
Hosting Dynamic Data in the Cloud with

Isis2 and the Ida DHT
Ken Birman and Heesung Sohn

Dept. of Computer Science, Cornell University

Abstract
The big-data community generally favors a two stage

methodology whereby data is first collected, then

uploaded for analysis using tools like MapReduce.

During analysis the data won’t change; this simplifies

fault-tolerance and makes it worthwhile to cache

intermediary results. In contrast, when it is necessary

to capture data continuously and query it on the fly,

cloud storage and access technologies must be

reexamined. Isis2 aims at such scenarios, offering a

base set of mechanisms that replicate data and perform

computation with strong consistency and other

assurance properties, then layering higher level

abstractions over this core. Here we a focus on a

subsystem called the Isis2 interactive data analysis

infrastructure: Ida. Ida is a strongly-consistent

distributed key-value store on which surprisingly

complex computational tasks are feasible.

1 Introduction
Our effort aims at a limitation of existing cloud-

computing infrastructures: aggressive lock-free data

replication and caching has been a key enabler for

dealing with huge numbers of clients, but at a price.

While applications achieve extremely rapid response

rates, they also exhibit frequent transient anomalies.

The approach must be revisited if the cloud is to host a

new generation of “mission critical” applications that

perform data-parallel tasks in real-time and require

stronger assurance properties. For example, it is likely

that cloud-based systems will be needed to manage the

future smart power grid. The safety and security of the

power infrastructure will thus depend upon the

integrity of the cloud-hosted applications used to

monitor the grid and initiate appropriate actions.

Future cloud-hosted medical platforms will monitor

high-risk outpatients (such as at-home diabetes

patients) and provide forms of automated care (such as

dynamic control of insulin pumps). Self-driving

vehicles will depend on cloud data to avoid hazards.

These examples center on a style of computing in

which updates are continuously applied while data-

parallel queries are concurrently issued against the

data. Notice further that whereas MapReduce and

similar tools often host long-running computations,

these demanding “machine in the loop” scenarios

would more likely be dominated by short queries and

updates. Inconsistencies could pose serious risks.

The Isis2 system focuses on this style of

computation. The system starts by offering scalable

support for state machine replication: process groups

and ordered, reliable group multicast used to support

strongly consistent replicated data, concurrent

computation, and coordinated fault sensing and

reporting. A variety of higher level tools are layered

over this core, including support for persistent external

data sets (Paxos), migration and replication of large

memory-mapped objects, locking services, etc.

We believe that the popularity of DHTs reflects

their predictability, scalability and high speed. Here,

we focus on the Isis2 DHT: a subsystem called Ida that

offers stronger assurance properties without violating

these basic DHT characteristics. Ida supports:

1. A generalized in-memory DHT model supporting

insertion of multiple key,value tuples as a single

action, and allowing user-specified handling of

Put collisions (same key, different values).

2. Support for queries that span multiple shards.

Results can either be sent directly to the initiator or

aggregated using user-specified aggregation logic.

3. DHT members can access their local slice of the

key-value data using code written in Microsoft’s

Language Integrated Query model (LINQ).

4. Excellent scalability and performance, with 1-hop

routing: requests are sent directly to the DHT

members that will process them. Concurrent

events that touch disjoint DHT members won’t

interfere with one-another.

5. Fast self-repair. Ida uses node-rank in a member-

ship view to enable 1-hop routing. The imple-

mentation replaces failed low-rank members with

healthy high-rank ones, facilitating local repair.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from

Permissions@acm.org.
TRIOS'13, November 03 2013, Farmington, PA, USA

Copyright 2013 ACM 978-1-4503-2463-2/13/11…$15.00.

http://dx.doi.org/10.1145/2524211.2524212 ACM 978-1-4503-

2388-8/13/11.

Isis2, including the Ida DHT, is available for open-

source download [1], and can be used from C#, C++

and Python on Windows or Linux platforms.

2 The Isis2 Platform
The Isis2 system updates the virtually synchronous

process group communication [2] model for the cloud.

The core construct is a group of objects residing within

processes linked to the Isis2 library; new processes can

join at runtime (loading current state from a checkpoint

via state transfer), or leave (at will, or by failing).

Ordered reliable multicast is used to transmit updates.

When group membership changes a new view event

occurs, ordered relative to other events. These new

view events are synchronized relative to state transfer

(the delivery of a checkpoint to a new member), to

ensure that the new member starts with correct data.

Isis2 supports quorum-style protocols such as

Paxos, but our emphasis is on a style of replication in

which all updates reach every replica. This allows

reads to be performed by any single replica. If multiple

members replicate the same data, they can cooperate to

concurrently perform costly tasks with guarantees of

consistency. Thus, one can easily implement

algorithms that build on a state-machine replicated

abstraction, but also leverage the consensus view of

dynamic membership to perform concurrent

computations or coordinated actions.

The system offers an object-oriented API, using a

polymorphic event-upcall model that will be familiar to

users of other common cloud-computing tools. For

example, much as a GUI might have an upcall for

mouse-over, Isis2 has upcalls for new group views,

multicast and unicast delivery, etc. The execution

model, virtual synchrony, has been integrated with the

stoppable state machine model [2], permitting Isis2 to

offer developers the choice of a number of “flavors” of

virtually synchronous protocols differing in their

ordering and durability guarantees, including Paxos. IP

multicast is used when feasible, and Isis2 manages the

IP multicast address space to avoid overloading routers

[29]. If multicast is not permitted, the system

constructs an overlay mesh of TCP links, then emulates

point-to-point messaging by routing within it.

Figure 1 illustrates the resulting system

architecture. Isis2 has a lower layer consisting of

probabilistically convergent components, many of

which use gossip-style protocols (the bricks seen in the

bottom layer on the left side of Figure 1). A higher

layer implements reliable multicast.

An Oracle service manages membership and

normally runs on 3-5 members; we launch it silently

and it lives within the first few members that use Isis2.

Among its roles, this service implements the primary

partition model: if a network link fails, progress is

permitted in just one partition. Processes in other

partitions must wait until the link is repaired.

Many components employ complex protocols. It

would be out of our scope to discuss those here, but the

upshot is that whereas previous virtual synchrony

implementations rarely ran “directly” on more than a

hundred machines at a time, Isis2 runs on thousands.

The system is also quite fast. In [5] we undertook a

side-by-side comparison of one of the core multicast

primitives (virtually synchronous Send) with two

configurations of Paxos (virtually synchronous

SafeSend configured to use different numbers of

“acceptors”). Our evaluation focused on reads and

updates to an in-memory data set replicated on as many

as 900 machines, and showed that if virtually

synchronous Send is combined with an Isis2 primitive

called Flush, it offers guarantees identical to Paxos for

Figure 1: The Isis2 library implements virtually synchronous process groups and multicast for the cloud. Ida is one of a
set of higher-level structures we’ve layered over it.

this in-memory case, yet achieves far better

performance and scalability. This is just one of many

situations in which the ability to pick exactly the right

multicast guarantees yields dramatic benefits.

Layered over Isis2 is a set of higher-level packages

that hide details, offering end-user functionality:

 A locking package (analogous to Chubby [6]).

 A tool for “out of band” migration and replication

of large memory-mapped binary objects (like file

shuffle and replication in Orchestra [9], but using

IP multicast and offering stronger guarantees).

 DMake, a tool for monitoring and management of

cloud applications that do not directly use Isis2.

 The Ida DHT, which is our primary topic here.

3 Strong consistency in a DHT
The introduction of strong consistency models into

DHT-like platforms has been a topic of debate in the

cloud community. The core dilemma centers on the

required properties of a DHT: one selects a DHT rather

than a database or a file replication tool to take

advantage of the low overheads, high performance and

scalability of the model. Thus, while our intended

applications motivate us to extend the DHT model, Ida

must retain several core properties:

 The operations in the Ida API all have “expected

constant” cost. Here we should emphasize the

word constant: some DHTs have a log(N) routing

delay, but those used in cloud settings typically

need 1-hop routing: a client sends requests

directly to the DHT member(s) that will handle it,

with no intermediary forwarding. This translates

to low latency, a critical DHT property.

