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Abstract 
The big-data community generally favors a two stage 

methodology whereby data is first collected, then 

uploaded for analysis using tools like MapReduce.  

During analysis the data won’t change; this simplifies 

fault-tolerance and makes it worthwhile to cache 

intermediary results.  In contrast, when it is necessary 

to capture data continuously and query it on the fly, 

cloud storage and access technologies must be 

reexamined.  Isis2 aims at such scenarios, offering a 

base set of mechanisms that replicate data and perform 

computation with strong consistency and other 

assurance properties, then layering higher level 

abstractions over this core.  Here we a focus on a 

subsystem called the Isis2 interactive data analysis 

infrastructure: Ida.  Ida is a strongly-consistent 

distributed key-value store on which surprisingly 

complex computational tasks are feasible.       

1 Introduction 
Our effort aims at a limitation of existing cloud-

computing infrastructures: aggressive lock-free data 

replication and caching has been a key enabler for 

dealing with huge numbers of clients, but at a price. 

While applications achieve extremely rapid response 

rates, they also exhibit frequent transient anomalies.  

The approach must be revisited if the cloud is to host a 

new generation of “mission critical” applications that 

perform data-parallel tasks in real-time and require 

stronger assurance properties.  For example, it is likely 

that cloud-based systems will be needed to manage the 

future smart power grid.  The safety and security of the 

power infrastructure will thus depend upon the 

integrity of the cloud-hosted applications used to 

monitor the grid and initiate appropriate actions.  

Future cloud-hosted medical platforms will monitor 

high-risk outpatients (such as at-home diabetes 

patients) and provide forms of automated care (such as 

dynamic control of insulin pumps).  Self-driving 

vehicles will depend on cloud data to avoid hazards.   

These examples center on a style of computing in 

which updates are continuously applied while data-

parallel queries are concurrently issued against the 

data.  Notice further that whereas MapReduce and 

similar tools often host long-running computations, 

these demanding “machine in the loop” scenarios 

would more likely be dominated by short queries and 

updates. Inconsistencies could pose serious risks.   

The Isis2 system focuses on this style of 

computation.  The system starts by offering scalable 

support for state machine replication: process groups 

and ordered, reliable group multicast used to support 

strongly consistent replicated data, concurrent 

computation, and coordinated fault sensing and 

reporting. A variety of higher level tools are layered 

over this core, including support for persistent external 

data sets (Paxos), migration and replication of large 

memory-mapped objects, locking services, etc.   

We believe that the popularity of DHTs reflects 

their predictability, scalability and high speed. Here, 

we focus on the Isis2 DHT: a subsystem called Ida that 

offers stronger assurance properties without violating 

these basic DHT characteristics.  Ida supports:  

1. A generalized in-memory DHT model supporting 

insertion of multiple key,value tuples as a single 

action, and allowing user-specified handling of  

Put collisions (same key, different values).  

2. Support for queries that span multiple shards.  

Results can either be sent directly to the initiator or 

aggregated using user-specified aggregation logic.   

3. DHT members can access their local slice of the 

key-value data using code written in Microsoft’s 

Language Integrated Query model (LINQ). 

4. Excellent scalability and performance, with 1-hop 

routing: requests are sent directly to the DHT 

members that will process them.  Concurrent 

events that touch disjoint DHT members won’t 

interfere with one-another. 

5. Fast self-repair.  Ida uses node-rank in a member-

ship view to enable 1-hop routing.  The imple-

mentation replaces failed low-rank members with 

healthy high-rank ones, facilitating local repair. 
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Isis2, including the Ida DHT, is available for open-

source download [1], and can be used from C#, C++ 

and Python on Windows or Linux platforms.  

2 The Isis2 Platform 
The Isis2 system updates the virtually synchronous 

process group communication [2] model for the cloud.   

The core construct is a group of objects residing within 

processes linked to the Isis2 library; new processes can 

join at runtime (loading current state from a checkpoint 

via state transfer), or leave (at will, or by failing).  

Ordered reliable multicast is used to transmit updates.  

When group membership changes a new view event 

occurs, ordered relative to other events.  These new 

view events are synchronized relative to state transfer 

(the delivery of a checkpoint to a new member), to 

ensure that the new member starts with correct data.   

Isis2 supports quorum-style protocols such as 

Paxos, but our emphasis is on a style of replication in 

which all updates reach every replica.  This allows 

reads to be performed by any single replica.  If multiple 

members replicate the same data, they can cooperate to 

concurrently perform costly tasks with guarantees of 

consistency.  Thus, one can easily implement 

algorithms that build on a state-machine replicated 

abstraction, but also leverage the consensus view of 

dynamic membership to perform concurrent 

computations or coordinated actions.   

The system offers an object-oriented API, using a 

polymorphic event-upcall model that will be familiar to 

users of other common cloud-computing tools.  For 

example, much as a GUI might have an upcall for 

mouse-over, Isis2 has upcalls for new group views, 

multicast and unicast delivery, etc.  The execution 

model, virtual synchrony, has been integrated with the 

stoppable state machine model [2], permitting Isis2 to 

offer developers the choice of a number of “flavors” of 

virtually synchronous protocols differing in their 

ordering and durability guarantees, including Paxos.  IP 

multicast is used when feasible, and Isis2 manages the 

IP multicast address space to avoid overloading routers 

[29].  If multicast is not permitted, the system 

constructs an overlay mesh of TCP links, then emulates 

point-to-point messaging by routing within it. 

Figure 1 illustrates the resulting system 

architecture.  Isis2 has a lower layer consisting of 

probabilistically convergent components, many of 

which use gossip-style protocols (the bricks seen in the 

bottom layer on the left side of Figure 1).  A higher 

layer implements reliable multicast.   

An Oracle service manages membership and 

normally runs on 3-5 members; we launch it silently 

and it lives within the first few members that use Isis2.  

Among its roles, this service implements the primary 

partition model: if a network link fails, progress is 

permitted in just one partition.  Processes in other 

partitions must wait until the link is repaired. 

Many components employ complex protocols.  It  

would be out of our scope to discuss those here, but the 

upshot is that whereas previous virtual synchrony 

implementations rarely ran “directly” on more than a 

hundred machines at a time, Isis2 runs on thousands.   

The system is also quite fast.  In [5] we undertook a 

side-by-side comparison of one of the core multicast 

primitives (virtually synchronous Send) with two 

configurations of Paxos (virtually synchronous 

SafeSend configured to use different numbers of 

“acceptors”).  Our evaluation focused on reads and 

updates to an in-memory data set replicated on as many 

as 900 machines, and showed that if virtually 

synchronous Send is combined with an Isis2 primitive 

called Flush, it offers guarantees identical to Paxos for 

Figure 1: The Isis2 library implements virtually synchronous process groups and multicast for the cloud.  Ida is one of a 
set of higher-level structures we’ve layered over it. 



this in-memory case, yet achieves far better 

performance and scalability.  This is just one of many 

situations in which the ability to pick exactly the right 

multicast guarantees yields dramatic benefits.  

Layered over Isis2 is a set of higher-level packages 

that hide details, offering end-user functionality: 

 A locking package (analogous to Chubby [6]). 

 A tool for “out of band” migration and replication 

of large memory-mapped binary objects (like file 

shuffle and replication in Orchestra [9], but using 

IP multicast and offering stronger guarantees). 

 DMake, a tool for monitoring and management of 

cloud applications that do not directly use Isis2. 

 The Ida DHT, which is our primary topic here. 

