration in which
that server is no longer a member. Executing these reconfigurations one after another is nonsensical. Likewise, a
command to change a protocol parameter might be executed in a context where the system has reconfigured and is
now using some other protocol within which that parameter has a different meaning, or no meaning at all.

If we use a window α larger than 1, then such events will be possible. An approach that seeks to prevent
these commands from being chosen once they are no longer meaningful would require us to implement complex
semantic rules. Allowing them to be chosen forces the application designer to understand that a seemingly “buggy”
behavior is actually permitted by the protocol. In practice, many Paxos implementations (indeed, all that we know
of) either do not support reconfiguration at all, or set α to 1, thus serializing command processing: only one
command can be performed at a time. Batching commands can alleviate this cost: rather than one command at a
time, the system might perform β at a time, for some parameter β. But this can help only to a limited degree.

Our remarks may come as a surprise to readers familiar with SMR and Paxos, because many published presen-
tations of the model and protocols omit any discussion of the complexities introduced by reconfiguration. These
remarks are not entirely new, and summarize several recent works which allude to these difficulties: The causality-
violating scenario has been pointed out in [17], and Paxos reconfiguration idiosyncracies were discussed in [22].

7.2 Virtually Synchronous SMR

We now give a full solution to the dynamic SMR problem which avoids the above undesired behavior. As for the
multicast service, we flesh out two approaches, a fault-recovery solution and a fault-masking one. The latter we
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also call “Virtually Synchronous Paxos” because of its resemblance to the Paxos protocol.
We model an SMR service as providing clients with a Submit(op) API to atomically perform op on a shared

object obj. Below, we denote by objk the object state after k operations. For durability, we store obj at a group of
servers: F + 1 in the fault-recovery approach, and 2F + 1 for fault-masking. We denote by objq the copy stored
by server q. As usual, we provide a Reconfig API in order to reconfigure the service.

It is worth noting that our model is slightly different from the standard SMR model, in which there is a dis-
tributed engine for forming total order on commands and a separate one for execution. In most deployments, the
same set of servers is used for both roles, and this simplifies our exposition.

Fault-Recovery Virtually Synchronous SMR

We begin with a fault-recovery approach, which utilizes only F + 1 state machine servers for F -tolerance. As
usual, this means that an auxiliary configuration engine is responsible for forming a consensus decision on the next
configuration. This captures the classical primary-backup approach for replication, and extends it with a precise
treatment of reconfiguration. Figure 9 describes the problem definition and gives a full solution in pseudo-code. We
give one reconfiguration procedure for all cases, though specific scenarios may be further optimized, e.g., single
backup failure, deploying a new secondary without failures, etc. Our formulation follows precisely the Vertical
Paxos protocol [21], and we repeat it here for completeness.

The steady-state solution designates one server as primary. The primary obtains command requests from
clients. For each request, it picks the next unused index k in the sequence of commands and requests the servers
to accept the new command as the k’th. (If computing an operation is a heavy burden, the primary may opt to
precompute the next state objk and send it to servers for efficiency, instead of sending the operation itself. This
trick may also be used in case non-deterministic operations are to be supported.) A command is completed when
the client received a (deterministic) response from all servers.

We put our DSR methodology to action in order to reconfigure state machines by having a reconfiguration
decision that stops the sequence of state machine commands. The reconfiguration procedure first wedges (at least)
one server. Here, the server’s protocol is to respond to client’s wedge messages with the latest object state and
its index objq, kq. The initiating client then lets the consensus engine form a decision on the next configuration.
Crucially, the consensus decision contains the new configuration as well as the closing state of the current config-
uration. The decision value determines the configuration used in the next SMR instance and its initial object state.
This decision effectively completes operations up to the k’th (and as usual, results of uncompleted operations are
returned to their clients).