 Minimal disruption when membership changes.

Cloud DHTs must not degrade due to “churn”.

Adding members should increase capacity without

increasing overheads.

 Costs must be localized: if an operation impacts

just some subset of DHT members, only that

subset should have work to do.

One could use a cloud database system such as

Spanner [10] as if it were a DHT, but such a solution

wouldn’t have the desired properties: Spanner offers a

full transactional API, giving it great flexibility, but is

far less predictable and optimized for high aggregate

throughput. Individual operations may experience

significant and unpredictable latencies. The developer

who rejects a high-functionality database such as

Spanner in favor of a DHT is probably doing so to be

certain that operations like Get and Put will map to a

single RPC, and would only be delayed if a hot spot

forms. On the other hand, nothing about the DHT

model demands inconsistency, and it is easy to identify

use cases needing stronger properties:

 Key-value pairs could represent the state of an

autonomous vehicle, a mobile user, or a physical

infrastructure like the smart power grid. One

could then run distributed machine-intelligence

algorithms directly on the DHT to make decisions.

Consistency enables decentralized execution of the

associated logic, so that even with a rapidly

changing knowledge base each decision will be

based on a state that really existed at some instant

in logical time. Lacking consistency, the

application might observe phantom, non-existent

states that would trigger unsafe actions.

 Many social networking and web algorithms

compute on graphs or similar structures. One can

represent these as key-value pairs; when mapped

to a DHT, the costs of actions would then be

predictable. Notice that a “value” could include

the page weight or rank, the time when the page

was last scraped, etc. It is important to access such

a graph along a consistent cut; otherwise,

problems such as “phantom cycles” arise [8].

 Key-value pairs could represent the state of a

multiuser game, or a virtual reality environment;

here consistency translates to agreement on the

game state, agreement by a group of friends on

where they will meet after work, etc.

A DHT model allows the developer to spread data

widely in an elastic manner, and to leverage parallelism

when computing on it. The predictably low costs

translate to predictably low end-user response delays.

Provided that this performance is maintained, strong

consistency guarantees let us view the DHT as a

representation of some “single” system state that

evolves through time by a series of atomic transitions.

We are not the first to recognize that stronger DHT

guarantees could be valuable. A number of prior DHT

consistency proposals have used strong protocols on a

per-shard basis, employing Paxos (guaranteeing total

order and durability) [20][26], or even Byzantine

Agreement (yielding resilience even to compromised

nodes) [28]. But these only allowed updates to a single

key-value item at a time. The use cases we have in

mind would often represent some form of structure in

the DHT, using a set of key-value tuples. Consistency

for a single shard at a time won’t guarantee consistency

for structures that span multiple shards.
In Ida, the DHT APIs are generalized to allow a

single request to atomically update or query multiple

key-value pairs, giving rise to multi-shard operations

that access a set of participants determined by the set of

keys touched. Notice that because the set of keys will

vary for each request, the participant sets will also

vary, operation by operation. This is significant

because the group communication protocols available

in Isis2 prior to our work, as well as the protocols used

in the prior work on DHT consistency, were defined

over stable or slowly changing participant sets. In Ida,

the “group” that participates in each operation will be

defined on an operation by operation basis.

Thus, we’ll need a protocol that can carry out

operations that overlap by triggering work at some of

the same DHT nodes. But ordered multi-Get and

multi-Put actions aren’t sufficient. A further issue is

that once we begin to talk about representing non-

trivial structures in a key-value form, the simple

replacement semantics of the standard DHT model no

longer suffice. In a typical DHT, each new Put simply

replaces any older key-value pair with the same key.

With Ida, a new Put sometimes introduces a value that

should be “combined” with the prior one in an

application-specific manner (for example, added to a

list, averaged in, etc.). This leads us to allow

developer-specified methods to handle collisions, an

idea introduced in the Piccolo DHT [25].

The Ida consistency model extends to this full

range of scenarios, yielding a simple programming

style in which the ability to assume consistency

eliminates the need for the client application to worry

about DHT errors that might be confusing or trigger

inappropriate actions. Our design will sometimes

require that the client issue a very small number of

successive operations, but we assume that in all cases,

that client is counting upon guaranteed rapid response.

Although an individual DHT member holds data for

just the shard to which it belongs, the key-to-shard

mapping will map many keys to each shard. Thus a

single node could host a very large set of key-value

tuples, and the question arises of how best to query the

data. Ida supports multi-Get, but also allows a query to

be initiated by multicasting a request to the

participants, each of which then executes a LINQ

(Language Integrated Queries) query on the DHT

“slice” associated with its portion of the data. LINQ is

an SQL-like technology available within .NET

languages like C# or Python. The results can then be

sent back to the query initiator or stored back into the

DHT as new tuples.

Ida enables use of LINQ by exposing a slice of the

DHT as a collection that has specified key and value

types. Thus, the developer works with a model in

which one can either fetch the data for some set of

keys, or can multicast a request to the shards where

those keys reside. The DHT representatives for those

shards can then perform data-parallel LINQ queries,

each on a slice of the DHT contents. If the initiator

doesn’t know the exact set of keys that are needed, the

query could be sent to a covering set of shards, or (in

the limit) the entire DHT. Then each recipient

performs its local share of the computation.

4 Details of the Ida API
In this subsection we provide a more detailed

exposition of the Ida multi-tuple API, its integration

with LINQ, and the Ida aggregation infrastructure. Ida

was implemented as an extension to Isis2. The basic

DHT API is shown in Figure 2. To activate the DHT a

developer first creates a group, then each of the

members calls DHTEnable, specifying the intended

typical group size and a desired shard size. For

maximum stability, Ida DHTs often include spare

members. For example, one could create a group of

void g.dhtEnable(int shard size, int target dht size, int ttl): Configures a DHT

void g.Put<KT,VT>(IENumerable<KT,VT> kvlist): Inserts a set of key-value pairs.

void g.OrderedPut<KT,VT>(IENumerable<KT,VT> kvlist): Same behavior as dht.Put but with strong consistency.

VT g.PutCollisionResolver(KT key, VT v0, VT1 v1): User-defined function that overrides the default collision
behavior; it takes a key and a pair of values, and returns new value to be stored. The “new” value type need not
match the “old” value type, and one can define multiple resolvers for different types.

IEnumerable<KT,VT> g.Get<KT,VT>(IENumerable <KT> keys): Returns a list of key-value pairs, one per key (if a key
is not found, that item will be omitted from the list).

IEnumerable<KT,VT> g.OrderedGet<KT,VT>(IENumerable <KT> keys): Same behavior as dht.Get but with strong
consistency.

IEnumberable<KT,VT> g.OrderedQuery(QueryKey QK, arguments to the query); DHT query.

void g.OrderedSend(QueryKey QK, arguments to the query): Initiates an aggregation query.

IEnumerable<KT,VT> g.Contents<KT,VT>(): Performed by a DHT member upon reception of an OrderedSend, this
API offers access to the collection of key-value tuples available at that member, filtered to match the specified
key and value types. One can use this list in Linq query expressions, etc. Having computed a contribution, the
member calls dht.AggregationSetValue<KT,VT>(QueryKey QK, VT value).

VT Aggregate(QueryKey QK, VT v0, VT v1): User-defined aggregating function that takes a key and a pair of
values, and returns new value that combines the two given values.

IEnumerable<KT,VT> g.AggregationWait(QueryKey QK): Waits for the result of an aggregation.
Figure 2: Ida API (KT designates some key type, VT a value type, and g a group hosting the DHT).

1005 members, but use target size 1000 and shard size

10. We would then have 100 shards, a few containing

extra members (specifically, shards 0 through 4).