3 Strong consistency in a DHT 
The introduction of strong consistency models into 

DHT-like platforms has been a topic of debate in the 

cloud community.  The core dilemma centers on the 

required properties of a DHT: one selects a DHT rather 

than a database or a file replication tool to take 

advantage of the low overheads, high performance and 

scalability of the model.  Thus, while our intended 

applications motivate us to extend the DHT model, Ida 

must retain several core properties: 

 The operations in the Ida API all have “expected 

constant” cost.  Here we should emphasize the 

word constant: some DHTs have a log(N) routing 

delay, but those used in cloud settings typically 

need 1-hop routing:  a client sends requests 

directly to the DHT member(s) that will handle it, 

with no intermediary forwarding.  This translates 

to low latency, a critical DHT property. 

 Minimal disruption when membership changes.   

Cloud DHTs must not degrade due to “churn”. 

Adding members should increase capacity without 

increasing overheads. 

 Costs must be localized: if an operation impacts 

just some subset of DHT members, only that 

subset should have work to do.   

One could use a cloud database system such as 

Spanner [10] as if it were a DHT, but such a solution 

wouldn’t have the desired properties: Spanner offers a 

full transactional API, giving it great flexibility, but is 

far less predictable and optimized for high aggregate 

throughput.  Individual operations may experience 

significant and unpredictable latencies.  The developer 

who rejects a high-functionality database such as 

Spanner in favor of a DHT is probably doing so to be 

certain that operations like Get and Put will map to a 

single RPC, and would only be delayed if a hot spot 

forms.  On the other hand, nothing about the DHT 

model demands inconsistency, and it is easy to identify 

use cases needing stronger properties:  

 Key-value pairs could represent the state of an 

autonomous vehicle, a mobile user, or a physical 

infrastructure like the smart power grid.  One 

could then run distributed machine-intelligence 

algorithms directly on the DHT to make decisions.  

Consistency enables decentralized execution of the 

associated logic, so that even with a rapidly 

changing knowledge base each decision will be 

based on a state that really existed at some instant 

in logical time.  Lacking consistency, the 

application might observe phantom, non-existent 

states that would trigger unsafe actions. 

 Many social networking and web algorithms 

compute on graphs or similar structures.  One can 

represent these as key-value pairs; when mapped 

to a DHT, the costs of actions would then be 

predictable.  Notice that a “value” could include 

the page weight or rank, the time when the page 

was last scraped, etc.  It is important to access such 

a graph  along a consistent cut; otherwise, 

problems such as “phantom cycles” arise [8]. 

 Key-value pairs could represent the state of a 

multiuser game, or a virtual reality environment; 

here consistency translates to agreement on the 

game state, agreement by a group of friends on 

where they will meet after work, etc.   

A DHT model allows the developer to spread data 

widely in an elastic manner, and to leverage parallelism 

when computing on it. The predictably low costs 

translate to predictably low end-user response delays. 

Provided that this performance is maintained, strong 

consistency guarantees let us view the DHT as a 

representation of some “single” system state that 

evolves through time by a series of atomic transitions.   

We are not the first to recognize that stronger DHT 

guarantees could be valuable.  A number of prior DHT 

consistency proposals have used strong protocols on a 

per-shard basis, employing Paxos (guaranteeing total 

order and durability) [20][26], or even Byzantine 

Agreement (yielding resilience even to compromised 

nodes) [28].  But these only allowed updates to a single 

key-value item at a time. The use cases we have in 

mind would often represent some form of structure in 

the DHT, using a set of key-value tuples.  Consistency 

for a single shard at a time won’t guarantee consistency 

for structures that span multiple shards. 
In Ida, the DHT APIs are generalized to allow a 

single request to atomically update or query multiple 

key-value pairs, giving rise to multi-shard operations 

that access a set of participants determined by the set of 

keys touched.   Notice that because the set of keys will 

vary for each request, the participant sets will also 

vary, operation by operation.  This is significant 

because the group communication protocols available 

in Isis2 prior to our work, as well as the protocols used 



in the prior work on DHT consistency, were defined 

over stable or slowly changing participant sets.  In Ida, 

the “group” that participates in each operation will be 

defined on an operation by operation basis.  

Thus, we’ll need a protocol that can carry out 

operations that overlap by triggering work at some of 

the same DHT nodes.  But ordered multi-Get and 

multi-Put actions aren’t sufficient.  A further issue is 

that once we begin to talk about representing non-

trivial structures in a key-value form, the simple 

replacement semantics of the standard DHT model no 

longer suffice.  In a typical DHT, each new Put simply 

replaces any older key-value pair with the same key.  

With Ida, a new Put sometimes introduces a value that 

should be “combined” with the prior one in an 

application-specific manner (for example, added to a 

list, averaged in, etc.).  This leads us to allow 

developer-specified methods to handle collisions, an 

idea introduced in the Piccolo DHT [25].  

The Ida consistency model extends to this full 

range of scenarios, yielding a simple programming 

style in which the ability to assume consistency 

eliminates the need for the client application to worry 

about DHT errors that might be confusing or trigger 

inappropriate actions.  Our design will sometimes 

require that the client issue a very small number of 

successive operations, but we assume that in all cases, 

that client is counting upon guaranteed rapid response. 

Although an individual DHT member holds data for 

just the shard to which it belongs, the key-to-shard 

mapping will map many keys to each shard.  Thus a 

single node could host a very large set of key-value 

tuples, and the question arises of how best to query the 

data. Ida supports multi-Get, but also allows a query to 

be initiated by multicasting a request to the 

participants, each of which then executes a LINQ 

(Language Integrated Queries) query on the  DHT 

“slice” associated with its portion of the data.  LINQ is 

an SQL-like technology available within .NET 

languages like C# or Python.  The results can then be 

sent back to the query initiator or stored back into the 

DHT as new tuples. 

Ida enables use of LINQ by exposing a slice of the 

DHT as a collection that has specified key and value 

types. Thus, the developer works with a model in 

which one can either fetch the data for some set of 

keys, or can multicast a request to the shards where 

those keys reside.  The DHT representatives for those 

shards can then perform data-parallel LINQ queries, 

each on a slice of the DHT contents.  If the initiator 

doesn’t know the exact set of keys that are needed, the 

query could be sent to a covering set of shards, or (in 

the limit) the entire DHT.  Then each recipient 

performs its local share of the computation. 

4 Details of the Ida API  
In this subsection we provide a more detailed 

exposition of the Ida multi-tuple API, its integration 

with LINQ, and the Ida aggregation infrastructure.  Ida 

was implemented as an extension to Isis2.   The basic 

DHT API is shown in Figure 2.  To activate the DHT a 

developer first creates a group, then each of the 

members calls DHTEnable, specifying the intended 

typical group size and a desired shard size.  For 

maximum stability, Ida DHTs often include spare 

members.  For example, one could create a group of 

void g.dhtEnable(int shard size, int target dht size, int ttl): Configures a DHT 

void g.Put<KT,VT>(IENumerable<KT,VT> kvlist): Inserts a set of key-value pairs.  

void g.OrderedPut<KT,VT>(IENumerable<KT,VT> kvlist): Same behavior as dht.Put but with strong consistency. 

VT g.PutCollisionResolver(KT key, VT v0, VT1 v1):  User-defined function that overrides the default collision 
behavior; it takes a key and a pair of values, and returns new value to be stored. The “new” value type need not 
match the “old” value type, and one can define multiple resolvers for different types. 

IEnumerable<KT,VT> g.Get<KT,VT>(IENumerable <KT> keys): Returns a list of key-value pairs, one per key (if a key 
is not found, that item will be omitted from the list).  