Once a decision is formed on both the new configuration and on its closing state, we can start the new state
machine. However, in order for the new configuration to uphold linearizability [16], the sequence of commands
in the new configuration must follow those of the current configuration. We achieve this by initializing the servers
of the new configuration with the closing state of the object from the current configuration. Any server in the new
membership M ′ that learns the decision (M ′, kq, objq) can start the new configuration by (i) initializing its local
state to kq, objq and becoming enabled for normal command processing. Our liveness condition guarantees that
the transfer can complete before reconfiguration is done to at least one server in the next configuration, and that
some future configuration can become completely enabled. Accordingly, only upon receiving acknowledgement
from all servers of that configuration, the Reconfig response event occurs.

Fault-Masking Virtually Synchronous SMR

We continue in Figure 9 with a fault-masking virtually synchronous SMR solution, which we call Virtually Syn-
chronous Paxos. Although we could use the Paxos Synod protocol even in steady-state mode, we present a simpler
version that uses a fixed primary. When the primary fails, we simply reconfigure to facilitate progress. Reconfigur-
ing upon primary replacement in this manner alleviates the anomalous behavior related with primary transition in
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API:
Submit(op): execute op atomically on object and return result r = apply(op, obj)
Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , one server is correct and
there exists a future membership M ′ in which all servers are correct throughout the startup of Reconfig(M ′)

Operation Submit(op) at client:
send 〈op〉 to designated primary
wait for responses r from all servers
return(r)

Upon 〈op〉 request at primary:
send 〈submit, k, op〉 to servers
increment k

possibly optimize:
rk ← apply(op, objk−1)
send 〈submit, k, objk, rk〉

Upon 〈submit, k, op〉 request at server and not wedged:
let rk ← apply(op, objk−1)
store k, objk

send rk to client

Operation Reconfig(M):
Send 〈wedge〉 request to servers
Wait for reply 〈suspended, kq, objq〉q

from any server q
Invoke consensus engine decide(M,kq, objq)
When all servers of new epoch have started

return(ACK)

Upon 〈wedge〉 request at server q:
stop serving submit commands
return 〈suspended, kq, objq〉

At any server in M ′

Upon learning (M ′, kq, objq)← decide():
initialize local k, obj from kq, objq and start service

Figure 8: Fault-Recovery Virtually Synchronous SMR with F + 1 servers (Vertical Paxos)

Paxos pointed above in Figure 7. Leader election of our Virtually Synchronous Paxos within a fixed configuration
is similar to the leader change protocol of ZooKeeper [17].

Steady state operation is done as follows. The primary obtains command requests from clients. For each
request, it picks the next unused index k in the sequence of commands and requests the servers to accept the new
command as the k’th. (The same optimization of pre-computing the resulting state is possible in case computing
is expensive or non-deterministic, but not shown in the code.) A command is completed when the client received
a (deterministic) response from majority of servers.

Recall that when reconfiguration is desired, we need to form agreement both on the next configuration and
on the closing state of the current configuration. A client that wishes to reconfigure chooses a unique stake and
performs the following two phases.

Phase 1: The client performs one exchange with a majority of servers. When it hears back from servers, it learns
the latest computed state of the object objk known to servers. This reflects a prefix of the commands sequence
proposed by the primary, whose tail may not have been completed yet. It also learns with respect to the
configuration-changing decision either: (1) A reconfiguration command RC that might have been chosen, or
(2) That no command was chosen. In this exchange, the client also obtains a commitment from the servers
to ignore future messages from any lower stake client.

Phase 2: The client performs another single exchange with a majority of servers. If case (1) applies, then it tells
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API:
Submit(op): execute op atomically on object and return result r = apply(op, obj)
Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Submit(op) at client:
send 〈op〉 to designated primary
wait for responses r from a majority of servers
return(r)

Upon 〈op〉 request at primary:
send 〈submit, k, op〉 to servers
increment k

Upon 〈submit, k, op〉 request at server and not wedged:
let rk ← apply(op, objk−1)
store k, objk

send rk to client

Operation Reconfig(M):
choose unique stake
send 〈wedge, stake〉 request to servers
wait for replies 〈wedged, (st, RC), kq, objq〉

from each server q in a majority
if any (st, RC) is non-empty

choose RC of highest (st, RC) pair;
else

let RC ← (M,kq, objq) of highest kq
send 〈accept, stake,RC〉

when a majority of servers in RC have started
return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving submit commands
unless accessed by higher-stake leader already

return 〈wedged, stq, RCq, kq, objq〉
Upon 〈accept, st, RC〉 request at server q:

unless accessed by higher-stake leader already
store st, RC
send 〈start, st, RC〉 to servers in RC