Figure 4 shows a case with 5 shards.

Ida has built in handlers to implement the basic Get

and Put operations, but issues upcalls to user-specified

methods in more complex situations. For example,

consider the delivery of queries to participants that will

execute a LINQ-based operation. Here, the initiator

employs an atomic multicast, OrderedSend, with a

strongly-typed set of arguments. Ida uses an upcall to

deliver the multicast to the appropriate members in the

appropriate event ordering. The handler can then

invoke mydht.DHT<KT,VT>() to access the DHT, after

which it performs any desired LINQ operations on the

collection of key-value tuples so obtained.

Two other situations in which user-specified

plugins are employed involve the put collision resolver

and query aggregation mechanisms. We say that two

Put operations collide if they use same key for different

values. In Ida, when a collision is sensed the default

behavior is to replace the older value with the new one.

However, if a collision resolution method is defined by

the user, that method will instead be invoked. For

example, one can maintain a list of values by inserting

single items using List<ItemType> as the value type,

and have the PutCollisionResolver merge new values

into the existing list. In effect, the collision behaves

like a message, and triggers application-specific logic.

While the idea is simple, it is perhaps not surprising

that few existing DHTs offer it (Piccolo [25] does have

such a mechanism). Collision resolvers are useful

primarily when representing non-trivial data structures,

but without a consistency model, it can be surprisingly

hard to work with DHT representations of data

structures that involve multiple key-value tuples.

These kinds of structures would often seem “broken”

during periods when updates are underway. Strong

consistency is what makes a collision-resolution

mechanism useful. Given the two features side-by-

side, it becomes easy to represent a wide variety of data

structures in key-value form (including elaborate

structures, such as graphs).

The next situation in which user-specified code is

called from the platform arise during queries that

access large numbers of nodes. Within Isis2 the

“normal” way of performing a query involves use of a

method called OrderedQuery. OrderedQuery starts

with an OrderedSend: a multicast to the recipients,

which compute subresults and then send them directly

to the initiator as point-to-point replies. In a large DHT,

however, the many near-simultaneous incoming

messages could overwhelm the initiator, triggering loss

and other inefficiencies. Moreover, if combining

partial results into a desired outcome involves work, a

1-to-all send followed by an all-to-1 response misses a

chance to leverage parallelism.

Accordingly, Ida offers the option of switching to a

different style of response in which an aggregation tree

is employed to collect and combine the responses. For

an aggregation query, the query is still sent to the

shards using OrderedSend, but now it triggers a

parallel upcalls to the query handler methods.

Meanwhile, having sent the query, the initiator invokes

AggregationWait with the QueryKey to wait for the

result. As the query requests arrive, each participant

computes its contribution to the request in parallel, then

passes the partial result “up” the aggregation tree by

calling AggregationSetValue(), again using the

QueryKey as an identifier. Upcalls to the user-defined

aggregation method are used to combine pairs of

intermediary values. A wave of aggregation ensues,

starting at the leaves and converging at the initiator: the

root of the tree.

We see this in Figure 5: The first two partial results

are combined by upcall to the aggregation method in

the left-most node in the tree, while representatives in

shards 2 and 3 compute a second partial result. Since

Figure 3: A group of 20 members
in 5 shards (identifiable by shard-
number and color). Each small circle
represents a DHT member: a process
running on some node within the data
center. Ida targets groups that could
have many thousands of members.

Figure 4: With 1-hop view-based
DHTs, a failure can renumber the nodes,
changing the DHT mapping. In Ida, an
existing node replaces the failed one,
thus limiting the impact of churn. If
needed, state transfer brings the
replacement up to date.

Figure 5: Aggregation Tree: After a
query is sent via ordered subset multi-
cast, one node participates for each
shard to which a key maps. Here we see
a query that touched all shards. The
stars are invocations of an application-
supplied aggregation method.

we have 5 shards, an odd number, shard 4 contributes a

result of its own. The first two partial results are then

combined, and finally the third partial result is

combined with the intermediate result, giving the

desired answer. Within the tree, each time a pair of

partially aggregated values associated with the same

QueryKey reaches an inner node, that node combines

them by calling the user-provided aggregation method

(the event is shown as a star), then passes the resulting

key-value pair upward. This terminates at the root,

where AggregationWait() returns the result.

Notice that in contrast to a database, where a query

could potentially compare all the accessed tuples with

one-another, an Ida query is done as a single parallel

action, and the first steps are limited to the local slice

of the DHT contents. The only opportunity to combine

data from multiple shards arises when the local results

are aggregated. Thus while the leader can distribute

any shared information it wishes, an iterated

computation would be needed if we wanted to use data

from one shard as an input to the computation at some

other shard. Ida certainly supports this, but the

atomicity of its operations wouldn’t cover a multi-step

computation. We’ll have more to say about the issues

that arise in this style of computation in Section 7.

No matter how the results are collected, any Ida

query can include action by the full membership of the

relevant shards or even the full membership of the

whole DHT, as in the example shown in Figure 5. On

the other hand, not all requests need to involve the full

shard membership. Recall that in Ida, data is replicated

with strong consistency properties. Thus for read-only

tasks, one contribution per shard would normally

suffice. Moreover, only keys used in the query need to

be examined, hence only shards corresponding to those

keys need to be included.

Accordingly, the QueryKey is used not just as an

identifier for the query, but also to track the keys and

shards that will contribute to it. In this mode, Ida

automatically selects one representative per shard, and

delivers the request only at selected members. Notice

that any single key-value pair contributes exactly once

to the aggregation result. Only members with work to

do participate: the same nodes that contribute query

values (the leaf nodes) are also used as inner nodes in

the aggregation tree.

The QueryKey<KT> object plays several roles here:

it uniquely identifies the query (enabling Ida to match

the result with the query request), is used in

“trimming” these trees so that only nodes actually

involved in the task need to play an active role, and

also tracks the node that will be the root of the

aggregation tree. This aggregation infrastructure

combines the QueryKey data with the current

membership view to build a spanning tree that only

includes the nodes where the query actually has work

to do. The QueryKey also incorporates the load-

balancing feature mentioned above: for any given

query, just one member of the relevant shards will

participate, but the choice of member is varied to

spread the work evenly.

There are three ways to identify the destinations for

a message or a query. The first involves the entire

group and maps to the multicast and Query APIs in

Isis2. Such a message would reach user-provided

handlers in all the members; the entire DHT would thus

be searched. A second option is to list a desired subset

of the group members, but otherwise “looks” similar.

In this case, we employ the new Ida-introduced subset

multicast. Finally, the third option involves specifying

the destinations using a QueryKey. Here, the user

provides a list of keys. Ida translates that list to a list of

shards, then for each shard, picks a single

representative in a manner that will balance loads.

As noted, while handling a query, components can

use Put, much as a MapReduce operation triggers a

shuffle during which results are moved about and

aggregated for a Reduce operation. Indeed, one could

issue a OrderedSend rather than a OrderedQuery, and

just leave the participants to compute their partial

results and then insert them into the DHT. This,

though, raises some fault-tolerance issues; we’ll

discuss them in Section 5.

A final element of the API concerns control over

garbage collection of key-value tuples. Again, there

are several possibilities. First, Ida allows the user to

specify a time-to-live value for the DHT as a whole. If

this is used, any key-value pair is timestamped on

creation and then automatically deleted after the TTL

expires. The second option is more explicit: the user

can Put “null” values, which will remove any prior

key-value pair with a matching key. The third is

simple but extreme: the group hosting the DHT can be

closed, in which case the entire DHT will vanish.

5 Ida’s Consistency Guarantees
The Ida consistency properties are as follows:

 OrderedPut operations are totally ordered with

respect to one-another and with respect to

OrderedGet and OrderedQuery.

 All non-faulty shard members apply each Put or

OrderedPut, and in the same membership view.

