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Abstract

Al inference workflows are typically structured as a pipeline
or graph of Al programs triggered by events. As events oc-
cur, the Als perform inference or classification tasks under
time pressure to respond or take some action. Standard tech-
niques that reduce latency in other streaming settings (such
as caching and optimization-driven scheduling) are of limited
value because Al data access patterns (models, databases)
change depending on the triggering event: a significant de-
parture from traditional streaming. In this work, we propose
a novel affinity grouping mechanism that makes it easier
for developers to express application-specific data access
correlations, enabling coordinated management of data ob-
jects in server clusters hosting streaming inference tasks.
Our proposals are thus complementary to other approaches
such as caching and scheduling. Experiments confirm the
limitations of standard techniques, while showing that the
proposed mechanism is able to maintain significantly lower
latency as workload and scale-out increase, and yet requires
only minor code changes.

1 Introduction

Latency-sensitive Al-based applications are increasingly com-
mon [5]. For instance, in edge intelligence applications, de-
vices pass captured data through Al inference and classifica-
tion pipelines, frequently combined with continuous learn-
ing [8]. Minimizing latency is the priority, although through-
put and resource utilization remain important goals [7].
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Our work starts with the observation that when these
pipelines are deployed onto standard Stream Processing (SP)
platforms [12], a mismatch occurs. SP systems are typically
optimized for highly parallel stateless computations and data
transformations. Al inference and classifiers are often state-
ful and context-sensitive, resulting in data dependencies that
can defeat the assumptions made in SP schedulers [30].

The issue is further complicated by unpredictability. For
example, a trajectory-computing task for mobile “actors” in
a traffic scene might have different models trained for cars,
bicycles, pedestrians, etc. Among the vehicle models there
could be one specialized for taxis, another for emergency re-
sponders, and a general-purpose model for all others. The Al
won’t know which actors are present in the scene (and hence
which objects will be needed) until runtime. Caches are too
small to hold a copy of every object that might be needed,
yet even a single cache miss will leave the task waiting while
data is fetched over the network.

Data movement overheads are further amplified when
different stages of an Al pipeline are executed in different
nodes of a network. Reasons for distributing different stages
across multiple nodes include scalability, load balancing, par-
allelism, and specialized hardware sharing. Scalable storage
tends to randomly distribute data objects across the infras-
tructure. Although schedulers try to minimize data move-
ment when deciding where to execute a pipeline stage, there
is no collocation guarantee.

Al developers understand well which collocation depen-
dencies would be beneficial for the latency of their appli-
cations. Alas, existing platforms (such as standard cloud
frameworks) lack the hooks required for developers to pro-
vide feedback. We conjecture that this is partly because of
a presumption that such a mechanism would be in tension
with core platform features such as load balancing and auto-
scaling, and in part because of the concern that the annota-
tion would require significant effort from the developers.

In this work, we propose the affinity grouping mechanism,
which has two main goals: (i) to offer standardized, platform-
independent annotation method whereby developers can
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Figure 1. Computational graph of the RCP application.

express application-specific knowledge about data/compu-
tation correlations in a deployment-agnostic way (allowing
mechanisms such as auto-scaling and load balancing to keep
doing their job); and (ii) leverage this data to significantly
reduce latency as workload increases and the platform scales
out. The mechanism consists of three elements: developer-
specified logic that attaches a string, called an affinity key,
to each new incoming request; developer-specific code to
tag stored data objects with affinity keys; and a runtime en-
gine that makes use of affinity keys to optimize object and
task placement decisions. Leveraging affinity groups does
require changes to the runtime platform, but involves mini-
mal changes to the Al application. Benefits include enabling
proactive collocation of data with computation, coordinated
prefetching, and more efficient cache management. Our pro-
posals are thus complementary to other approaches such as
caching and scheduling.

In order to evaluate our proposals, we design and imple-
ment a representative latency-sensitive Al-based application
consisting of a composition of off-the-shelf Al models. Using
this application, two sets of experiments are performed. First,
we deploy our representative application on a state-of-the-art
stream processing platform targeted at latency-sensitive Al
workflows, which is based on a K/V store. Results show that
affinity grouping achieves significantly lower and more con-
sistent latency as workload and scale-out increase, compared
to the standard object and task placement strategy of the
employed platform. All this requires a minimal annotation
effort from the developer.