At any server in RC
Upon obtaining 〈start, st, RC = (M,kq, objq)〉

from a majority of previous epoch
initialize obj state from RC and start service

Figure 9: Fault-Masking Virtually Synchronous SMR with 2F + 1 servers (Virtually Synchronous Paxos)

servers to choose RC. Otherwise, in case (2), it proposes a new RC which contains the new membership
and the closing state (k, objk). In either case, a client may propose only one reconfiguration for a particular
stake.

The server’s protocol is to respond to client’s messages, unless it was instructed by a higher-stake client to
ignore this client: In phase 1, server q responds with the latest object state objq; and with the value of a recon-
figuration proposal RC of the highest-ranking client it knows of, or empty if none. In phase 2, it stores a client’s
proposal and acknowledges it in the form of a start message to the servers of the new configuration.

Any server in the new membership that learns the decision RC from a majority of servers in the current
configuration (directly or indirectly) can start the new configuration by (i) initializing its local object to RC.obj
and becoming enabled for normal command processing. Our liveness condition guarantees that the transfer can
complete before reconfiguration is done. Accordingly, only upon receiving acknowledgement from a majority of
servers in RC.M, the Reconfig response event occurs.
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8 Dynamic Read/Write Storage

In this section, we complement our arsenal of dynamic services with a solution to the dynamic Read/Write storage
problem. A Read/Write Storage service provides two API methods, Read and Write, which execute atomically.
This classical problem received much attention in the literature, starting with the seminal fault tolerant solution for
static environments by Attiya et al. [5], and continuing with several recent storage systems for dynamic settings [24,
14, 12, 1, 33]. The full problem description and pseudo-code solution are given in Figure 10 below. The solution
resembles the RDS protocol of Chockler et al. [12], but differs in that it maintains the virtual synchrony property
and uses fewer phases. Although the solution approach is very similar to the Reliable Multicast one, we discuss it
here for completeness. However, we only describe one flavor, a fault-masking protocol; the reader can complete
the other variants based on the Multicast example. The fault-masking solution employs 2F + 1 servers, each of
which stores a copy of a shared object obj along with a logical update timestamp t. We denote by objq, tq, the
local copies stored at server q.
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API:
Write(v): execute write(v) atomically on obj and return(ACK)
Read(): execute read() atomically on obj and return(u)
Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Write(v) at client:
send(〈writequery〉) to servers
wait for replies 〈tq〉 from a majority of servers q
choose t greater than all tq
send(〈store, v, t〉) to servers
wait for replies from a majority of servers
return(ACK)

Upon 〈writequery〉 request at server q and not wedged:
return 〈tq〉

Upon 〈store, v′, t′〉 request at server q and not wedged:
if t′ > tq save v′, t′ to objq, tq
return ACK

Operation Read() at client:
send(〈collect〉) to servers
wait for replies 〈vq, tq〉 from a majority of servers q
let 〈v, t〉 be the pair of highest timestamp
send(〈store, v, t〉) to servers
wait for replies from a majority of servers
return(v)

Upon 〈collect〉 request at server q and not wedged:
return 〈objq, tq〉

Operation Reconfig(M):
Choose unique stake
Send(〈wedge, stake〉) request to servers
Wait for replies 〈suspended, stake, 〈st, RC〉, objq, tq〉q

from a majority of servers q
if any (st, RC) is non-empty

choose RC of highest (st, RC) pair;
else

let RC ← (M, objq, tq) of highest tq
Send(〈accept, stake,RC〉)
When a majority of servers in RC have started

return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving store/collect/writequery commands
unless accessed by higher-stake leader already

return 〈suspended, st, 〈highst, highRC〉, objq, tq〉
Upon 〈accept, st, RC〉 request at server q:

unless accessed by higher-stake leader already
store highst← st, highRC ← RC
send 〈start, st, RC〉 to servers in RC