 Key-Value pairs will not be lost unless a shard

abruptly loses its full membership. After a join or

leave (failure) event, data is automatically shuffled

to reestablish the key-to-shard mapping, and any

new shard members are correctly initialized with

the full set of key-value pairs that map to them.

 The result of a query reflects exactly one

contribution from each shard. Exceptions can

occur either as a consequence of a failure, or

because a shard referenced by the query has

become depopulated (partial amnesia). Failures

of this kind are rare, and can be handed by

catching the exception and reissuing the query.

Because Ida was implemented over Isis2, Ida

inherits a strongly consistent overarching execution

model: a dynamically reconfigurable state machine

architecture integrated with the virtual synchrony

group communication model [3][2]. For our purposes

the important guarantee is this: all group members see

the same sequence of membership views (rank-ordered

lists of members), and if a failure occurs, multicasts

from the failed member are finalized before the view

reporting the event is delivered. Thus the consistency

properties listed above should be understood as being

specified with respect to a particular view. The query

exceptions mentioned in the fourth bullet, for example,

arise when a new view is reported by Isis2 while a

query is mid-way through execution. In such a case we

can’t guarantee our “one contribution per tuple”

property, so we throw an exception and leave it to the

application to reissue the query if desired.

Failure handling is greatly simplified by the

underlying virtual synchrony model, and the primary-

partition progress policy. Any multicast is either

performed atomically (reaching all destinations that

don’t crash), or not performed at all, and new group

membership upcalls are totally ordered with respect to

multicast. Multi-Put and Multi-Get are thus failure

atomic. Queries either return the correct response,

reflecting exactly-once contributions from each

participant, or an exception is thrown, enabling the

application to reissue the operation.

A more complex situation arises if a failure disrupts

an operation that generates new key-value pairs during

the query step. Suppose that a query is being executed

by just one member per shard, but one of those

members fails. Not only would the query step fail, but

if that member has sole responsibility for putting some

subset of new tuples into the DHT, a new view will be

defined, yet those tuples will be missing. Accordingly,

applications code that create intermediate values must

do so redundantly, by having all the shard members

compute the new key-value pairs, and having all of

them redundantly perform the needed put operations.

DHT put collisions will thus be triggered. The Ida

default behavior is to ignore duplicates. An overload

of the QueryKey constructor allows the developer to

explicitly request this behavior, and if these defaults

are acceptable, no further action by the user is needed.

If a correlated failure causes an entire shard to

become depopulated, Ida throws a shard-depopulation

exception that would normally cause the whole DHT to

shut down and then restart from scratch. Depopulation

of a shard isn’t a recoverable fault in our model

because Ida state exists only in-memory. Fortunately,

many modern cloud platforms allow long-running

application to coordinate with the cloud management

layer to ensure that elasticity won’t cause correlated

failures. By using these options and making shards

large enough, such events can normally be avoided.

6 Implementation
Although the features of Isis2 simplified our task,

Ida needs way to issue ordered reliable multicasts to

subsets of a group. Isis2 lacked this form of subset

multicast, nor can such a protocol be found in the

literature (most reliable multicast protocols send

messages within full groups that have membership that

is either defined at the outset, or is built up over time

through a series of join and leave events). The

aggregation infrastructure is also unique, and again

required new protocols. Finally, Ida repairs the DHT

in an unusual way when members fail. We discuss all

of these new mechanisms below.

Our discussion makes use of a slightly technical

feature of the way Isis2 implements view changes.

Isis2 membership change events occur in two stages:

(1) an upcall occurs in all group members, warning

them that a new view will soon be defined and giving

advance notice of what that view will consist of (for

example, lists of members that will be shown as having

failed or joined). This permits members to terminate

any pending protocols in a protocol-specific manner;

we’ll see two examples below. (2) the group

membership service reports the new membership view,

via upcall in all the members. Ida makes use of these

mechanisms to terminate instances of our aggregation

protocols and subset multicast protocols so that, as

each new view becomes defined, the Ida layer can

finalize any work initiated during the prior view.

In what follows, we ignore such issues as deciding

whether to run over UDP or TCP, fragmenting very

large messages into smaller chunks if needed, flow-

control, etc. All are automated by Isis2 and we made

no changes to these aspects of the system. Further, we

won’t say very much about large groups. When

launched, Ida initializes a virtually synchronous group

containing the members of the DHT, using a system

call that allows a leader to specify the full membership

(later, failures will trigger automatic removal of

members from time to time, and planned elasticity

events will be handled by the leader, which can add or

remove members in batches). Thus even a large group

can be created in a single atomic step. While

replicating full membership may ultimately limit

scalability, the issue has not yet been a problem.

6.1. Mapping Members and Keys to Shards
Ida group members share a consistent view of the

group (consisting of the group name, a list of the

members, and a view-id counter that increments by 1

each time the view changes). We used the ranking of

members to determine the shard mapping. Members

are ranked left to right, 0 to N-1. Ida computes the

expected number of shards (NS) as the target group size

divided by the shard size, then assigns the member

with rank r to shard r mod NS, as was seen in Figure 3.

Given key K, GetHashCode(K) mod NS maps to

the shard responsible for K. A QueryKey contains a list

of keys, each separately mapped in this manner,

resulting in a shard list that can be (much) smaller than

the list of keys, since multiple keys might map to the

same shard. A QueryKey also has a unique identifier

and provides the rank within the group of the initiator:

the root of the aggregation tree at which

AggregationWait will occur, and where we want the

aggregated result of the query to be available. Notice

that by overriding GetHashCode, a developer can

control the mapping of keys to shards.

Ida DHT groups often include more than their

minimal number of members. These extra members

play a special role if a failure occurs. Suppose a low-

ranked member of the red shard fails (Figure 4, top).

With a standard virtual synchrony scheme, a new view

would be reported, and because all ranks will now have

shifted down by 1, all members would be reassigned to

new shards. A disruptive churn episode would ensue

as data is shifted to the new representatives. Ida avoids

this by hot-swapping processes from the end of the list

into the gap: the member that previously had rank 19 in

our example will be slotted into slot 5, and only it

needs to be initialized (Figure 4, bottom). In this

example the hot-swapped member was previously in

the red shard, hence no data is copied, but in general a

state transfer would then occur to initialize the

repositioned process so that it can play its new role.

6.2. Implementing Put and Get

6.2.1. Best Effort Version

To establish a fair performance baseline, we

implemented the Ida API in two ways. Our baseline

version uses a standard, best-effort DHT architecture,

with no special consistency properties: Put and Get

operations map to a series of reliable 1-to-1 IPC

operations, with Put sending the (key-value) pair

directly to shard members where the key resides, and

Get mapping each key to a shard member and then

fetching the associated value using RPC.

With weakly consistent Put, a failure could disrupt

the list of sends, so we needed an eventual consistency

mechanism: a means of eventually repairing disruption

caused by failures, but not necessarily doing so

instantaneously. A standard DHT would use some

form of background protocol to resynchronize shard

members. Our task is simpler: as noted above, an Isis2

group membership change is preceded by an

opportunity to terminate pending actions, so we simply

have the termination upcall trigger an exchange of key-

value lists (with large value objects, one can do this in

two steps: sending key-version pairs, and then

following up with an exchange of actual key-value

pairs only to the extent needed). In this manner we

obtain a reliable “1-hop” DHT, but without ordering

guarantees: a Query could “overlap” with a Put,

resulting in user-visible inconsistencies.

6.2.2. Strongly Consistent Version

We implemented our strongly consistent Ida

OrderedPut and OrderedQuery operations by mapping

them to subset multicast, a new protocol that we added

to the Isis2 infrastructure. Given a QueryKey, we first

map the keys to a set of shards. This list can then be

mapped to a set of participants using the current group

membership. We now run a protocol that uses an idea

adapted from an early paper of Lamport’s [19], which

(to our knowledge) had previously been used only in

full groups. The protocol assumes that all members

maintain a logical clock (a long integer):

 The initiator sends a Put, Get or Query command c

to each of the participants {P0, … Pk}.