In the second set of experiments, we deploy the same ap-
plication on a public cloud, Microsoft Azure. The goal is to
show evidence of the data movement overheads present in
existing SP and Al serving platforms. We observe frequent
pipeline stalls stemming from data accesses that required
fetching objects over the network. We then modify our ap-
plication to address the observed overheads, at the cost of a
high coupling between application and deployment.

This work makes the following contributions:

o We identify inefficiencies of modern platforms to col-
locate data when deploying a representative latency-
sensitive Al-based application that comprises off-the-
shelf Al models. We support this claim by investigating
the application performance on a public cloud.

e To address the identified issue, we propose affinity
grouping, an easy-to-use mechanism that requires no
developer knowledge of deployment/environment de-
tails, and yet enables platforms to achieve effective
collocation of data and compute.
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e An implementation of the affinity grouping mecha-
nism on a state-of-the-art Al serving platform based
on a K/V store is described and evaluated.

The remainder of this work is organized as follows. Sec-
tion 2 motivate our proposals by introducing a representa-
tive latency-sensitive Al-based application and identifying
shortcomings of modern platforms in face of the application
data access patterns. This application is used as a running
example throughout this paper. We then propose the affin-
ity grouping mechanism in Section 3. Experimental results
showing the benefits of the proposed affinity grouping mech-
anism on a local cluster are reported in Section 4. A series of
experiments on Microsoft Azure that support our motivating
claims are reported in Section 5. Related work is presented
in Section 6, while Section 7 discuss the generality of our
approach. We conclude the paper in Section 8.

2 Motivation

We first introduce a Real-Time Collision Prediction (RCP)
application that is used as a running example in this paper.
RCP is representative of a large, important class of latency-
sensitive applications [6] seen in settings such as factories,
robotic warehouses and commercial retail. We then identify
limitations of modern SP and Al serving platforms in face of
the data access patterns showcased by the RCP application.

2.1 Real-Time Collision Prediction

The RCP application continuously sense imminent collisions
between actors (e.g. cars, pedestrians) in traffic intersections
with a window of a few seconds. It consists of a composition
of off-the-shelf Al models (trained for different tasks), result-
ing in a pipeline that runs in an edge datacenter, near traffic
cameras. We focus on the Al inference pipeline, but examples
of reactions to the pipeline output could include flashing red
lights or notifying suitably equipped vehicles. As seen in Fig-
ure 1 the RCP pipeline has three steps: multi-object tracking
(MOT), trajectory prediction (PRED), and collision detection
(CD). Implementation details are provided in Section 4.1.

The first step, MOT, is responsible for detecting and track-
ing actors in video frames received from cameras. The com-
putation in this step consists of detecting all actors in each
frame and their positions, and then matching each detected
actor with its prior instance(s) if any, to determine speed and
trajectory. As input, the MOT requires the current frame and
the positions and features of actors found in the prior frame.
Output is a set of new positions and features for all actors
detected in the frame.

A separate instance of the second step, PRED, is triggered
for each new position of each actor detected by MOT. PRED
predicts the next g positions of an actor based on the past p
positions of that actor. Thus this step requires the current
position of the actor and the previous p — 1 positions tracked
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by MOT. The output is thus a trajectory composed of q po-
sitions. In our implementation p = 8 and g = 12, since the
pretrained model employed was trained with those values.
Each trajectory predicted by PRED triggers a separate in-
stance of the third step, CD. This step matches the received
trajectory with all other trajectories predicted so far for the
same frame, in order to detect collisions. In addition to the
received trajectory, this step also access all available trajecto-
ries from the same frame. For each frame, after all instances
of CD have been processed, the predicted trajectories of ev-
ery pair of detected actors will have been evaluated. The
output of each instance of this step is a list of collisions.