At any server in RC
Upon obtaining 〈start, st, RC = (M,objq, tq)〉

from a majority of previous epoch
store v, t, locally and start service

Figure 10: Majority-based Atomic Read/Write Storage with 2F + 1 Servers: Full Solution
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9 DSR in Perspective

Although our development portrays reconfiguration as a relatively linear task that entails making a series of seem-
ingly straightforward decisions, there exist many incorrect or inefficient reconfiguration solutions in the published
literature. In this section, we discuss the reasoning that can lead to complexity in dynamic membership protocols,
and because of that complexity, expose the solution to potential bugs. As a first step it may be helpful to express
our solution as a high-level recipe. Abstractly, the DSR epoch-by-epoch reconfiguration strategy entails the steps
listed below. We have numbered the steps as either A.n or B.n to indicate that steps A/B may intermix in any order:

A.1 In the current configuration, form a consensus decision on the next configuration.

B.1 Suspend the current configuration from serving new requests (in progress requests may continue to comple-
tion, or die).

B.2 Take a snapshot of the current configuration’s closing state. A legitimate (non-unique) snapshot must contain
all operations ever to complete.

B.3 Form agreement on a legitimate closing state. In fault-recovery solutions, this agreement must be carried by
the configuration manger, or in the next configuration (after the configuration manager has designated one).
In a fault-masking solution, it may be carried by either the current configuration or the next one, but we must
a priori designate which one has the responsibility.

A.2/B.4 Enable servers in the next configuration initialized with the consensus snapshot state formed in step B.3.

With this in mind, we pause to highlight some of the more common pitfalls that have traditionally led re-
searchers (including the authors of the current paper) to propose less than ideal solutions.

9.1 Speculative-views

One design decision that we recommend against arises when a service is optimized for high availability by adding
a mechanism that will copy state and enable activity in a new epoch that has been proposed, but not finalized,
for example during intermediate steps of the agreement protocol. Much prior work in the group communication
literature falls in this category [9, 3, 4, 35, 34, 6]; a significant body of PhD dissertations and published papers on
transient/ambiguous configurations, extended/weak virtual synchrony, and others, were devoted to this strategy [2,
13, 18, 27]. Many other works in the group-communication area are covered in the survey by Chockler et al. [15].

The group communication approach essentially performs the task of steps A.1 and B.1-B.3 inside a speculative
next configuration, in an attempt to optimize and transfer-state while forming agreement on it. This works roughly
as follows.

A.1 In the current configuration, form a proposal on the next configuration.

A.2(B.1) Suspend those members of the next configuration which persist from the current one from serving new
requests.

A.3(B.2-3) Among the members of the proposed next configuration, form agreement on both the transition itself,
and on a legitimate snapshot of the current configuration’s closing state. The snapshot decision incorpo-
rates input from those members which persist from the current configuration and from previously attempted
proposed configurations.

A.4 If the next configuration fails to reach consensus, go back to step A.1.
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A.5(B.4) Enable servers in the next configuration (their state is already initialized with the consensus snapshot
state formed in step A.3.)

While the resulting solutions can certainly be implemented and proved correct, they require protocol steps in
which the members of a new epoch collect information from every view in which operations might have been
performed, so that the view that will ultimately be used has full knowledge of the service state. Such solutions can
embody substantial complexity, and this of course means that implementations will often be quite hard to debug.

As an example scenario, let’s revisit the scenario explored above, with an initial membership {1, 2, 3}. During
reconfiguration, a client could propose a new epoch configuration consisting of server-set {2, 3, 4}. A typical
complication here was for servers {2, 3, 4} to form a “transient” configuration without waiting for a majority of
the previous epoch to acknowledge it. They perform a state transfer and start serving client requests immediately.
Thus, servers {3, 4} might respond to a Get() request with a message-set containing {b, c}. In the end, we may
form consensus on a different configuration, say {1, 2, 5}. If we only collect information from a majority of the
previous epoch, say {1, 2}, we might “forget” message c. Note that we intentionally chose a new server-set that
intersects with a majority of the members of the previous epoch. We did so to illustrate that there are situations
in which a set large enough to reach agreement could nonetheless not suffice if a system needs to discover every
durable message.