 When c arrives at participant Pi, Pi increments its

logical lock LTi and sets LTc = LTi. Pi retains c in

a pending commands record, and then sends LTc

back to the initiator.

 The initiator collects proposed times and the

corresponding participant ranks, and then sends

(LTmax, rmax) to the participants as a commit time.

Here, LTmax is the maximum logical clock time

within the set of proposed times, and the rank rmax

(the corresponding rank) is used to break ties.

 Upon learning (LTmax, rmax), Pi updates LTi =

max(LTi, LTmax). Then, Pi updates the logical time

of command c, setting it to (LTmax, rmax). Pi can

execute committed command c when c has the

smallest value of (LTc,r) among the set of known

commands (including both pending and committed

commands. A committed command is delivered

when are no prior pending commands on the

queue, e.g. no c’ with a smaller value of (LTc’, r’).

It is easy to see that if commands c and c’ overlap

at participants Pi and Pj , then Pi and Pj will deliver c

and c’ in the order determined by the assigned commit

times. Moreover, if Pi later learns of some command

x, then because Pi uses its logical clock LTi to propose

an execution time, x will receive a commit time larger

than the one used for c and c’.

From these properties we conclude that Ida

operations occur along consistent cuts [8]: a Query or

Get will be totally ordered with respect to Put. The

protocol has local costs: only the initiator and the

shards referenced in an operation participate. Slow

processing of an operation by some single member

won’t delay operations at other DHT members: the

ordering protocol runs on a distinct thread from the one

used to deliver upcalls to the application1.

Should a failure occur, Isis2 notifies Ida prior to

reporting the new view. Four cases arise: (I-1) the

initiator may have failed after sending the command

but prior to sending out the commit times; (I-2) the

initiator may have failed after sending some commit

messages but before all were successfully transmitted.

(P-1) a participant may have failed before sending its

proposed time, (P-2) a participant could fail after

sending its proposed time but before performing the

command (obviously, some combinations can arise).

[I-1] Ida takes no flush action in this case. When

the new view is reported, Ida discards any pending

commands initiated by a failed initiator.

[I-2] In this case, participants react to the flush

upcall by echoing the commit messages they were sent

by the failed initiator, via direct pt-to-pt messages to

the other participants. The flush protocol forms a

consistent cut in such a manner as to ensure that these

will have been delivered and processed before a new

view event could be delivered. Thus if any participant

knows the commit time, the command will be executed

by every non-failed participant. If none knows the

time, then all garbage collect the associated pending

messages from the queue, allowing pending committed

messages with larger timestamps to be delivered.

[P-1] Here, a participant doesn’t respond to the first

phase message, leaving the initiator waiting. Finally a

timeout occurs and the failure will be sensed. As long

as the initiator is in the primary partition, Isis2 initiates

a new-view flush upcall, and the initiator learns that the

participant in question has failed. It can now terminate

the protocol, and in fact can choose to commit or to

abort the interrupted multicast (our version commits,

using the subset of proposed times known so far).

Should the initiator itself fail, a second view will be

reported by Isis2 and a second flush protocol will run.

[P-2] If a participant fails while commit messages

are being sent, its state is erased. A new view will be

reported by Isis2 signaling the failure, and this will

trigger repair, with some other node swapped in to

replace the failed one. As for the failed process itself,

no special action is needed.

This scheme assumes that commit information is

retained until a new view is installed. Ida employs a

concise representation of commit times to keep this

1 Isis2 uses a single thread per group for event notifications,

hence actions occur in the order that delivery is scheduled.

If an application performs a very long-running action, we

recommend that a new thread be spawned to avoid delaying

subsequent actions. These threads must respect the read-

write ordering implied by the event delivery ordering.

data small, and garbage-collects the information in a

lazy manner when it will longer be needed. We reset

logical timestamps to 0 when a new view is installed.

6.3. QueryKey Shard-Member Selection
As noted earlier, an Ida Query only needs to be

executed by a single participant per shard. For this

case, the query initiator computes a hash over the

QueryKey, and takes the result modulo the shard size.

We then use this as an offset into the shard. Only the

selected members participate in the query.

6.4. Aggregation Trees
Ida implements aggregation trees as overlays

constructed over the set of participating members as

leaves. Again, we leverage the guarantee that all

group members use the identical membership view of

the group, this time to ensure that all employ identical

aggregation trees for any given query. We’ll describe

the handling for a single query, but Ida actually allows

many to execute in parallel, using the QueryKey as an

identifier to match each result to its query.

The aggregation mechanism is as follows. To

initiate a query, we’ll use ordered subset multicast to

send it to participants. These participants form the

leaves of our aggregation tree, and each performs a

computation on the local set of key-value pairs,

resulting in a contribution to the desired aggregate.

These must now be combined to obtain the result of the

query, as shown in Figure 5.

We define a binary tree by ordering the participants

and numbering them 0… K-1. For simplicity, assume

K is a power of 2. Call this layer 0 of the tree: the leaf

set. The even numbered nodes now play aggregation

roles: after node 1 computes its contribution, it sends it

to node 0, which aggregates that value with its own

value. In contrast, the other odd-numbered nodes

compute their contribution and send them to their even-

numbered counterparts. If a tree has an odd number of

leaves, the even-numbered process at the end of the

line can see this, and won’t wait for a contribution.

Having aggregated the layer 0 data, we treat the even-

numbered nodes as the leaves of a new layer-1 tree,

again numbering them from 0…K/2. Now the process

repeats. At the end of the computation, node 0 will

hold the aggregated result of the query.

To ensure that node 0 is in fact the initiator of the

query, we simply set the initiator as the 0-ranked

member of the participant list when mapping the key

list to a participant list. The initiator thus participates

as a layer-0 leaf whether or not any key mapped to the

shard to which it belongs.

 In the event of a failure, Ida interrupts pending

aggregation query operations. A query initiator

awaiting a result will receive an exception and can

reissue the query in the new view. In this manner, we

ensure that either an aggregation is successful, and

reflects exactly one contribution from each key, or that

it fails. Combining this property with the consistent

cut guarantee from the subset multicast used to initiate

the query, we obtain the desired consistency guarantee.

6.5. Managing Intermediary Results
One interesting challenge posed by the Ida model

concerns management of intermediate results formed

during a multistage computation, and needed only for a

brief period of time. There are several options. First,

each Ida tuple has a TTL field; if this is set, the tuple

will silently vanish when the TTL expires. Next, there

is an explicit deletion option for garbage collection

under user control. And finally, one can create an

entire temporary group, populate it with temporary

data, and then delete the whole group when finished.

This form of deletion is very efficient and particularly

easy to implement.

7 Use cases
We believe that most uses of Ida will be fairly

simple (such as finding the value associated with key

“K”, looking up keys in key-value pairs with value

“V”, counting items that satisfy some pattern either on

keys or on values, finding the top N items under some

ranking, etc). It is trivial to code these kinds of

actions, and the ability to update or query multiple key-

value pairs in a single atomic action eliminates what

might otherwise be complex logic.

Less clear is the question of whether users would

want to run more complex applications on Ida. The

puzzle is as follows: all sorts of complex data

structures can be mapped into a key-value

representation, queried, and updated, and hence one

can map some remarkably sophisticated applications

into Ida. However, the resulting algorithms often

require multiple steps to carry out a single action. One

thus is forced to ask whether the solution departs from

the DHT properties that make a system like Ida

appealing. Our belief is that while Ida can handle a

wide range of what might normally be viewed as

transactional database applications, relatively few users

will try to do such things, and they will mostly limit

themselves to cases that require very few Ida actions.