IEnumerable<KT,VT> g.OrderedGet<KT,VT>(IENumerable <KT> keys): Same behavior as dht.Get but with strong 
consistency. 

IEnumberable<KT,VT> g.OrderedQuery(QueryKey QK, arguments to the query); DHT query. 

void g.OrderedSend(QueryKey QK, arguments to the query): Initiates an aggregation query. 

IEnumerable<KT,VT> g.Contents<KT,VT>():  Performed by a DHT member upon reception of an OrderedSend, this 
API offers access to the collection of key-value tuples available at that member, filtered to match the specified 
key and value types.  One can use this list in Linq query expressions, etc.  Having computed a contribution, the 
member calls  dht.AggregationSetValue<KT,VT>(QueryKey QK, VT value).  

VT Aggregate(QueryKey QK, VT v0, VT v1): User-defined aggregating function that takes a key and a pair of 
values, and  returns new value that combines the two given values. 

IEnumerable<KT,VT> g.AggregationWait(QueryKey QK): Waits for the result of an aggregation. 
Figure 2: Ida API (KT designates some key type, VT a value type, and g a group hosting the DHT). 

 



1005 members, but use target size 1000 and shard size 

10.  We would then have 100 shards, a few containing 

extra members (specifically, shards 0 through 4). 

Figure 4 shows a case with 5 shards.  

Ida has built in handlers to implement the basic Get 

and Put operations, but issues upcalls to user-specified 

methods in more complex situations.  For example, 

consider the delivery of queries to participants that will 

execute a LINQ-based operation.  Here, the initiator 

employs an atomic multicast, OrderedSend, with a 

strongly-typed set of arguments.  Ida uses an upcall to 

deliver the multicast to the appropriate members in the 

appropriate event ordering.  The handler can then 

invoke mydht.DHT<KT,VT>() to access the DHT, after 

which it performs any desired  LINQ operations on the 

collection of key-value tuples so obtained.  

Two other situations in which user-specified 

plugins are employed involve the put collision resolver 

and query aggregation mechanisms. We say that two 

Put operations collide if they use same key for different 

values.  In Ida, when a collision is sensed the default 

behavior is to replace the older value with the new one.  

However, if a collision resolution method is defined by 

the user, that method will instead be invoked.  For 

example, one can maintain a list of values by inserting 

single items using List<ItemType> as the value type, 

and have the PutCollisionResolver merge new values 

into the existing list.  In effect, the collision behaves 

like a message, and triggers application-specific logic. 

While the idea is simple, it is perhaps not surprising 

that few existing DHTs offer it (Piccolo [25] does have 

such a mechanism). Collision resolvers are useful 

primarily when representing non-trivial data structures, 

but without a consistency model, it can be surprisingly 

hard to work with DHT representations of data 

structures that involve multiple key-value tuples.  

These kinds of structures would often seem “broken” 

during periods when updates are underway.  Strong 

consistency is what makes a collision-resolution 

mechanism useful.  Given the two features side-by-

side, it becomes easy to represent a wide variety of data 

structures in key-value form (including elaborate 

structures, such as graphs).   

The next situation in which user-specified code is 

called from the platform arise during queries that 

access large numbers of nodes.  Within Isis2 the 

“normal” way of performing a query involves use of a 

method called OrderedQuery.  OrderedQuery starts 

with an OrderedSend: a multicast to the recipients, 

which compute subresults and then send them directly 

to the initiator as point-to-point replies. In a large DHT, 

however, the many near-simultaneous incoming 

messages could overwhelm the initiator, triggering loss 

and other inefficiencies.  Moreover, if combining 

partial results into a desired outcome involves work, a 

1-to-all send followed by an all-to-1 response misses a 

chance to leverage parallelism.   

Accordingly, Ida offers the option of switching to a 

different style of response in which an aggregation tree 

is employed to collect and combine the responses. For 

an aggregation query, the query is still sent to the 

shards using OrderedSend, but now it triggers a 

parallel upcalls to the query handler methods.  

Meanwhile, having sent the query, the initiator invokes 

AggregationWait with the QueryKey to wait for the 

result.  As the query requests arrive, each participant 

computes its contribution to the request in parallel, then 

passes the partial result “up” the aggregation tree by 

calling AggregationSetValue(), again using the 

QueryKey as an identifier.  Upcalls to the user-defined 

aggregation method are used to combine pairs of 

intermediary values. A wave of aggregation ensues, 

starting at the leaves and converging at the initiator: the 

root of the tree. 

We see this in Figure 5: The first two partial results 

are combined by upcall to the aggregation method in 

the left-most node in the tree, while representatives in 

shards 2 and 3 compute a second partial result.  Since 

 
 
 

 

 

 

 

 

Figure 3: A group of 20 members 
in 5 shards (identifiable by shard-
number and color).  Each small circle 
represents a DHT member: a process 
running on some node within the data 
center. Ida targets groups that could 
have many thousands of members. 

  

Figure 4: With 1-hop view-based 
DHTs, a failure can renumber the nodes, 
changing the DHT mapping.  In Ida, an 
existing node replaces the failed one, 
thus limiting the impact of churn.  If 
needed, state transfer brings the 
replacement up to date. 

Figure 5: Aggregation Tree: After a 
query is sent via ordered subset multi-
cast, one node participates for each 
shard to which a key maps.  Here we see 
a query that touched all shards.  The 
stars are invocations of an application-
supplied aggregation method. 



we have 5 shards, an odd number, shard 4 contributes a 

result of its own.  The first two partial results are then 

combined, and finally the third partial result is 

combined with the intermediate result, giving the 

desired answer.  Within the tree, each time a pair of 

partially aggregated values associated with the same 

QueryKey reaches an inner node, that node combines 

them by calling the user-provided aggregation method 

(the event is shown as a star), then passes the resulting 

key-value pair upward.  This terminates at the root, 

where AggregationWait() returns the result.   

Notice that in contrast to a database, where a query 

could potentially compare all the accessed tuples with 

one-another, an Ida query is done as a single parallel 

action, and the first steps are limited to the local slice 

of the DHT contents.  The only opportunity to combine 

data from multiple shards arises when the local results 

are aggregated.  Thus while the leader can distribute 

any shared information it wishes, an iterated 

computation would be needed if we wanted to use data 

from one shard as an input to the computation at some 

other shard.  Ida certainly supports this, but the 

atomicity of its operations wouldn’t cover a multi-step 

computation.  We’ll have more to say about the issues 

that arise in this style of computation in Section 7. 

No matter how the results are collected, any Ida 

query can include action by the full membership of the 

relevant shards or even the full membership of the 

whole DHT, as in the example shown in Figure 5.  On 

the other hand, not all requests need to involve the full 

shard membership.  Recall that in Ida, data is replicated 

with strong consistency properties.  Thus for read-only 

tasks, one contribution per shard would normally 

suffice.  Moreover, only keys used in the query need to 

be examined, hence only shards corresponding to those 

keys need to be included.   

Accordingly, the QueryKey is used not just as an 

identifier for the query, but also to track  the keys and 

shards that will contribute to it. In this mode, Ida 

automatically selects one representative per shard, and 

delivers the request only at selected members.  Notice 

that any single key-value pair contributes exactly once 

to the aggregation result.  Only members with work to 

do participate: the same nodes that contribute query 

values (the leaf nodes) are also used as inner nodes in 

the aggregation tree.   