We therefore need to collect information from the transient configuration, so as not to lose message c. This
is not only complex, but there is no guarantee that we will find traces of the transient epoch, unless we enforce
additional constraints, the dynamic-quorum rule, as we now show.

9.2 Dynamic-quorums and Cascading changes.

The above scenario leads us to another common pitfall. In essence, it requires that cascading epoch changes
jointly have a non-empty intersection. This guarantees that speculative epochs all intersect and become aware of
one another. In the example above, server 2 is in the intersection of all attempted changes, and so we rely on
information collected from it to discover the transient epoch, and collect information from its majority as well.
More generally, a line of related works emanating from those with speculative configurations was devoted to
the issue of handling “cascading reconfigurations”, and to quorum intersection rules that guarantee to maintain a
unique primary quorum through such cascading changes, e.g., [30, 37]. This constraint is unnecessary.

In our method, consensus is reached by a majority in the current epoch; the next epoch need not share any
servers with the previous one. More generally, our epoch-by-epoch approach emphasizes that one only needs
to deal with one epoch at a time, and that cascading or chained epochs just aren’t necessary (nor do they have
any performance or code complexity benefit; indeed, quite the opposite). The correct algorithmic foundation we
establish terminates an epoch with a configuration-changing decision. It does not matter if we have a centralized
configuration manager, or run a distributed consensus protocol; both are part of the current epoch, and it is well
defined who determines the next configuration. The next epoch is uniquely determined in the current epoch, and
transition to it is irreversible. When an epoch ends, a new epoch starts a new incarnation of the same algorithm
(albeit with a non-empty initial service state), whose participants and messages do not mix with the current epoch.
The new epoch may itself decide to reconfigure, and we iterate through epoch changes again. Any number of
reconfigurations can be chained in this manner, with no difficulty at all.

In the example above, either we decide to transition to {2, 3, 4} or not. If a decision is made, it is irreversible.
A future decision to switch to {1, 2, 5} must be taken by the new epoch, after it is enabled. It is achieved with
the normal decision and state transfer mechanism. Conversely, if there is no decision on {2, 3, 4}, then no client
operation executes in that epoch. Later, when a different decision is reached the new epoch starts with servers
{1, 2, 5}.
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9.3 Off-line Versus on-line reconfiguration

We need to comment briefly on our decision to use an off-line reconfiguration strategy. A recent line of works, pio-
neered by the RAMBO project [24] and continued in Rambo II [14], RDS [12], DynaStore [1] and DynaDisk [33],
emphasize the importance of non-blocking reconfiguration. These systems tackle dynamic Read/Write storage
services, but the same design issues occur in Reliable Multicast and other, similar services.

In the “RAMBO” approach, the solution is further optimized by mechanisms that prevent a client from ever
encountering a suspended service. This on-line transition comes, however, at the cost of greater system complexity.
RAMBO clients continue accessing the Read/Write objects by interacting both with the current and the next
epoch. Every Read operation copies the object it accesses from one epoch to the next. Every Write operation also
accesses a majority in the previous epoch, but no copying of data is necessary. Even if clients access objects which
have already been copied to the new epoch (which would be the common case for “hot objects”), they still need to
access majorities in all active configurations. The advantage is that RAMBO never blocks any client request, even
momentarily, but the disadvantage is the complication of sorting through responses from two epochs and figuring
out which one is more current.

Even more importantly, the on-line reconfiguration approach prevents a client from ever “sealing” partially-
completed operations which were initiated in the current epoch. Traces of those may transfer to later epochs,
and become durable arbitrarily far in the future. Such behavior may not be desirable for applications engineered
with a Reliable Multicast (or Read/Write) infrastructure, as we saw earlier in our discussion of Virtual Synchrony
(Section 6).