For example, with Ida it is very easy to use an

iterated binary search to find the median of a set of

values for a set of matching keys. Similarly,

continuous tracking of an evolving aggregated property

of the underlying data set can be done by writing code

to compute the property and then periodically issuing

initiation events. In both cases log(N) steps are

required; our conjecture is that while such a cost would

be too high if it incurred for all operations, occasional

actions with this cost might be tolerable.

Also relatively easy to implement are

multidimensional searches. There are a few ways to

solve such problems; the easiest is as follows. We take

the ({key-list},value) tuple and compute its hash code,

using this as a primary key and storing the tuple at that

location. Next, for each key in the key list, we store a

“pointer” mapping from that key to the primary key

(the UID if you prefer) for the object. It is helpful to

define a type for each dimension, thereby leveraging

the Ida type system as a way to distinguish the various

dimensions of the key list. Now we can do a lookup on

any subset of the keys. One issues a query, then

aggregates the results, finding matches on each subkey

first and retaining only the tuples that matched in all

keys; a “join” encoded into the aggregation method.

This approach can also support multi-key range

queries and pattern search: one sends the request to all

shards where a match could arise, and then does an

aggregation that will run in time log(K) where K is the

number of shards touched: precisely the search cost

seen in existing solutions. In the worst case, the query

can simply search all shards.

The generalization of this line of thinking is as

follows: since Ida permits the developer to perform a

“one-shot” atomic action on the DHT, are one-shot

transactions a general enough construct to support a

wide range of what might normally be thought of as

database queries and updates, or is the “all at once”

aspect too limiting? As discussed in the introduction,

any response to this question must carry a caveat: we

are interested not just in understanding the extent to

which a DHT can mimic a more complex database, but

rather the degree to which a DHT can perform database

operations while preserving the essential DHT-ness of

the solution. For example, if we were to solve such a

problem using locks (which Isis2 does support), or with

a full transactional mechanism allowing multiple

operations and ending with a commit or abort, we

would simply be building a new kind of full-scale

database and abandoning the properties that make a

DHT appealing.

Although brevity precludes a detailed discussion of

such algorithms, we’ve looked at this model and can

summarize our findings. First, we’ve identified a

number of ways of “flattening” transactions, so that a

transaction designed with multiple stages could

potentially be transformed into a small number of

highly parallel steps. To do this, one draws on an old

idea: by pre-executing a transaction on a read-only

copy of a database, it is possible to compute the read

and write set that would be used if we ran the

transaction “now”. For example, transaction T might

read version 7 of X and version 9 of Y, then update Z,

creating version 3 of Z and setting it to 123. The

updates are captured but not applied: they form an

intentions list.

Of course, with dynamic updates, any object can be

updated at any time. Accordingly, having flattened the

transaction in the first stage, one resubmits the

modified form of the transaction to run as a true update

action in a second phase. Specifically, now that we

know the intended read and write operations, we can

skip the computation! Instead, the requirement is

simply to verify that the versions of X, Y and Z are the

same as they were during pre-execution, then update Z.

More broadly, the rule is to verify the version numbers

on all objects that will be read or written, then

atomically apply all the updates in the intentions list if

the verification is successful, discarding the updates

and restating the whole process if not. Clearly, this is a

win if aborts would be rare, and could be a terrible idea

in a high contention situation.

Ida lends itself nicely to this form of computation.

In the pre-execution phase, the mini-transaction is run

like any Ida query. We use aggregation to construct a

list of the object versions that were touched and form

the intentions list. Now in a second Ida operation, we

re-issue the transaction as a “proposed” update.

Recipients log the portion of the intentions list

corresponding to keys that map to their shard, verify

object versions (temporarily locking those objects), and

then respond with a commit or abort vote, retaining the

proposed updates. Again, we aggregate, and then send

out a commit or abort outcome multicast. Since all

multicasts in Isis2 and Ida are atomic with respect to

group membership changes, if a failure disrupts such a

sequence, participants will see a new group view in

which the transaction initiator has failed. They can

simply discard the proposed updates: no participant

could have received a commit, because if any had, all

would have, and they would have seen it prior to the

reporting of the new view.

Thus Ida can support fairly elaborate transactional

behaviors that are carried out in a three-phase process

that uses (at least) two Ida aggregation queries and one

multicast. During the period from when the second

phase runs to when the third phase finishes,

participants retain but can’t yet apply updates and may

need to delay other reads or writes on the affected

objects. This takes us full circle: are we now so far

from the DHT model that users wouldn’t consider Ida

as a suitable platform for this style of computation?

While the example shows that Ida has computational

power equivalent to many kinds of databases, without a

serious side-by-side comparison, we can’t easily guess

at how our performance would stack up.

8 Analysis and Evaluation
Our experiments focus on the incremental cost

associated with consistency and on establishing locality

of costs. To this end, we compare consistent and non-

consistent Put, Get and Query, all running on a

dedicated cluster (future experiments will be carried

out on much larger platforms). Our main goal is to

show that costs are local and that Ida scales well and

rapidly recovers from failures.

We see the results of these experiments in Figures

6-8. All were conducted on a pair of very similar HPC

clusters, one at Cornell; the other at LLNL labs. We

reserved sets of dedicated nodes, then ran either a

single copy of our test program on each node, or 4

copies each. The nodes themselves are dual Intel

Xenon 6-core processors running at 2.8GHz, and

interconnected via Mellanox InfiniBand switches. The

UDP message size limit for these connections is 64K,

and the Infiniband MTU is 4K. Each node has 48GB

RAM memory. The clusters both run identical versions

of Linux. Our code was compiled using the 3.2.1

version of the Mono framework.

Before presenting our data, we need to remark on

the poor performance of Infiniband when used to

support point to point UDP and IP multicast [18]. As

the reader may be aware, Infiniband is capable of

exceptionally low latencies and high data transfer rates,

and can even support a hardware mediated form of

direct access to remote memory, as well as DMA

copying from a sender directly to a receiver. However,

to gain these benefits one must either use Infiniband

directly through a so-called “verbs” API, or focus on

very large data transfers. In today’s clusters,

Infiniband is often configured to emulate an Ethernet,

offering UDP, TCP and IP multicast functionality.

Studies have shown that in this situation, Infiniband

dominates 10G Ethernet in almost all respects, but that

the Infiniband UDP protocol is surprisingly slow,

achieving less than half the message rate of 10G

Ethernet. Because Ida is a UDP-based system, our

experiments turned out to stress this weak point in the

IB performance space. We had no choice: the large

clusters available to us both require that messaging-

intensive experiments run on the IB network. In the

future we hope to repeat our experiments both using

the Infiniband verbs API, and on 10G Ethernet.

Figure 6: Total capacity of a DHT for Put/Get
versus OrderedPut/OrderedGet. Nodes initiate
operations at the maximum sustainable rate.

The experiments are symmetric: except as

indicated, all nodes perform identical operations, with

different keys. The shard size was two: a group of size

N has N/2 shards. For Figure 6, we ran 1 copy of our

Ida test application per node and allocated 2 cores

each. Each experiment ran for roughly 5 minutes of

wall-clock time (the number of operations depends on

the scenario, but was in the tens or hundreds of

thousands). Figures 7-10 ran 4 copies per node, again

with 2 cores per copy; performance and loads were

unchanged from the 1-instance per node run.

Performance figures are for full runs; the error bars are

across runs.

By construction, the Ida operations have expected

O(1) cost for eventually-consistent Put and Get

operations: the DHT itself is “one-hop” because each

node has the addresses of all the other nodes available

to it, and can perform operations that access multiple

shards in a single parallel step; cleanup after a failure is

a rare event and just involves pushing updates to nodes

that may lack them. OrderedPut and OrderedGet use

the 2-phase protocol of Section 6.2.2 for the initial

step, with several consequences: whereas Put can run

in an asynchronous “pipelined” manner, OrderedPut

will be delayed by this initial step. Further, while Put

and OrderedPut must touch every member of any

shards the keys map to; Get and OrderedGet only

interact with one member per shard.