The QueryKey<KT> object plays several roles here: 

it uniquely identifies the query (enabling Ida to match 

the result with the query request), is used in 

“trimming” these trees so that only nodes actually 

involved in the task need to play an active role, and 

also tracks the node that will be the root of the 

aggregation tree.  This aggregation infrastructure 

combines the QueryKey data with the current 

membership view to build a spanning tree that only 

includes the nodes where the query actually has work 

to do.  The QueryKey also incorporates the load-

balancing feature mentioned above: for any given 

query, just one member of the relevant shards will 

participate, but the choice of member is varied to 

spread the work evenly.   

There are three ways to identify the destinations for 

a message or a query.  The first involves the entire 

group and maps to the multicast and Query APIs in 

Isis2.  Such a message would reach user-provided 

handlers in all the members; the entire DHT would thus 

be searched.  A second option is to list a desired subset 

of the group members, but otherwise “looks” similar.  

In this case, we employ the new Ida-introduced subset 

multicast.  Finally, the third option involves specifying 

the destinations using a QueryKey.  Here, the user 

provides a list of keys. Ida translates that list to a list of 

shards, then for each shard, picks a single 

representative in a manner that will balance loads.   

As noted, while handling a query, components can 

use Put, much as a MapReduce operation triggers a 

shuffle during which results are moved about and 

aggregated for a Reduce operation.  Indeed, one could 

issue a OrderedSend rather than a OrderedQuery, and 

just leave the participants to compute their partial 

results and then insert them into the DHT.  This, 

though, raises some fault-tolerance issues; we’ll 

discuss them in Section 5. 

A final element of the API concerns control over 

garbage collection of key-value tuples.  Again, there 

are several possibilities.  First, Ida allows the user to 

specify a time-to-live value for the DHT as a whole.  If 

this is used, any key-value pair is timestamped on 

creation and then automatically deleted after the TTL 

expires.  The second option is more explicit: the user 

can Put “null” values, which will remove any prior 

key-value pair with a matching key.  The third is 

simple but extreme: the group hosting the DHT can be 

closed, in which case the entire DHT will vanish. 

5 Ida’s Consistency Guarantees  
The Ida consistency properties are as follows: 

 OrderedPut operations are totally ordered with 

respect to one-another and with respect to 

OrderedGet and OrderedQuery.   

 All non-faulty shard members apply each Put or 

OrderedPut, and in the same membership view.  

 Key-Value pairs will not be lost unless a shard 

abruptly loses its full membership.  After a join or 

leave (failure) event, data is automatically shuffled 

to reestablish the key-to-shard mapping, and any 

new shard members are correctly initialized with 

the full set of key-value pairs that map to them.  

 The result of a query reflects exactly one 

contribution from each shard. Exceptions can 

occur either as a consequence of a failure, or 

because a shard referenced by the query has 



become depopulated (partial amnesia).  Failures 

of this kind are rare, and can be handed by 

catching the exception and reissuing the query.   

Because Ida was implemented over Isis2, Ida 

inherits a strongly consistent overarching execution 

model: a dynamically reconfigurable state machine 

architecture integrated with the virtual synchrony 

group communication model [3][2].  For our purposes 

the important guarantee is this: all group members see 

the same sequence of membership views (rank-ordered 

lists of members), and if a failure occurs, multicasts 

from the failed member are finalized before the view 

reporting the event is delivered.  Thus the consistency 

properties listed above should be understood as being 

specified with respect to a particular view.  The query 

exceptions mentioned in the fourth bullet, for example, 

arise when a new view is reported by Isis2 while a 

query is mid-way through execution.  In such a case we 

can’t guarantee our “one contribution per tuple” 

property, so we throw an exception and leave it to the 

application to reissue the query if desired.   

Failure handling is greatly simplified by the 

underlying virtual synchrony model, and the primary-

partition progress policy.  Any multicast is either 

performed atomically (reaching all destinations that 

don’t crash), or not performed at all, and new group 

membership upcalls are totally ordered with respect to 

multicast.  Multi-Put and Multi-Get are thus failure 

atomic.  Queries either return the correct response, 

reflecting exactly-once contributions from each 

participant, or an exception is thrown, enabling the 

application to reissue the operation. 

A more complex situation arises if a failure disrupts 

an operation that generates new key-value pairs during 

the query step.  Suppose that a query is being executed 

by just one member per shard, but one of those 

members fails.  Not only would the query step fail, but 

if that member has sole responsibility for putting some 

subset of new tuples into the DHT, a new view will be 

defined, yet those tuples will be missing.  Accordingly, 

applications code that create intermediate values must 

do so redundantly, by having all the shard members 

compute the new key-value pairs, and having all of 

them redundantly perform the needed put operations.  

DHT put collisions will thus be triggered.  The Ida 

default behavior is to ignore duplicates.  An overload 

of the QueryKey constructor allows the developer to 

explicitly request this behavior, and if these defaults 

are acceptable, no further action by the user is needed. 

If a correlated failure causes an entire shard to 

become depopulated, Ida throws a shard-depopulation 

exception that would normally cause the whole DHT to 

shut down and then restart from scratch.  Depopulation 

of a shard isn’t a recoverable fault in our model 

because Ida state exists only in-memory.  Fortunately, 

many modern cloud platforms allow long-running 

application to coordinate with the cloud management 

layer to ensure that elasticity won’t cause correlated 

failures.  By using these options and making shards 

large enough, such events can normally be avoided.   

6 Implementation 
Although the features of Isis2 simplified our task, 

Ida needs way to issue ordered reliable multicasts to 

subsets of a group.  Isis2 lacked this form of subset 

multicast, nor can such a protocol be found in the 

literature (most reliable multicast protocols send 

messages within full groups that have membership that 

is either defined at the outset, or is built up over time 

through a series of join and leave events).  The 

aggregation infrastructure is also unique, and again 

required new protocols.  Finally, Ida repairs the DHT 

in an unusual way when members fail.  We discuss all 

of these new mechanisms below. 

Our discussion makes use of a slightly technical 

feature of the way Isis2 implements view changes.  

Isis2 membership change events occur in two stages: 

(1) an upcall occurs in all group members, warning 

them that a new view will soon be defined and giving 

advance notice of what that view will consist of (for 

example, lists of members that will be shown as having 

failed or joined).  This permits members to terminate 

any pending protocols in a protocol-specific manner;  

we’ll see two examples below.  (2) the group 

membership service reports the new membership view, 

via upcall in all the members.  Ida makes use of these 

mechanisms to terminate instances of our aggregation 

protocols and subset multicast protocols so that, as 

each new view becomes defined, the Ida layer can 

finalize any work initiated during the prior view.   

In what follows, we ignore such issues as deciding 

whether to run over UDP or TCP, fragmenting very 

large messages into smaller chunks if needed, flow-

control, etc. All are automated by Isis2 and we made 

no changes to these aspects of the system.  Further, we 

won’t say very much about large groups. When 

launched, Ida initializes a virtually synchronous group 

containing the members of the DHT, using a system 

call that allows a leader to specify the full membership 

(later, failures will trigger automatic removal of 

members from time to time, and planned elasticity 

events will be handled by the leader, which can add or 

remove members in batches).  Thus even a large group 

can be created in a single atomic step. While 

replicating full membership may ultimately limit 

scalability, the issue has not yet been a problem. 

6.1. Mapping Members and Keys to Shards 
Ida group members share a consistent view of the 

group (consisting of the group name, a list of the 

members, and a view-id counter that increments by 1 



each time the view changes). We used the ranking of 

members to determine the shard mapping.  Members 

are ranked left to right, 0 to N-1.   Ida computes the 

expected number of shards (NS) as the target group size 

divided by the shard size, then assigns the member 

with rank r to shard r mod NS, as was seen in Figure 3. 