2.2 RCP Distributed Deployment

Earlier, we noted that applications such as our RCP example
lend themselves to a distributed deployment. What we failed
to say is that on many platforms, doing so would be a big
departure from what the platform supports. In fact, today’s
most common approach for implementing an application like
the RCP is to combine the whole pipeline into a monolithic
application, then run it on one multi-core server, selected
by a load balancer. In order to scale and keep up in real-
time, load balancing tends to randomly spray requests over
nodes. Although this approach avoids overheads associated
with transitioning from one step to the next (since all steps
happen in the same process), with complex tasks such as the
RCP, it could easily exceed what one server can handle.

Consecutive invocations of the pipeline for frames from
the same camera have a data dependency. In addition, multi-
ple steps (MOT and PRED) require GPU accelerators. As a
consequence, a frame k must wait until the whole pipeline
for frame k — 1 finishes processing and make the necessary
input data available. Even frames from other cameras will
need GPU resources to be freed. Furthermore, multiple in-
stances of PRED, one for each actor detected by MOT in the
same frame, can be executed in parallel. However, in the
monolithic approach they would bottleneck, significantly
increasing end-to-end latency for that frame. Finally, certain
steps may require more resources than others. In the mono-
lithic approach, scaling individual steps becomes a challenge.
For example, in our experiments the PRED step presented
the heaviest workload, since each frame had up to 49 actors,
and thus this step required more resources.

Thus a job like RCP lends itself to multi-server paral-
lelism: now the scheduler can place different steps on dif-
ferent servers, taking care not to overload any single server.
However, latency will still be sensitive to data movement
overheads related to the data access patterns of each step.
We further discuss such overheads next.

2.3 RCP Data Access Patterns and Overheads

When we deploy an Al pipeline on multiple servers, load
balancing will often run each new task on a server picked
at random among lightly loaded machines. Yet because Al
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models and data dependencies can be very large, the new
task then pauses to fetch data over the network. In real-time
applications such as the RCP, standard solutions such as
caching are of limited value due to data freshness. We discuss
next the extent of this effect, and how developer-provided
knowledge can help the platform.

In the MOT step, each request requires a fresh and poten-
tially big data object — features and positions of actors in
the previous frame (up to 10MB in our experiments). The
nature of the input (a live stream) implies that these objects
will only be used once, hence caching would be ineffective,
since cached objects will never be reused. One way to mini-
mize this overhead would be to send the object to the node
where the next request will be processed. However, the MOT
step only learns which objects it requires at runtime, after
receiving the request.

PRED requires small but very fresh objects. Actor positions
can be re-used only up to 7 times, and there are many PRED
instances for each frame (one for each actor detected). Thus
the overhead from cache misses can add up and become non-
negligible in a time-pressured scenario, as such instances
are placed on different servers by the load balancer. This
overhead grows as more nodes are added to scale out and
cache misses are more common. Furthermore, which objects
will be necessary are only known at runtime, after MOT is
finished. CD follows a similar rationale: the same trajectory
is accessed many times in a short time (the same frame), and
the actual workload is not predictable.

Despite the freshness and the unpredictability of data
access, the developer of the RCP application knows the map-
ping between future requests and objects stored previously.
A platform can benefit from this knowledge and collocate cor-
related objects and requests proactively, slashing data move-
ment overheads. We achieve that with the affinity grouping
mechanism, proposed next. Later, we show how significant
the overheads discussed above can be in the experiments
reported in Sections 4 and 5.

3 Affinity Grouping

In this section, we start with an overview of how data and
tasks are processed in modern SP and Al serving platforms.
We then discuss requirements for the mechanism arising
from the challenges identified in Section 2. Finally, we intro-
duce and discuss the affinity grouping mechanism.

3.1 Execution and Data Flow Model

We now describe a general execution and data flow model
for a typical platform that hosts applications such as the RCP.
Our proposals are related to the location at which data is
stored/retrieved, and computational tasks are executed. A
location refers to a network endpoint (e.g. a server node)
that holds resources such as CPUs, GPUs, hard disks, and
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memory. A platform consists of multiple of such resources
distributed across an edge/cloud datacenter network.