 Figure 7 explores the total performance achieved

for groups of various sizes using the standard DHT Put

and Get side by side with our ordered versions,

evaluating single-key operations, employing a shard

size of 3 and value sizes of 100 bytes (the size had little

impact on performance; Ida performance turns out to

be nearly the identical for a wide range of value sizes

from 10 bytes to more than 62K). Variance was low.

 We see linear scalability, but the raw numbers are

lower than one might expect, apparently because of the

sluggish Infiniband UDP implementation mentioned

earlier. To arrive at this conclusion, we first explored a

number of possible limiting performance factors. In

this experiment all requests were initiated by a single

thread; with multi-threaded initiators Ida achieves

higher performance. Space limits precluded detailed

discussion of that option here, but the benefit is at most

10%. Notice that OrderedGet and classic Get have

similar but not identical performance: the

implementation of the OrderedSend protocol employs

some synchronization that can be avoided by the

classic version, but it is revealing that the very simple

Get protocol isn’t very much faster. Recall that this

version of Get maps directly to an RPC. Thus if it runs

Figure 7: Ordered DHT operations with varying
numbers of keys (1, 2 or 3). The Infiniband NIC

becomes a bottleneck as this test scales up.

Figure 8: CPU usage for OrderedGet with a fixed

set of keys. The load is highly localized.

Figure 9: Queries done in two ways: using

Query/OrderedQuery (initiator collects replies)
and then with Aggregation started by

Send/OrderedSend.

Figure 10: While a stream of OrderedGet

requests are performed, the DHT is forced to
recover from failures at times 30 and 60.

slowly, attention focuses on flow control (we checked

and it never kicks in for these experiments), O/S

overheads, and the Infiniband version of UDP.

We ruled out any form of CPU bottleneck: in our

experiments, CPU loads (including both application

and O/S computational overheads) never exceeded 30-

40% (for example, see the discussion of Figure 8), and

profiles showed that Ida itself spends most its time in

the .NET code that waits for incoming data and then

retrieves the message from sockets. It follows that

Infiniband limits performance. To confirm this

conclusion we ran experiments in smaller clusters with

switched Ethernet interfaces, and consistently achieved

much higher messaging rates.

In Figure 7 we measure performance for a single

thread issuing a series of OrderedGet requests, with

varying numbers of keys (each key to a distinct shard,

and those shards are never the one to which the

initiator belongs). Recall that we only need one

participant per shard, hence with a single key (a single

participant), OrderedGet becomes a classical Get,

whereas with two or more keys it runs the ordered

subset multicast protocol of Sec 6.2.2. Notice that the

network link reaches peak load and becomes a

bottleneck in the 2-key and 3-key experiments.

Figure 8 explores CPU usage when OrderedGet

requests are issued using a key pattern designed to

select just certain shards. We see that costs are

extremely localized: only the participating nodes incur

load. This is good for scalability if work can be spread

evenly, but as just noted, can also create hot-spots that

would be points of contention. Further experiments at

larger scale will be needed to clarify the tradeoff.

Notice also that at peak load these nodes were only at

30%-35% CPU utilization, supporting the view that the

network is our bottleneck.

Figure 9 compares two query scenarios, one using

aggregation (Send/OrderedSend) and the other using

direct all-to-one replies (Query/OrderedQuery), with

the “O” in the figures designating strongly consistent

versions. A single initiator is picked and issues a

stream of queries, holding the number of participants

constant but cycling through a key pattern designed to

eventually touch the full group, with 8 participants per

request. Latencies are low here, but ordered

aggregation has a visible delay. As the group grows,

the gap shrinks. With larger reply objects or very large

numbers of participants, we would start to see packet

loss at the initiator for the direct replies case, and

aggregation would certainly win, but this experiment

apparently didn’t trigger loss.

Finally, in Figure 10 we measured the speed of

group reconfiguration. We issued a stream of Get

operations in a group of size 55. After 30 seconds the

member ranked 5 terminates. We see that this causes a

brief perturbation in the rate of Get operations that can

be sustained. At time 60, members 19-37 terminate.

Again, recovery is quick, but this time when the group

reconfigures, it has lost 1/3 of its computing capacity.

9 Prior work
While there has been extensive prior work with

DHTs, fewer efforts have explored consistency when

updates are mixed with queries. Notable among these

are Dynamo [12], Pastry [7], Scatter [15], Spark [31],

Naiad [24], and Comet [14]. Although none of these

has the style of expanded DHT API used in Ida, Comet

does explore various extensions aimed at customizing

the DHT. The motivation in that project was actually

similar to ours, but Comet only offers consistency on a

single-tuple-at-a-time basis, hence many of the issues

discussed in our paper didn’t arise in their work.

Spark is a well-known in-memory cache with

interesting similarities to Ida. Unlike Ida however,

Spark doesn’t replicate data or move it from node-to-

node; any given Spark instance is basically a local

cache on the node where it runs. The design goals

differ too: Spark helps iterated MapReduce

computations avoid recomputing partial results, using

LINQ-like queries (coded in Scala) as keys to byte

vectors representing serialized intermediate results,

which are retained for future reuse, and implementing a

novel scheduler that places MapReduce tasks so as to

maximize reuse potential. Moreover, Spark basically

assumes an immutable data store: it supports the

creation of intermediary results and has an extensive

infrastructure to optimize the management of that form

of data, but updates to the underlying data set occur

only through append-only actions that create a series of

databases, each corresponding to the “time” it

represents. A computation runs in just one of these

snapshots [31].

Ida could be used in much the same way, but our

emphasis is on general updates to a key-value set, not

on append-only big-data stores; we replicate data

within shards, and whereas Spark can easily recompute

data as needed, Ida treats key-value objects as

information that can’t casually be discarded. On the

other hand, Ida offers no recourse if a crash

depopulates a DHT or a shard; Spark potentially can

recover lost data from a backing store and can recover

lost intermediary results by recomputing them.

The desire to offer strong consistency for multi-

tuple updates and queries motivated a key contribution

in Ida: whereas prior work [15] used Paxos [20] for

consistency and durability on a shard-by-shard basis,

Paxos cannot be used for varying sets of shards, since

this gives rise to irregular patterns of membership

overlap. Furthermore, because Ida runs in the soft-

state tier of the cloud, durability of the kind offered by

Paxos isn’t needed. Thus Ida’s multi-tuple API

requires an ordered subset multicast, and by solving

this problem, it becomes possible to guarantee

consistency for collections of tuples and for queries

that might span many shards.

We pointed out that both Ida and Spark leverage the

LINQ query language. The use of LINQ in this

manner is natural and traces back to Dryad/LINQ [17]

and Naiad [24], which pioneered the use of LINQ as a

computational API for operations on key-value

collections. LINQ makes these systems somewhat

database-like, and indeed in Section 7 we saw that with

a bit of effort Ida could be used as a full-featured in-

memory database system. However, doing seems to be

at odds with DHT-ness. As a result, our focus is on

uses that wouldn’t guarantee full ACID properties: we

favor “one-shot” atomicity, and work primarily with

in-memory data, yielding weak durability.

Because Ida can be used for queries across large

collections of tuples, we should touch upon prior work

on DHTs such as rKelips [21] and HyperDex [13].

These key-value systems both support range queries.

rKelips, like Ida, uses a 1-hop DHT architecture but

only allows range queries in one dimension. HyperDex

employs a log(N) structure but allows range-queries in

multiple dimensions. One carries out range-queries in

Ida by issuing a query that spans the DHT shards that

could include key-value pairs of interest and then

carrying an appropriate computation on the collection,

aggregating the results: this last step would, similarly,

take log(N) time. Notice, however, that because it may

be hard to know which key-value pairs might match, in

practice HyperDex would often be more efficient for

this purpose: the Ida query may need to access shards

where there are actually no matching tuples.