Given key K, GetHashCode(K) mod NS maps to 

the shard responsible for K.  A QueryKey contains a list 

of keys, each separately mapped in this manner, 

resulting in a shard list that can be (much) smaller than 

the list of keys, since multiple keys might map to the 

same shard.  A QueryKey also has a unique identifier 

and provides the rank within the group of the initiator: 

the root of the aggregation tree at which 

AggregationWait will occur, and where we want the 

aggregated result of the query to be available.  Notice 

that by overriding GetHashCode, a developer can 

control the mapping of keys to shards.  

Ida DHT groups often include more than their 

minimal number of members.  These extra members 

play a special role if a failure occurs. Suppose a low-

ranked member of the red shard fails (Figure 4, top).  

With a standard virtual synchrony scheme, a new view 

would be reported, and because all ranks will now have 

shifted down by 1, all members would be reassigned to 

new shards.  A disruptive churn episode would ensue 

as data is shifted to the new representatives.  Ida avoids 

this by hot-swapping processes from the end of the list 

into the gap: the member that previously had rank 19 in 

our example will be slotted into slot 5, and only it 

needs to be initialized (Figure 4, bottom).  In this 

example the hot-swapped member was previously in 

the red shard, hence no data is copied, but in general a 

state transfer would then occur to initialize the 

repositioned process so that it can play its new role. 

6.2. Implementing Put and Get 

6.2.1. Best Effort Version 

To establish a fair performance baseline, we 

implemented the Ida API in two ways.  Our baseline 

version uses a standard, best-effort DHT architecture, 

with no special consistency properties:  Put and Get 

operations map to a series of reliable 1-to-1 IPC 

operations, with Put sending the (key-value) pair 

directly to shard members where the key resides, and 

Get mapping each key to a shard member and then 

fetching the associated value using RPC.   

With weakly consistent Put, a failure could disrupt 

the list of sends, so we needed an eventual consistency 

mechanism: a means of eventually repairing disruption 

caused by failures, but not necessarily doing so 

instantaneously.  A standard DHT would use some 

form of background protocol to resynchronize shard 

members.  Our task is simpler:  as noted above, an Isis2 

group membership change is preceded by an 

opportunity to terminate pending actions, so we simply 

have the termination upcall trigger an exchange of key-

value lists (with large value objects, one can do this in 

two steps: sending key-version pairs, and then 

following up with an exchange of actual key-value 

pairs only to the extent needed).  In this manner we 

obtain a reliable “1-hop” DHT, but without ordering 

guarantees: a Query could “overlap” with a Put, 

resulting in user-visible inconsistencies.   

6.2.2. Strongly Consistent Version 

We implemented our strongly consistent Ida 

OrderedPut and OrderedQuery operations by mapping 

them to subset multicast, a new protocol that we added 

to the Isis2 infrastructure.  Given a QueryKey, we first 

map the keys to a set of shards.  This list can then be 

mapped to a set of participants using the current group 

membership.  We now run a protocol that uses an idea 

adapted from an early paper of Lamport’s [19], which 

(to our knowledge) had previously been used only in 

full groups.    The protocol assumes that all members 

maintain a logical clock (a long integer): 

 The initiator sends a Put, Get or Query command c 

to each of the participants {P0, … Pk}.   

 When c arrives at participant Pi,  Pi increments its 

logical lock LTi and sets LTc = LTi.  Pi retains c in 

a pending commands record, and then sends LTc  

back to the initiator. 

 The initiator collects proposed times and the 

corresponding participant ranks, and then sends  

(LTmax, rmax) to the participants as a commit time.  

Here, LTmax is the maximum logical clock time 

within the set of proposed times, and the rank rmax 

(the corresponding rank) is used to break ties. 

 Upon learning (LTmax, rmax), Pi updates LTi = 

max(LTi, LTmax).  Then, Pi updates the logical time 

of command c, setting it to (LTmax, rmax). Pi can 

execute committed command c when c has the 

smallest value of (LTc,r) among the set of known 

commands (including both pending and committed 

commands.   A committed command is delivered 

when are no prior pending commands on the 

queue, e.g. no c’ with a smaller value of (LTc’, r’). 

It is easy to see that if commands c and c’ overlap 

at participants Pi and Pj , then Pi and Pj will deliver c 

and c’ in the order determined by the assigned commit 

times.  Moreover, if Pi later learns of some command 

x, then because Pi uses its logical clock LTi to propose 

an execution time, x will receive a commit time larger 

than the one used for c and c’.    

From these properties we conclude that Ida 

operations occur along consistent cuts [8]: a Query or 

Get will be totally ordered with respect to Put.  The 

protocol has local costs: only the initiator and the 

shards referenced in an operation participate.  Slow 

processing of an operation by some single member 



won’t delay operations at other DHT members: the 

ordering protocol runs on a distinct thread from the one 

used to deliver upcalls to the application1. 

Should a failure occur, Isis2 notifies Ida prior to 

reporting the new view. Four cases arise:  (I-1) the 

initiator may have failed after sending the command 

but prior to sending out the commit times; (I-2) the 

initiator may have failed after sending some commit 

messages but before all were successfully transmitted.  

(P-1) a participant may have failed before sending its 

proposed time, (P-2) a participant could fail after 

sending its proposed time but before performing the 

command (obviously, some combinations can arise). 

[I-1] Ida takes no flush action in this case.  When 

the new view is reported, Ida discards any pending 

commands initiated by a failed initiator.   

[I-2] In this case, participants react to the flush 

upcall by echoing the commit messages they were sent 

by the failed initiator, via direct pt-to-pt messages to 

the other participants.  The flush protocol forms a 

consistent cut in such a manner as to ensure that these 

will have been delivered and processed before a new 

view event could be delivered.  Thus if any participant 

knows the commit time, the command will be executed 

by every non-failed participant.   If none knows the 

time, then all garbage collect the associated pending 

messages from the queue, allowing pending committed 

messages with larger timestamps to be delivered. 

[P-1] Here, a participant doesn’t respond to the first 

phase message, leaving the initiator waiting.  Finally a 

timeout occurs and the failure will be sensed.  As long 

as the initiator is in the primary partition, Isis2 initiates 

a new-view flush upcall, and the initiator learns that the 

participant in question has failed.  It can now terminate 

the protocol, and in fact can choose to commit or to 

abort the interrupted multicast (our version commits, 

using the subset of proposed times known so far).  

Should the initiator itself fail, a second view will be 

reported by Isis2 and a second flush protocol will run.  

[P-2] If a participant fails while commit messages 

are being sent, its state is erased.  A new view will be 

reported by Isis2 signaling the failure, and this will 

trigger repair, with some other node swapped in to 

replace the failed one.  As for the failed process itself, 

no special action is needed.   

This scheme assumes that commit information is 

retained until a new view is installed.  Ida employs a 

concise representation of commit times to keep this 

                                                           

 
1 Isis2 uses a single thread per group for event notifications, 

hence actions occur in the order that delivery is scheduled.  

If an application performs a very long-running action, we 

recommend that a new thread be spawned to avoid delaying 

subsequent actions.  These threads must respect the read-

write ordering implied by the event delivery ordering.  

data small, and garbage-collects the information in a 

lazy manner when it will longer be needed.  We reset 

logical timestamps to 0 when a new view is installed. 

6.3. QueryKey Shard-Member Selection 
As noted earlier, an Ida Query only needs to be 

executed by a single participant per shard.  For this 

case, the query initiator computes a hash over the 

QueryKey, and takes the result modulo the shard size.  

We then use this as an offset into the shard.  Only the 

selected members participate in the query.    