Platforms can be divided in two main subsystems that
constitute the platform-level runtime engine: storage and
compute. As an application runs, data objects are stored and
retrieved (e.g. actors positions in RCP), and computational
tasks are initiated (e.g. a step of the RCP pipeline). In both
cases, the corresponding subsystem needs to make placement
decisions. The storage subsystem contains a data schedul-
ing component responsible for deciding on the location a
data object is to be stored at or retrieved from. Similarly,
the compute subsystem has a task scheduling component
that decides upon the location at which a computational
task is started. Data objects and/or computational tasks are
said to be collocated when the corresponding scheduling
components place them at the same location.

In addition, a platform also provides developers with an ap-
plication-level API, used to interact with the platform-level
runtime engine. Garbage collection, i.e. how data objects
are cleaned from storage when they are not needed (e.g.
actor positions in RCP are not needed any longer after some
seconds), is orthogonal to this work and thus out of scope.

3.2 Requirements

Introduction of feedback by the application developer affects
two aspects of a platform: the application-level AP, and the
platform-level runtime engine. The API provides developers
with a way to encode application-specific knowledge about
correlations, while the platform-level runtime engine makes
use of the knowledge provided by developers to improve da-
ta/computation collocation, scheduling, prefetching, among
other benefits discussed in Section 3.4.

Ideally, the method of specifying correlations through the
application-level API exposed by the platform should be
deployment-agnostic: the developer logic should not be inter-
tangled with specific deployment details. For example, the
only way to be certain that a computation in Apache Spark
Resilient Distributed Datasets (RDDs) [38] will be collocated
with data is to manually code a routing mechanism, using
internal RDDs APIs to determine which servers have copies
of which data items. A similarly complicated proprietary ap-
proach is required to ensure collocation in Microsoft Azure,
as we show in Section 5. While RDDs offers a way to specify
a list of location preferences when storing data, these are only
treated as hints, thus not providing a guarantee.

The method of specifying correlations should also be ex-
pressive enough to allow the platform to capture the data
and computation correlations at runtime. For example, a
single computation may require several data objects, and a
single data object may be required by multiple computations.
A common approach that we reject as inflexible assumes
that when coding an application, developers can already
anticipate the data objects required by each computational
stage and statically declare these dependencies (e.g. using
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a declarative language or SQL) [18, 30, 41]. The platform
then can parse the specification and create its own inter-
nal representation to keep track of which data objects are
required by which computations. However, as seen in the
RCP application, an Al model might dynamically fetch large
objects based on analysis of its inputs. Such model would
have an unspecifiable yet latency-critical data dependency.

Mechanisms such as location preferences in RDD [38],
the partition key in Cosmos DB [27], and the hash tag in
Redis [28] all facilitate collocation of correlated data. For
example, positions of actors in the same image could be
collocated in our RCP application. The cloud runtime envi-
ronment then introduces further mechanisms intended to
collocate stages of a pipelined computation (for example,
MOT inference requests associated with the same RCP video
stream) so that a single node handles them. Other examples
of collocating computation include Apache Spark Stream-
ing partitions and Apache Storm stream grouping [34]. The
problem here is that the data collocation features are decou-
pled from the computation collocation options. Developers
need a unified mechanism that spans the full deployment
and covers both storage placement choices and computa-
tional placement decisions. Furthermore, it is important that
the specification method is easy-to-use for application de-
velopers, i.e. only minimal changes to the application code
should be necessary. Modern APIs for developing Al-based
applications generally satisfy this requirement.

Finally, the mechanism should be lightweight: the engine
should support specified collocations efficiently at runtime,
i.e. the overhead introduced by the implementation within
the engine should be negligible and remain constant as the
platform scales out. Mechanisms such as Redis hash tags
and Azure partition keys are potentially costly: the mapping
between object keys and labels must be synchronized across
the whole infrastructure, which can put a costly distributed
operation such as a database update on the critical path.

Each of the requirements described above is not particu-
larly challenging by itself. The challenge comes when trying
to satisfy all requirements together. For instance, the require-
ment of expressiveness may be in conflict with ease-of-use:
providing more information may also increase the complex-
ity of the API for developers. Similarly, designing a unified
mechanism may also increase the complexity for develop-
ers, and also for the platform to keep track and synchronize
correlation information across the infrastructure. Moreover,
a deployment-agnostic mechanism may not be expressive
enough, since deployment details have to be abstracted away.