By comparison, the advantage of off-line reconfiguration is simplicity: clients only deal with a single system
view at a time. We therefore see the off-line reconfiguration strategy above as occupying an attractive sweet-spot,
despite the need to briefly block the service while switching from the old to the new configuration. On the other
hand, off-line reconfiguration comes with its own form of complexity: the need to think hard about state transfer.
If the service state might become large (for example, if the server is an entire file system or database) state transfer
may entail moving a huge amount of data from the old to the new servers. Blocking the service while this occurs
can be prohibitive, and even doing it rapidly may degrade the responsiveness of a service to an unacceptable degree.
Thus our suggestion that state be transferred in advance of the reconfiguration, as much as possible, is important
and may be key to using this approach in settings where service unavailability must be minimized.

By pre-transferring server state, the amount of state actually moved in the last steps of the procedure can be
minimized and clients prevented from seeing much of a disruption. Moreover, the actual mechanism needed for
this sort of anticipatory state transfer is fairly simple; the new server needs to fetch and load the state, and also
needs some way to compute the delta between the loaded state and the initial state assigned to it in the new epoch,
which will reflect operations that completed after it fetched that preloaded state and before the consensus decision
was made.

9.4 Paxos Anomaly

The anomalous behavior we encountered when discussing Paxos reconfiguration illustrated a different kind of
problem. Recall that vanilla Paxos is quite simple but runs in a fixed configuration. In contrast, reconfigurable
Paxos introduced not just a leader-changing procedure, but also a set of secondary issues that represent side-effects
of the way in which reconfiguration is supported. Although the per-command leader transition in Paxos entails a
virtually-synchronous reconfiguration, the actions of a new leader are made independently for each command. In
this way, leader W in our example above could not know that leader V ’s proposal to command k + 1 implies that
no command was committed by its predecessor, leader U , at command k.

Reconfigurable Paxos with α > 1 indeed forms an orderly succession of configurations, but suffers from the
same leader-change anomaly above within the window of α commands.
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10 Related Work

Our primary contribution in this paper is to offer a unifying framework for the problem of dynamic service recon-
figuration. We are not aware of any prior work on this question. Closest was the survey of Chockler, et al. [15],
which offers a very interesting review of group communication systems in a single model. However, the main
objective in that work was to contrast the guarantees offered by each category of solution and to categorize the
weakest progress (liveness) assumptions made in each. In particular, the model used didn’t formalize the recon-
figuration topic as a separate mechanism, and hence doesn’t get at the kinds of fine-grained choices, and their
consequences, explored here.

Our epoch-by-epoch approach draws heavily on prior work on group communication. As mentioned, a good
survey of group communication specifications appears in [15]. The approach resembles Virtual Synchrony [7, 11],
but unlike our approach Virtual Synchrony does not provide linearizability. The approach also resembles Recon-
figurable Paxos (as worked out in SMART [23]), but as pointed out in Section 7 this approach allows anomalous
behavior. Approaches like Boxwood [25] and Chain Replication [36] allow reconfiguration with the help of an
external configuration service.

There has also been considerable work on reconfigurable read/write stores, such as RAMBO [24], Dynamic
Byzantine Storage [26], and DynaStore [1]. Our approach allows more general operations. Our liveness model is
entirely based on that of DynaStore, however.

This review of prior work could cite a huge number of papers on specific multicast protocols, message-queuing
middleware products, publish-subscribe products, enterprise service buses ands related technologies. However, we
concluded that to do so would be tangential and perhaps even confusing to the reader. First, only some of these
prior technologies offered durability, and among the ones that did (such as message-queuing middleware), some
accomplished that goal using non-reconfigurable databases or logging servers. Thus, while the area is rich in prior
work, the prior work on durability across reconfigurations is much scantier, and we believe the key works on that
specific topic are precisely the ones we looked at closely in the body of this paper.
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A Correctness

Our goal in this section is to give a flavor of the correctness argument regarding our DSR epoch-by-epoch recon-
figuration methodology. We view a formal specification and correctness proofs as being outside the scope of this
paper. In this section, we provide sketch arguments on two sample solutions, the fault-recovery Reliable Multi-
cast solution (Figure 4) and the fault-masking Reliable Multicast solution (Figure 6). The proof arguments for
our other protocols, for SMR and for Read/Write storage, are similar in their core arguments concerning recon-
figuration. They differ mostly in details regarding the specific problem models, namely, consensus and atomic
Read/Write storage, which are well studied in the literature.