As noted in the paper, Ida exists in a space that also

includes full transactional databases: Google’s Spanner

[10] was mentioned several times, and one could also

point to systems like Picolo [25], which optimizes for

storage of graphical models. We believe that because

these depart from the simple and predictable costs that

make DHTs so popular, they wouldn’t represent

appealing options for the community we target. Ida, by

retaining the DHT performance properties while

enhancing consistency, aims at developers who

understand and value the DHT model but who need an

enhanced API and stronger properties.

Our examples touched upon simple graph

algorithms, since these illustrate both the potential

power of a consistent key-value store that accepts

updates, but also the more complex programming style

required when working with such a store in a lock-free

manner. As noted, we’re doubtful that users will favor

Ida for the most complex such solutions, even if there

is a way to map complex structures and complicated

transactions into the Ida model: doing so departs from

the DHT-ness of Ida, which we believe will be key to

adoption. Thus a developer facing such problems

might well prefer optimized systems specifically aimed

at graph processing at scale, such as Google’s Pregel

system [22]. Microsoft’s Naiad platform is a second

example in this class; it focuses on fix-point

computations in very large graphs [24]. Twitter’s

Storm [23] streaming query system can query high-rate

streams of key-value pairs; this is a slightly different

problem than the one we consider.

Ida’s aggregation scheme is reminiscent of

Astrolabe [27]. However, that system lacked strong

consistency, whereas Ida has very strong guarantees.

Moreover, Astrolabe imposed a strict size-bound on

query results; Ida aggregation allows unbounded

objects to be accumulated, if desired.

10 Conclusions
Ida is an in-memory DHT offering a substantially

expanded API capable of supporting a wide range of

data structures, with guarantees of strong consistency

even when updates and queries concurrently modify

large numbers of key-value pairs. The system is

lightweight and highly scalable, offering the guarantee

that each query reflects exactly one contribution from

each relevant key-value pair.

11 Acknowledgements
The authors are very grateful to Greg Bronevetsky, Al

Demers, Michael Isard and Robbert van Renesse, and

the TRIOS and SOSP PC members. We were funded

by DARPA and NSF. The experiments reported here

were performed on clusters provided by LLNL, and on

Cornell’s NSF-funded Atlas cluster.

12 References
[1] K.P. Birman. isis2.codeplex.com

[2] K.P. Birman, T.A. Joseph. Reliable

communication in presence of failures. Kenneth

ACM Trans. on Computer Systems (TOCS), Vol.

5, No. 1, Feb. 1987

[3] K.P. Birman, D. Malkhi, R. van Renesse. Virtually

Synchronous Methodology for Dynamic Service

Replication. Appears as Appendix A in [4].

[4] K. Birman. Guide to Reliable Distributed Systems:

Building High-Assurance Applications and Cloud-

Hosted Services. 2012, Springer-Verlag.

[5] K. P. Birman, D. Freedman, Q. Huang and P.

Dowell. Overcoming CAP with Consistent Soft-

State Replication.. IEEE Computer Magazine

(special issue on “The Growing Impact of the CAP

Theorem”). Volume 12. pp. 50-58. February 2012.

[6] M. Burrows. The Chubby lock service for loosely-

coupled distributed systems. OSDI 2006.

[7] M. Castro, M. Costa, and A. Rowstron.

Performance and Dependability of Structured

Peer-to-Peer overlays. In Proc. Of DSN, 2004.

[8] M. Chandy and L. Lamport. Distributed

Snapshots: Determining Global States of

Distributed Systems. ACM Transactions on

Computer Systems, Vol. 3, No. 1, Feb 1985.

[9] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, I.

Stoica. Managing data transfers in computer

clusters with orchestra. ACM SIGCOMM 2011.

[10] J.C. Corbett, et al. Spanner: Google's Globally-

Distributed Database. OSDI 2012.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. OSDI 2004.

[12] G. DeCandia, G., et. al. Dynamo: Amazon's

highly available key-value store. In Proceedings of

the 21st ACM SOSP (Stevenson, Washington,

October 2007).

[13] R. Escriva, B. Wong, G. Sirer. HyperDex: A

Distributed, Searchable Key-Value Store. ACM

SIGCOMM ’12, Helsinki, Finland, 2012

[14] R. Geambasu, A. Levy, T. Kohno, A.

Krishnamurthy, Henry M. Levy. Comet: An

active distributed key-value store. OSDI 2010.

[15] L. Glendenning, I. Beschastnikh, A.

Krishnamurthy, T. Anderson. Scalable

Consistency in Scatter. ACM SOSP ’13,

December 2011, Cascais Portugal.

[16] J. Gonzalez, Y. Low, H. Gu,, D. Bickson, C.

Guestrin. PowerGraph: Distributed Graph-Parallel

Computation on Natural Graphs. OSDI 2012.

[17] M Isard, M Budiu, Y Yu, A Birrell, and D

Fetterly. 2007. Dryad: distributed data-parallel

programs from sequential building blocks.

SIGOPS Oper. Syst. Rev. 41, 3 (March 2007).

[18] S. Kandadai and X. He. Performance of HPC

Applications over InfiniBand, 10 Gb and 1 Gb

Ethernet. IBM Corp., Sept 2010 WhitePaper.

http://www.chelsio.com/assetlibrary/whitepapers/

HPC-APPS-PERF-IBM.pdf

[19] L. Lamport. Using Time Instead of Timeout for

Fault-Tolerant Distributed Systems, ACM Trans.

on Computer Systems 6(2): 1984, 254-280.

[20] L. Lamport. The Part-Time Parliament. ACM

Trans. on Computer Systems 16 (2): 1996.

[21] P. Linga. Indexing in Peer-To-Peer Systems.

Cornell Univ. Dept. of CS. (http://www.cs.cornell.

edu/projects/quicksilver/public_pdfs/prakash-

thesis.pdf). Doctoral Thesis. May 2007.

[22] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I.

Horn, N. Leiser, G. Czajkowski. Pregel: a system

for large-scale graph processing. In Proceedings of

the 2010 ACM SIGMOD International Conference

on Management of data (SIGMOD '10). ACM,

New York, NY, USA, 135-146.

[23] N. Martz. A Storm is coming: Details and plans

for [Twitter’s first Storm] release. Aug. 2011.

http://engineering.twitter.com/2011/08/storm-is-

coming-more-details-and-plans.html.

[24] F. McSherry, R. Isaacs, M. Isard, and D. Murray,

Composable Incremental and Iterative Data-

Parallel Computation with Naiad, no. MSR-TR-

2012-105, 9 October 2012

[25] R. Power and J. Li. Piccolo: Building Fast,

Distributed Programs with Partitioned Tables.

OSDI 2010.

[26] F. Schintke, A. Reinefeld, S. Haridi, T. Schütt:

Enhanced Paxos Commit for Transactions on

DHTs. CCGRID 2010: 448-454.

[27] R. van Renesse, K. Birman and W. Vogels.

Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and

Data Mining. ACM TOCS 21:2, May 2003.

[28] R. van Renesse and H. Johansen. Fireflies:

Scalable Support for Intrusion-Tolerant Overlay

Networks. EuroSys 2006.

[29] Y. Vigfusson, et. al. Dr. Multicast: Rx for Data

Center Communication Scalability. Eurosys 2010.

[30] Y. Yu, M. Isard, et. al. Dryad/LINQ: a system for

general-purpose distributed data-parallel

computing using a high-level language. Proc.

OSDI'08 Dec. 2008

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.

Ma, M. McCauley, M.J. Franklin, S. Shenker, I.

Stoica. Resilient Distributed Datasets: A Fault-

Tolerant Abstraction for In-Memory Cluster

Computing, NSDI 2012, April 2012.

http://engineering.twitter.com/2011/08/storm-is-coming-more-details-and-plans.html
http://engineering.twitter.com/2011/08/storm-is-coming-more-details-and-plans.html