6.4. Aggregation Trees 
Ida implements aggregation trees as overlays 

constructed over the set of participating members as 

leaves.   Again, we leverage the guarantee that all 

group members use the identical membership view of 

the group, this time to ensure that all employ identical 

aggregation trees for any given query.  We’ll describe 

the handling for a single query, but Ida actually allows 

many to execute in parallel, using the QueryKey as an 

identifier to match each result to its query.   

The aggregation mechanism is as follows.  To 

initiate a query, we’ll use ordered subset multicast to 

send it to participants.  These participants form the 

leaves of our aggregation tree, and each performs a 

computation on the local set of key-value pairs, 

resulting in a contribution to the desired aggregate.  

These must now be combined to obtain the result of the 

query, as shown in Figure 5. 

We define a binary tree by ordering the participants 

and numbering them 0… K-1.  For simplicity, assume 

K is a power of 2.  Call this layer 0 of the tree: the leaf 

set.   The even numbered nodes now play aggregation 

roles: after node 1 computes its contribution, it sends it 

to node 0, which aggregates that value with its own 

value.  In contrast, the other odd-numbered nodes 

compute their contribution and send them to their even-

numbered counterparts.  If a tree has an odd number of 

leaves, the even-numbered process at the end of the 

line can see this, and won’t wait for a contribution.  

Having aggregated the layer 0 data, we treat the even-

numbered nodes as the leaves of a new layer-1 tree, 

again numbering them from 0…K/2.  Now the process 

repeats.  At the end of the computation, node 0 will 

hold the aggregated result of the query.    

To ensure that node 0 is in fact the initiator of the 

query, we simply set the initiator as the 0-ranked 

member of the participant list when mapping the key 

list to a participant list.  The initiator thus participates 

as a layer-0 leaf whether or not any key mapped to the 

shard to which it belongs. 

 In the event of a failure, Ida interrupts pending 

aggregation query operations.  A query initiator 

awaiting a result will receive an exception and can 

reissue the query in the new view.  In this manner, we 

ensure that either an aggregation is successful, and 



reflects exactly one contribution from each key, or that 

it fails.  Combining this property with the consistent 

cut guarantee from the subset multicast used to initiate 

the query, we obtain the desired consistency guarantee. 

6.5. Managing Intermediary Results 
One interesting challenge posed by the Ida model 

concerns management of intermediate results formed 

during a multistage computation, and needed only for a 

brief period of time. There are several options.  First, 

each Ida tuple has a TTL field; if this is set, the tuple 

will silently vanish when the TTL expires.  Next, there 

is an explicit deletion option for garbage collection 

under user control.  And finally, one can create an 

entire temporary group, populate it with temporary 

data, and then delete the whole group when finished.  

This form of deletion is very efficient and particularly 

easy to implement. 

7 Use cases 
We believe that most uses of Ida will be fairly 

simple (such as finding the value associated with key 

“K”, looking up keys in key-value pairs with value 

“V”, counting items that satisfy some pattern either on 

keys or on values, finding the top N items under some 

ranking, etc).   It is trivial to code these kinds of 

actions, and the ability to update or query multiple key-

value pairs in a single atomic action eliminates what 

might otherwise be complex logic. 

Less clear is the question of whether users would 

want to run more complex applications on Ida.  The 

puzzle is as follows: all sorts of complex data 

structures can be mapped into a key-value 

representation, queried, and updated, and hence one 

can map some remarkably sophisticated applications 

into Ida.  However, the resulting algorithms often 

require multiple steps to carry out a single action.  One 

thus is forced to ask whether the solution departs from 

the DHT properties that make a system like Ida 

appealing.  Our belief is that while Ida can handle a 

wide range of what might normally be viewed as 

transactional database applications, relatively few users 

will try to do such things, and they will mostly limit 

themselves to cases that require very few Ida actions. 

For example, with Ida it is very easy to use an 

iterated binary search to find the median of a set of 

values for a set of matching keys.  Similarly, 

continuous tracking of an evolving aggregated property 

of the underlying data set can be done by writing code 

to compute the property and then periodically issuing 

initiation events.    In both cases log(N) steps are 

required; our conjecture is that while such a cost would 

be too high if it incurred for all operations, occasional 

actions with this cost might be tolerable. 

Also relatively easy to implement are 

multidimensional searches.  There are a few ways to 

solve such problems; the easiest is as follows.  We take 

the ({key-list},value) tuple and compute its hash code, 

using this as a primary key and storing the tuple at that 

location.  Next, for each key in the key list, we store a 

“pointer” mapping from that key to the primary key 

(the UID if you prefer) for the object.  It is helpful to 

define a type for each dimension, thereby leveraging 

the Ida type system as a way to distinguish the various 

dimensions of the key list.  Now we can do a lookup on 

any subset of the keys.  One issues a query, then 

aggregates the results, finding matches on each subkey 

first and retaining only the tuples that matched in all 

keys; a “join” encoded into the aggregation method.   

This approach can also support multi-key range 

queries and pattern search: one sends the request to all 

shards where a match could arise, and then does an 

aggregation that will run in time log(K) where K is the 

number of shards touched:   precisely the search cost 

seen in existing solutions.  In the worst case, the query 

can simply search all shards. 

The generalization of this line of thinking is as 

follows: since Ida permits the developer to perform a 

“one-shot” atomic action on the DHT, are one-shot 

transactions a general enough construct to support a 

wide range of what might normally be thought of as 

database queries and updates, or is the “all at once” 

aspect too limiting?  As discussed in the introduction, 

any response to this question must carry a caveat: we 

are interested not just in understanding the extent to 

which a DHT can mimic a more complex database, but 

rather the degree to which a DHT can perform database 

operations while preserving the essential DHT-ness of 

the solution.  For example, if we were to solve such a 

problem using locks (which Isis2 does support), or with 

a full transactional mechanism allowing multiple 

operations and ending with a commit or abort, we 

would simply be building a new kind of full-scale 

database and abandoning the properties that make a 

DHT appealing. 

Although brevity precludes a detailed discussion of 

such algorithms, we’ve looked at this model and can 

summarize our findings.  First, we’ve identified a 

number of ways of “flattening” transactions, so that a 

transaction designed with multiple stages could 

potentially be transformed into a small number of 

highly parallel steps.  To do this, one draws on an old 

idea: by pre-executing a transaction on a read-only 

copy of a database, it is possible to compute the read 

and write set that would be used if we ran the 

transaction “now”.  For example, transaction T might 

read version 7 of X and version 9 of Y, then update Z, 

creating version 3 of Z and setting it to 123.   The 

updates are captured but not applied: they form an 

intentions list. 

Of course, with dynamic updates, any object can be 

updated at any time.  Accordingly, having flattened the 



transaction in the first stage, one resubmits the 

modified form of the transaction to run as a true update 

action in a second phase.  Specifically, now that we 

know the intended read and write operations, we can 

skip the computation!   Instead, the requirement is 

simply to verify that the versions of X, Y and Z are the 

same as they were during pre-execution, then update Z.  

More broadly, the rule is to verify the version numbers 

on all objects that will be read or written, then 

atomically apply all the updates in the intentions list if 

the verification is successful, discarding the updates 

and restating the whole process if not.  Clearly, this is a 

win if aborts would be rare, and could be a terrible idea 

in a high contention situation. 

Ida lends itself nicely to this form of computation.  

In the pre-execution phase, the mini-transaction is run 

like any Ida query.  We use aggregation to construct a 

list of the object versions that were touched and form 

the intentions list.  Now in a second Ida operation, we 

re-issue the transaction as a “proposed” update.  