A.1 Correctness of Fault-Recovery Reliable Multicast Solution

In this section, we show that our fault-recovery protocol of Figure 4 maintains Multicast Durability (see Defini-
tion 1) and Virtual Synchrony (see Definition 3). Our proof shows that these conditions hold from one configuration
to the next; proving that it holds for a sequence of reconfigurations follows by induction.

Refer to a current, initial configuration as C0 and a new configuration as C1. Recall that a message is durable
if it belongs to a completed Add() or Get() operation.

Claim 1 If a message m ever becomes durable by Add(m) or Get() operations in C0, and a server q that learns
about C1 transfers to C1 a set S0 of messages, then m ∈ S0.

Proof: This claim is the core of the correctness claim. Although it is simple to prove given our algorithmic
foundation, it is crucial to note that the set of messages sent/delivered in C0 may continue changing after a decision
on C1 was made, and also subsequent to a state transfer. Nevertheless, the precise statement of this claim is in fact
stable: Any message m which is ever sent/delivered in C0 is included in S0. We now prove it.

Since m is in a Add(m) or Get() which completes in C0, every process in C0 performs the 〈store,m〉 request
and acknowledges it. Since wedged servers do not respond to store requests, q has responded to the store request
before it became wedged for state transfer. Therefore, at step 2 of the state transfer, q already storesm, and includes
it in the set S0 which it transfers to C1.

Claim 2 If a message m becomes durable by Add(m) or Get() operations in C0 and a subsequent Get() command
completes at some process p, then p’s response contains m.

Proof: A Get() request which is subsequent to the completion of the Add(Get) command containing m may
either occur in C0 or in C1. In C0, every process already acknowledged 〈store,m〉. Hence, every server contacted
by the requesting client will include m in the delivery response. In C1, by Claim 1 above, every server also stores
m by the time state transfer has completed. Therefore, Get() in C1 also includes m.

Claim 3 If a message m becomes durable by Add(m) or Get() operations in C1 and a subsequent Get() command
completes at some process p, then p’s delivery response contains m.

Proof: We first note that a Get() request that arrives at C0 afterm was sent/delivered in C1 is not served by any
server that participated in reconfiguration, because they are wedged; hence, the deliver request does not complete
in C0, and is deferred to C1. In C1, every process stores already acknowledged 〈store,m〉. Hence, every server
contacted by the requesting client will include m in the delivery response.

Claim 4 The fault-recovery protocol maintains Multicast Durability (Definition 1); that is, if a message m be-
comes durable by Add(m) or Get() operations, and a subsequent Get() command completes at some process p,
then p’s delivery response contains m.
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Proof: By Claims 2 and 3, after m is completely sent/delivered, a subsequent Get() request invoked at any
process p includes m in the delivery response.

Claim 5 The fault-recovery protocol maintains Multicast Virtual Synchrony (Definition 3); that is, If Add(m) was
invoked in configurationCk, then if ever Get() returnsm, then for all configurationsC`, where ` > k, Get() returns
m.

Proof: By Claim 1, if Get() ever returns m in C0, then m is included in the set S0 of messages transferred to
C1. Hence, any Get() request in C1 will return m.

Otherwise, suppose that no Get() in C0 returns m, but there exists a Get() call in C1 which returns m. Since m
was sent to C0, there exists a server q in C1 which obtained m in a state transfer. But since state transfer passes a
message-set determined by a consensus decision, every server in C1 storesm before it becomes enabled for service
in C1. Hence, every Get() call in C1 must return m.