3.3 Affinity Grouping Mechanism

Our goals and requirements create a complex problem, par-
ticularly in modern cloud architectures where one often finds
completely independent subsystems specialized for different
roles, each with its own design. In particular, storage and
computation are generally treated as distinct subsystems,
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despite the fact that many compute nodes have substantial
caches that can be viewed as a component of the storage
layer. This observation became the launch point for our affin-
ity grouping mechanism, which groups correlated objects
(and hence is a storage-layer feature), yet exposes the loca-
tions of these groups so that runtime schedulers can leverage
object location data in their decisions.

In affinity grouping, each data object and computational
task has a label, similar in spirit to hash tags in Redis or
partition keys in Azure EHs. The critical difference is that
labels can be computed dynamically at runtime as inputs
are classified. For example, an input image showing a taxi
could be given a label matching various category-specific
Al models and data previously saved in the platform. We
call such labels affinity keys: each object and task has both
a unique name (for example, a file pathname or a K/V key)
and an affinity key, which would not be unique. Such an
approach allows the platform to derive correlations between
data and computation: any data objects and a task with the
same affinity key will be regarded as requiring correlation.

The core of the proposed mechanism is a function f(d),
which maps a descriptor d to an affinity key. A descriptor
contains metadata about a data object (to be stored or re-
trieved) or a computational task (to be initiated). Affinity
keys are labels that can be implemented e.g. as strings. The
application-level API allows developers to provide the affin-
ity grouping function f to the platform. When a placement
decision for a data object or a computational task needs to be
made, the platform then can apply function f: the function
extracts information from the given descriptor to generate an
affinity key. Application-specific knowledge is thus entirely
encapsulated in f. Note that f will be available throughout
the distributed service, and must return the same result for a
given descriptor no matter where it is invoked. Moreover, it
is often invoked on critical paths, where blocking would be
problematic. For example, in Section 4 we discuss an affinity
grouping function that uses regular expressions.

The platform-level runtime engine must guarantee that
the location where data objects are stored and/or cached,
and computational tasks are placed, depends on affinity keys.
In the RCP application, for example, f can map data objects
of past positions of an actor a to a label “actor_a”. The com-
putation task, corresponding to the PRED step, predicting
the future trajectory of actor a can also be mapped to the
same label, letting the platform know at runtime that the
corresponding objects and the computation are correlated.

Regarding the requirements defined above, the proposed
mechanism is deployment-agnostic, since function f maps
descriptors to affinity keys according only to application-
specific knowledge. The platform is then responsible to de-
cide how to handle objects and tasks from each label accord-
ing to the deployment. The mechanism is unified, since func-
tion f applies to placement decisions on both storage and
compute subsystems. Tasks and objects are linked through
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Figure 2. Cascade architecture.

labels, instead of an explicit static list of input objects or
query. Developers have a great deal of flexibility when ex-
pressing data access patterns of their application (i.e. expres-
sive). Turning to the efficiency requirement, only function
f itself must be available on all components of a platform:
there is no associated replicated state. Compliance with the
ease-of-use requirement, however, depends on the specific
implementation. Section 4 describes an implementation in
which developers only need to provide a regular expression.

3.4 Potential Benefits

A platform-level runtime engine can take advantage of affin-
ity keys in many different ways.

Proactive collocation: It is possible to proactively collocate
correlated data and computation by factoring affinity keys
into the caching infrastructure, as well as into placement
decisions of both computations on servers and objects within
a scalable storage infrastructure. For example, in the RCP
application, all positions from the same actor (output from
the MOT step) can be stored in the same physical node where
the PRED computation for that actor will take place when/if
it arrives. In this example, the affinity key for all objects
and tasks should be the same (the identifier of the actor, for
example). Collocation avoids the extra overhead of fetching
input data from remote processes.

Prefetching: The knowledge encoded into affinity keys can
also enable proactive decisions in anticipation of a future
need. For example, in a multistage job a scheduler launching
the first stage may decide to prefetch objects that will be
needed by a downstream stage, based on the affinity key of
the objects and the corresponding stage, in anticipation of
the computational task reaching the corresponding nodes.