Recipients log the portion of the intentions list 

corresponding to keys that  map to their shard, verify 

object versions (temporarily locking those objects), and 

then respond with a commit or abort vote, retaining the 

proposed updates. Again, we aggregate, and then send 

out a commit or abort outcome multicast.  Since all 

multicasts in Isis2 and Ida are atomic with respect to 

group membership changes, if a failure disrupts such a 

sequence, participants will see a new group view in 

which the transaction initiator has failed.  They can 

simply discard the proposed updates: no participant 

could have received a commit, because if any had, all 

would have, and they would have seen it prior to the 

reporting of the new view. 

Thus Ida can support fairly elaborate transactional 

behaviors that are carried out in a three-phase process 

that uses (at least) two Ida aggregation queries and one 

multicast. During the period from when the second 

phase runs to when the third phase finishes, 

participants retain but can’t yet apply updates and may  

need to delay other reads or writes on the affected 

objects.  This takes us full circle: are we now so far 

from the DHT model that users wouldn’t consider Ida 

as a suitable platform for this style of computation?  

While the example shows that Ida has computational 

power equivalent to many kinds of databases, without a 

serious side-by-side comparison, we can’t easily guess 

at how our performance would stack up.   

8 Analysis and Evaluation 
Our experiments focus on the incremental cost 

associated with consistency and on establishing locality 

of costs.  To this end, we compare consistent and non-

consistent Put, Get and Query, all running on a 

dedicated cluster (future experiments will be carried 

out on much larger platforms).  Our main goal is to 

show that costs are local and that Ida scales well and 

rapidly recovers from failures.  

We see the results of these experiments in Figures 

6-8.  All were conducted on a pair of very similar HPC 

clusters, one at Cornell; the other at LLNL labs.  We 

reserved sets of dedicated nodes, then ran either a 

single copy of our test program on each node, or 4 

copies each.  The nodes themselves are dual Intel 

Xenon 6-core processors running at 2.8GHz, and 

interconnected via Mellanox InfiniBand switches. The 

UDP message size limit for these connections is 64K, 

and the Infiniband MTU is 4K.  Each node has 48GB 

RAM memory. The clusters both run identical versions 

of Linux.  Our code was compiled using the 3.2.1 

version of the Mono framework.   

Before presenting our data, we need to remark on 

the poor performance of Infiniband when used to 

support point to point UDP and IP multicast [18].  As 

the reader may be aware, Infiniband is capable of 

exceptionally low latencies and high data transfer rates, 

and can even support a hardware mediated form of 

direct access to remote memory, as well as DMA 

copying from a sender directly to a receiver.  However, 

to gain these benefits one must either use Infiniband 

directly through a so-called “verbs” API, or focus on 

very large data transfers.  In today’s clusters, 

Infiniband is often configured to emulate an Ethernet, 

offering UDP, TCP and IP multicast functionality.  

Studies have shown that in this situation, Infiniband 

dominates 10G Ethernet in almost all respects, but that 

the Infiniband UDP protocol is surprisingly slow, 

achieving less than half the message rate of 10G 

Ethernet.  Because Ida is a UDP-based system, our 

experiments turned out to stress this weak point in the 

IB performance space.  We had no choice: the large 

clusters available to us both require that messaging-

intensive experiments run on the IB network.  In the 

future we hope to repeat our experiments both using 

the Infiniband verbs API, and on 10G Ethernet.  

 
Figure 6:   Total capacity of a DHT for Put/Get 
versus OrderedPut/OrderedGet.  Nodes initiate 
operations at the maximum sustainable rate.   
 



The experiments are symmetric: except as 

indicated, all nodes perform identical operations, with 

different keys.  The shard size was two: a group of size 

N has N/2 shards.  For Figure 6, we ran 1 copy of our 

Ida test application per node and allocated 2 cores 

each. Each experiment ran for roughly 5 minutes of 

wall-clock time (the number of operations depends on 

the scenario, but was in the tens or hundreds of 

thousands).   Figures 7-10 ran 4 copies per node, again 

with 2 cores per copy; performance and loads were 

unchanged from the 1-instance per node run.  

Performance figures are for full runs; the error bars are 

across runs. 

By construction, the Ida operations have expected 

O(1) cost for eventually-consistent Put and Get 

operations: the DHT itself is “one-hop” because each 

node has the addresses of all the other nodes available 

to it, and can perform operations that access multiple 

shards in a single parallel step; cleanup after a failure is 

a rare event and just involves pushing updates to nodes 

that may lack them.  OrderedPut and OrderedGet use 

the 2-phase protocol of Section 6.2.2 for the initial 

step, with several consequences: whereas Put can run 

in an asynchronous “pipelined” manner, OrderedPut 

will be delayed by this initial step.  Further, while Put 

and OrderedPut must touch every member of any 

shards the keys map to; Get and OrderedGet only 

interact with one member per shard.   

 Figure 7 explores the total performance achieved 

for groups of various sizes using the standard DHT Put 

and Get side by side with our ordered versions, 

evaluating single-key operations, employing a shard 

size of 3 and value sizes of 100 bytes (the size had little 

impact on performance; Ida performance turns out to 

be nearly the identical for a wide range of value sizes 

from 10 bytes to more than 62K).  Variance was low. 

 We see linear scalability, but the raw numbers are 

lower than one might expect, apparently because of the 

sluggish Infiniband UDP implementation mentioned 

earlier.  To arrive at this conclusion, we first explored a 

number of possible limiting performance factors.  In 

this experiment all requests were initiated by a single 

thread; with multi-threaded initiators Ida achieves 

higher performance.  Space limits precluded detailed 

discussion of that option here, but the benefit is at most 

10%.  Notice that OrderedGet and classic Get have 

similar but not identical performance: the 

implementation of the OrderedSend protocol employs 

some synchronization that can be avoided by the 

classic version, but it is revealing that the very simple 

Get protocol isn’t very much faster.  Recall that this 

version of Get maps directly to an RPC.  Thus if it runs 

 
Figure 7:   Ordered DHT operations with varying 
numbers of keys (1, 2 or 3).   The Infiniband NIC 

becomes a bottleneck as this test scales up.  

  
Figure 8: CPU usage for OrderedGet with a fixed 

set of keys.  The load is highly localized.   

 
Figure 9: Queries done in two ways: using 

Query/OrderedQuery (initiator collects replies) 
and then with Aggregation started by 

Send/OrderedSend.   

 
Figure 10: While a stream of OrderedGet 

requests are performed, the DHT is forced to 
recover from failures at times 30 and 60. 



slowly, attention focuses on flow control (we checked 

and it never kicks in for these experiments), O/S 

overheads, and the Infiniband version of UDP.   

We ruled out any form of CPU bottleneck: in our 

experiments, CPU loads (including both application 

and O/S computational overheads) never exceeded 30-

40% (for example, see the discussion of Figure 8), and 

profiles showed that Ida itself spends most its time in 

the .NET code that waits for incoming data and then 

retrieves the message from sockets.  It follows that 

Infiniband limits performance.  To confirm this 

conclusion we ran experiments in smaller clusters with 

switched Ethernet interfaces, and consistently achieved 

much higher messaging rates.  

In Figure 7 we measure performance for a single 

thread issuing a series of OrderedGet requests, with 

varying numbers of keys (each key to a distinct shard, 

and those shards are never the one to which the 

initiator belongs).  Recall that we only need one 

participant per shard, hence with a single key (a single 

participant), OrderedGet becomes a classical Get, 

whereas with two or more keys it runs the ordered 

subset multicast protocol of Sec 6.2.2. Notice that the 

network link reaches peak load and becomes a 

bottleneck in the 2-key and 3-key experiments.   