We have shown that the claim holds for C1. Using C1 as the initial view, we obtain the result by induction for
any subsequent view following C1.

A.2 Correctness of Fault-Masking Reliable Multicast Solution

In this section, we show that our fault-masking protocol of Figure 6 maintains Multicast Durability and Virtual
Synchrony. Our proof shows that these conditions hold from one configuration to the next; proving that it holds
for a sequence of reconfigurations follows by induction.

Refer to a current, initial configuration as C0 and a new configuration as C1. Recall that a message is durable
if it belongs to a completed Add() or Get() operation.

Claim 6 If a message m ever becomes durable by Add(m) or Get() operations in C0, and a client collects sus-
pended responses to a wedge request from a majority of servers in C0 into a set S0 of messages, then m ∈ S0.

Proof: Since m is in a Add(m) or Get() which completes in C0, a majority of servers in C0 perform the
〈store,m〉 request and acknowledge it. Since wedged servers do not respond to store requests, every server in this
majority has responded to the store request before it became wedged for state transfer. There exists a server q in
the intersection of this majority and the majority of servers responding to the client wedge request. Therefore, q
already stores m when it sends its suspended response to the client, and m is included in Sq. Since the client takes
a union of the sets Sq contained in all the server responses, m ∈ S0.

Claim 7 If a message m ever becomes durable by Add(m) or Get() operations in C0, then the set S0 of the
consensus decision on the next configuration contains m, i.e., m ∈ S0.

Proof: By Claim 6 above, any client which proposes input to the consensus engine regarding reconfiguration
includes m in its proposed message-set. Hence, any decision S0 contains m.

Claim 8 If a message m becomes durable by Add(m) or Get() operations in C0 and a subsequent Get() command
completes at some process p, then p’s response contains m.

Proof: A Get() request which is subsequent to the completion of the Add(Get) command containing m may
either occur in C0 or in C1.

In C0, a majority of servers already acknowledged 〈store,m〉. There exists a server q in the intersection of this
majority and the majority of servers responding to the client’s collect request. Therefore, q already stores m when
it sends its response to the client’s collect request, and m is included in the response Sq. Since the client takes a
union of the sets Sq contained in all the server responses, m is returned in the return-set of the Get() call.

InC1, by Claim 7 above, a majority of servers also storesm by the time state transfer has completed. Therefore,
Get() in C1 also includes m by the same argument as in C0.
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Claim 9 If a message m becomes durable by Add(m) or Get() operations in C1 and a subsequent Get() command
completes at some process p, then p’s delivery response contains m.

Proof: We first note that a Get() request that arrives at C0 afterm was sent/delivered in C1 is not served by any
server that participated in reconfiguration, because they are wedged; hence, the deliver request does not complete
in C0, and is deferred to C1. In C1, a majority of servers already acknowledged 〈store,m〉. Hence, by the same
argument as in Claim 7 above, a Get() call in C1 returns m.

Claim 10 If a message m becomes durable by Add(m) or Get() operations, and a subsequent Get() command
completes at some process p, then p’s delivery response contains m.

Proof: By Claims 8 and 9, after m is completely sent/delivered, a subsequent Get() request invoked at any
process p includes m in the delivery response.

Claim 11 The fault-masking protocol maintains Multicast Virtual Synchrony (Definition 3); that is, If Add(m) was
invoked in configurationCk, then if ever Get() returnsm, then for all configurationsC`, where ` > k, Get() returns
m.

Proof: By Claim 6, if Get() ever returns m in C0, then m is included in the set S0 of messages transferred to
C1. Hence, any Get() request in C1 will return m.

Otherwise, suppose that no Get() in C0 returns m, but there exists a Get() call in C1 which returns m. Since m
was sent to C0, there exists a server q in C1 which obtained m in a state transfer. But since state transfer passes a
message-set determined by a consensus decision, every server in C1 storesm before it becomes enabled for service
in C1. Hence, every Get() call in C1 must return m.

We have shown that the claim holds for C1. Using C1 as the initial view, we obtain the result by induction for
any subsequent view following C1.
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