Consistency: Many edge Al applications are sensitive to
data sequencing. Similarly to partition keys in Azure EH,
affinity keys can be used to guarantee consistency. Objects
and tasks with the same affinity key may have to be han-
dled sequentially and in order. Additionally, a platform may
allow objects sharing the same affinity key to be updated
atomically, in a single action: this was easily achieved in our
prototype, since objects with the same affinity key are stored
in a same shard, as described later in Section 4.

Parallelism: Objects and tasks with different affinity keys
have no mutual dependency and may thus be handled in par-
allel. Furthermore, the affinity grouping mechanism enables
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a finer grain of parallelism control compared, for example,
with a mechanism such as Azure EHs. In EHs, requests with
different partition keys may be placed in the same partition,
causing the requests to be handled sequentially.

4 FEvaluation on Local Cluster

In this section, we describe an implementation of the affin-
ity grouping mechanism in Cascade [32]: a state-of-the-art
stream processing platform targeted at latency-sensitive
Al workflows. Cascade was selected because it offered the
highest baseline performance among open source platforms
amenable to our methodology, enabling us to ask whether
even lower latency and higher throughput might be feasible
using an affinity grouping methodology.

The goal of this section is to show the benefit of affinity
grouping on the end-to-end (E2E) latency of the RCP ap-
plication. We evaluate the E2E latency of the application
with different workloads, while also scaling out the Cascade
deployment. Section 5 provides a deeper analysis on the
overheads in each step of the pipeline.

4.1 RCP Application Implementation

Our experiment used the Stanford Drone Dataset (SDD) [29],
which contains aerial videos showing campus intersections.
The videos include several types of actors (e.g. pedestrians,
cars, cyclists). Data source “clients” simulate cameras by
streaming these videos to the pipeline. The MOT and PRED
steps are based on off-the-shelf Al models, and we used
the source code and pre-trained models provided by the au-
thors as much as possible: most of our modifications focused
on data ingress/egress. All three steps are implemented in
Python using the PyTorch library.

To implement the MOT step, a multi-object tracker [3]
that employs YOLO5 for actor detection was used. Strong-
SORT [9] and OSNet [40] are used for re-identification and
trajectory tracking. We selected three videos from the SDD
for training (little3, hyang5, and gates3). Data is uncom-
pressed, hence each frame is approximately 8MB in size
(compressing and then decompressing frames is slower than
just transferring them uncompressed). State data containing
positions and features of actors detected in a frame (required
to re-identify actors in the following frame) ranges from
a few KBs to around 10MB depending on the number of
actors in the frame. Frames from the same video must be
processed sequentially, but frames from different videos can
be processed in parallel by multiple MOT instances.

The PRED step employs a trajectory prediction model,
YNet [19] pretrained on the SDD data by the authors [11].
PRED requires eight consecutive positions for each actor
and makes no prediction if fewer than eight are available.
Position objects are small: 10s of bytes. Instances of PRED
for the same actor must be processed sequentially. Instances
triggered for different actors may be executed in parallel.
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Notice that the PRED workload depends not only on how
many clients are streaming frames, but also on how many
actors are detected in each frame by MOT.

CD consists of a simple algorithm that performs a linear
interpolation on the predicted trajectories of identified actors,
outputting a warning if any pair crosses. Instances of this
step corresponding to the same frame and client must be
processed sequentially to ensure that all pairs of trajectories
will be matched with each other. Different frames (even if
from the same client) may be processed in parallel.

4.2 Cascade: System Architecture

Cascade [32] is a full-stack platform for high-speed stream
processing that prioritizes low latency by hosting data and
compute, avoiding copying and locking on critical data paths
and leveraging acceleration technologies such as RDMA and
DPDK. It consists of a set of nodes (clients and servers) inter-
connected in a complete network, typically in an edge/cloud
datacenter. Client nodes may issue requests to any server
node. Server nodes implement two subsystems: storage and
computation. Each subsystem is further described next. Fig-
ure 2 shows an overview of the system architecture.

The storage subsystem implements a sharded Key/Value
(K/V) object store. Server nodes are logically grouped into
disjoint shards. Prior to our work, each object key was hashed
to determine the home shard for the K/V pair. Cascade sup-
ports multiples levels of persistence, but our work considered
only the two in-memory mode: trigger requests, which cause
a task to run but leave no data behind; and volatile storage
requests, which replicate an object that will then be retained
in memory by all members of the home shard.