Figure 8 explores CPU usage when OrderedGet 

requests are issued using a key pattern designed to 

select just certain shards. We see that costs are 

extremely localized: only the participating nodes incur 

load.  This is good for scalability if work can be spread 

evenly, but as just noted, can also create hot-spots that 

would be points of contention.  Further experiments at 

larger scale will be needed to clarify the tradeoff.  

Notice also that at peak load these nodes were only at  

30%-35% CPU utilization, supporting the view that the 

network is our bottleneck.  

Figure 9 compares two query scenarios, one using 

aggregation  (Send/OrderedSend) and the other using 

direct all-to-one replies (Query/OrderedQuery), with 

the “O” in the figures designating strongly consistent 

versions.  A single initiator is picked and issues a 

stream of queries, holding the number of participants 

constant but cycling through a key pattern designed to 

eventually touch the full group, with 8 participants per 

request.  Latencies are low here, but ordered 

aggregation has a visible delay.  As the group grows, 

the gap shrinks.  With larger reply objects or very large 

numbers of participants, we would start to see packet 

loss at the initiator for the direct replies case, and 

aggregation would certainly win, but this experiment 

apparently didn’t trigger loss.   

Finally, in Figure 10 we measured the speed of 

group reconfiguration.  We issued a stream of Get 

operations in a group of size 55.  After 30 seconds the 

member ranked 5 terminates.  We see that this causes a 

brief perturbation in the rate of Get operations that can 

be sustained.  At time 60, members 19-37 terminate.   

Again, recovery is quick, but this time when the group 

reconfigures, it has lost 1/3 of its computing capacity. 

9 Prior work 
While there has been extensive prior work with 

DHTs, fewer efforts have explored consistency when 

updates are mixed with queries.  Notable among these 

are Dynamo [12], Pastry [7], Scatter [15], Spark [31], 

Naiad [24], and Comet [14].  Although none of these 

has the style of expanded DHT API used in Ida, Comet 

does explore various extensions aimed at customizing 

the DHT.   The motivation in that project was actually 

similar to ours, but Comet only offers consistency on a 

single-tuple-at-a-time basis, hence many of the issues 

discussed in our paper didn’t arise in their work. 

Spark is a well-known in-memory cache with 

interesting similarities to Ida. Unlike Ida however, 

Spark doesn’t replicate data or move it from node-to-

node; any given Spark instance is basically a local 

cache on the node where it runs.  The design goals 

differ too:  Spark helps iterated MapReduce 

computations avoid recomputing partial results, using 

LINQ-like queries (coded in Scala) as keys to byte 

vectors representing serialized intermediate results, 

which are retained for future reuse, and implementing a 

novel scheduler that places MapReduce tasks so as to 

maximize reuse potential.  Moreover, Spark basically 

assumes an immutable data store: it supports the 

creation of intermediary results and has an extensive 

infrastructure to optimize the management of that form 

of data, but updates to the underlying data set occur 

only through append-only actions that create a series of 

databases, each corresponding to the “time” it 

represents.  A computation runs in just one of these 

snapshots [31].   

Ida could be used in much the same way, but our 

emphasis is on general updates to a key-value set, not 

on append-only big-data stores; we replicate data 

within shards, and whereas Spark can easily recompute 

data as needed, Ida treats key-value objects as 

information that can’t casually be discarded.  On the 

other hand, Ida offers no recourse if a crash 

depopulates a DHT or a shard; Spark potentially can 

recover lost data from a backing store and can recover 

lost intermediary results by recomputing them. 

The desire to offer strong consistency for multi-

tuple updates and queries motivated a key contribution 

in Ida: whereas prior work [15] used Paxos [20] for 

consistency and durability on a shard-by-shard basis, 

Paxos cannot be used for varying sets of shards, since 

this gives rise to irregular patterns of membership 

overlap.  Furthermore, because Ida runs in the soft-

state tier of the cloud, durability of the kind offered by 

Paxos isn’t needed.  Thus Ida’s multi-tuple API 

requires an ordered subset multicast, and by solving 



this problem, it becomes possible to guarantee 

consistency for collections of tuples and for queries 

that might span many shards.    

We pointed out that both Ida and Spark leverage the 

LINQ query language.  The use of LINQ in this 

manner is natural and traces back to Dryad/LINQ [17] 

and Naiad [24], which pioneered the use of LINQ as a 

computational API for operations on key-value 

collections.   LINQ makes these systems somewhat 

database-like, and indeed in Section 7 we saw that with 

a bit of effort Ida could be used as a full-featured in-

memory database system.  However, doing seems to be 

at odds with DHT-ness.  As a result, our focus is on 

uses that wouldn’t guarantee full ACID properties: we 

favor “one-shot” atomicity, and work primarily with 

in-memory data, yielding weak durability. 

Because Ida can be used for queries across large 

collections of tuples, we should touch upon prior work 

on DHTs such as rKelips [21] and HyperDex [13].  

These key-value systems both support range queries. 

rKelips, like Ida, uses a 1-hop DHT architecture but 

only allows range queries in one dimension.  HyperDex 

employs a log(N) structure but allows range-queries in 

multiple dimensions. One carries out range-queries in 

Ida by issuing a query that spans the DHT shards that 

could include key-value pairs of interest and then 

carrying an appropriate computation on the collection, 

aggregating the results: this last step would, similarly, 

take log(N) time.  Notice, however, that because it may 

be hard to know which key-value pairs might match, in 

practice HyperDex would often be more efficient for 

this purpose: the Ida query may need to access shards 

where there are actually no matching tuples. 

As noted in the paper, Ida exists in a space that also 

includes full transactional databases: Google’s Spanner 

[10] was mentioned several times, and one could also 

point to systems like Picolo [25], which optimizes for 

storage of graphical models.  We believe that because 

these depart from the simple and predictable costs that 

make DHTs so popular, they wouldn’t represent 

appealing options for the community we target.  Ida, by 

retaining the DHT performance properties while 

enhancing consistency, aims at developers who 

understand and value the DHT model but who need an 

enhanced API and stronger properties. 

Our examples touched upon simple graph 

algorithms, since these illustrate both the potential 

power of a consistent key-value store that accepts 

updates, but also the more complex programming style 

required when working with such a store in a lock-free 

manner.  As noted, we’re doubtful that users will favor 

Ida for the most complex such solutions, even if there 

is a way to map complex structures and complicated 

transactions into the Ida model: doing so departs from 

the DHT-ness of Ida, which we believe will be key to 

adoption.  Thus a developer facing such problems 

might well prefer optimized systems specifically aimed 

at graph processing at scale, such as Google’s Pregel 

system [22].  Microsoft’s Naiad platform is a second 

example in this class; it focuses on fix-point 

computations in very large graphs [24].  Twitter’s 

Storm [23] streaming query system can query high-rate 

streams of key-value pairs; this is a slightly different 

problem than the one we consider. 

Ida’s aggregation scheme is reminiscent of 

Astrolabe [27]. However, that system lacked strong 

consistency, whereas Ida has very strong guarantees.  

Moreover, Astrolabe imposed a strict size-bound on 

query results; Ida aggregation allows unbounded 

objects to be accumulated, if desired.   

10 Conclusions 
Ida is an in-memory DHT offering a substantially 

expanded API capable of supporting a wide range of 

data structures, with guarantees of strong consistency 

even when updates and queries concurrently modify 

large numbers of key-value pairs.  The system is 

lightweight and highly scalable, offering the guarantee 

that each query reflects exactly one contribution from 

each relevant key-value pair.   
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