Cascade’s User-Defined Logic (UDL) framework is responsi-
ble for executing computational tasks. The code for each task
is supplied by the developer as a container or in a Dynamic-
Link Library (DLL). In either case, a task is associated with a
key prefix. On each Cascade server, an upcall will occur if that
server receives a K/V pair with a matching key. For example,
if a task is registered using the prefix “/RCP/taxis”, then an
update to a K/V pair with key “/RCP/taxis/1234” would trig-
ger that task at whichever node the put was sent to. Each
task can also issue another put, enabling pipelined tasks in
which each stage initiates the next stage. In the context of
this work, a potential overhead that we want to minimize
occurs when a task reads an object that is not homed on the
node where it is executing. The object then must either be
fetched from cache or over the network. Even with high-
speed networking primitives supported by RDMA or DPDK,
network transfers of large objects are costly.

Cascade supports a form of resource partitioning called
an object pool. Rather than treating all Cascade nodes as a
single sharded service, the nodes are instead organized into
groups. A single server node can belong to multiple pools.
Cascade allows the developer to configure each pool with its
own properties, such as the shard size to use, and the degree
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Listing 1. Creating pools with/without affinity grouping.

capi = ServiceClientAPI() # Cascade client API
subgroup_type = "VolatileCascadeStoreWithStringKey"
subgroup_index = 0

# creating object pool without affinity grouping
capi.create_object_pool("/no_grouping",

subgroup_type , subgroup_index)

[ R S O

©

creating object pool with affinity grouping

-
5

capi.create_object_pool("/grouping",
subgroup_type, subgroup_index,
affinity_set_regex="_[0-9]+")

o
ERTI Cppen

# putting in the object pool that is not groupec
capi.put("/no_grouping/example_1" None)

[
[ o @

putting in the object pool that is grouped

capi.put("/grouping/example_1" ,None)

—
o

affinity key is 1

of data persistence the pool will offer. For example, a volatile
pool can be pinned to host memory, GPU memory, etc. Pools
are identified by pathname prefixes: if /x/y is the prefix of
a volatile pool holding GPU memory objects, /x/y/z could
name a tensor residing within that GPU memory.

4.3 Affinity Grouping on Cascade

As noted earlier, requests in Cascade consist of trigger, put
or get operations. The first two are parameterized by the
key and value (uninterpreted byte vector) of the object being
transmitted/saved, whereas get takes a key and returns the
corresponding object. We implemented function f as a regu-
lar expression, which is matched against request keys (the
descriptor). The affinity key is a substring of the request key,
composed of the characters that matched the regular expres-
sion. We employed the Hyperscan library [35] for matching
regular expressions, which introduced a negligible overhead
to Cascade’s critical path: according to microbenchmarks,
matching the regular expressions employed in the RCP ap-
plication was under 300 microseconds on average.

To implement the application-level API of the affinity
grouping mechanism, we extended the Cascade client API.
The extension allows developers to register regular expres-
sions with a specified object pool. Listing 1 shows a code
excerpt (in Python) with an example of how object pools are
created, with and without employing affinity grouping. The
only modification made to the Cascade API was the addi-
tion of the optional argument affinity_set_regex to the
method that creates an object pool (line 12). Any put or get
operation assigns an affinity key to the corresponding object
by matching the object key against the regular expression
registered in the corresponding object pool (line 18).

With respect to the platform-level runtime engine, we
made two modifications to Cascade: (i) the mapping from
key to shard within an object pool is based on the affinity key
instead of the request key; and (ii) the affinity key functions
and their matching expressions are registered in all nodes.
As described above, Cascade previously selected the shard
that will handle a request by hashing the object key supplied
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with the object describing the request. Our modified policy
selects the shard by hashing the affinity key. Jointly, these
changes ensure that all objects with the same affinity key
will be stored (and replicated) in the same shard, and route
requests using that same affinity key to this shard.

4.4 Computing Environment

Servers in our local cluster are equipped with Mellanox
ConnectX-4 VPI NIC cards connected to a Mellanox SB7700
InfiniBand switch, resulting in a RDMA-capable 100Gbps net-
work backbone. All servers have their clocks synchronized
using PTP [10], making timestamps from different servers
comparable with sub-millisecond precision. Servers have
two configurations, denoted A and B in this work. Config-
uration A consists of two Intel Xeon Gold 6242 CPUs, 192
GB of memory, and an NVIDIA Tesla T4 GPU. Configura-
tion B consists of two Intel Xeon E2690 vO CPUs and 96 GB
of memory, but no GPU. Our experiments employ up to 8
servers with configuration A, and up to 9 with B.

Cascade was deployed with three object pools, one per
step. Cascade nodes in pools responsible for MOT and PRED
were deployed on servers with configuration A, since these
steps require GPUs for Al inference. Clients and other Cas-
cade nodes were deployed on servers B. In this section, we
report results with a varying number of shards in each pool.
Each shard has always only one node (i.e. a physical server):
increasing the size of each shard would increase replication,
which is not relevant for evaluating our proposals. Each con-
figuration of shards is called a layout, and we denote a layout
as x/y/z, where values x, y, and z indicate the number of
shards for steps MOT, PRED, and CD, respectively.

Although Cascade includes a scheduler, we configured the
system to place objects and trigger computations purely by
affinity key hashing. This enables us to focus on the degree
to which a purely affinity grouping placement of data and
computation can improve latency.

4.5 RCP Deployment on Cascade

Each step of the RCP application was deployed as a DLL
on Cascade’s UDL framework. UDLs are loaded by each
Cascade node on startup, along with models, weights, and
hyperparameters. All required objects (MOT state data, actor
positions and trajectory predictions) are stored/retrieved
using Cascade K/V store.

Each client is responsible for a different video, and sends
video frames at a rate of 2.5 FPS (the rate the Al model em-
ployed in PRED was trained at). To send a frame, a client
puts an object in the K/V store with a key that will trigger a
MOT task. The MOT task retrieves the state data from the
previous frame, and puts a separate object for each actor
position found in the frame. Each actor position put by the
MOT task triggers a separate PRED computation. Each PRED
task first retrieves the past positions of the corresponding ac-
tor from the K/V store, and puts an object with the trajectory
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Table 1. Object pools, example keys, triggered steps, regular
expressions, and affinity keys.

Object Pool ‘ Example Key ‘ Step ‘ Regex ‘ Affinity Key
/frames /frames/little3_42 MOT /[a-zA-Z0-91+_ /little3_
/states /states/little3_42 - /[a-zA-Z0-91+_ /little3_

/positions /positions/little3_7_42 |PRED |/[a-zA-Z0-9]+_[0-9]+_| /little3_7_
/predictions | /predictions/little3_42_7| CD |/[a-zA-Z0-9]+_[0-9]+_|/little3_42_
/cd /cd/little3_42_7_5 - - -

prediction. Each trajectory prediction triggers a separate CD
computation, which first retrieves all trajectory predictions
for the same frame available in the K/V store, and then per-
forms the computation. The result of the collision detection
is put in the K/V store. The E2E latency is the time elapsed
between the client sending the frame, until the result of the
last collision detection for that frame is put in the K/V store.
All tasks cache in memory all objects they retrieve or create.

We employed two workloads: single clients (little3, hyang5,
and gates3), and three simultaneous clients (little3 + hyang5
+ gates3). Each client sends 700 frames, and we discard mea-
surements from the first 100 frames. Each experiment is
repeated three times. Cascade was completely cleared of
objects and object pools before each run of each experiment.

We grouped requests from each step using the affinity
grouping mechanism in a different way. For MOT, grouping
was based on the identifier of the client, so that all frames
from the same client always went to the same shard. For
PRED, grouping was based on actor identifiers, and for CD it
was based on both the client identifier and the frame number.
Table 1 shows all the employed object pools, key examples,
triggered tasks (if any), the regular expressions used to group
requests (if any), and the resulting affinity keys.

Results reported in this section compare two different
placement strategies, random placement and affinity group-
ing. In the random placement strategy, the RCP applica-
tion is executed without using affinity grouping, i.e. objects
and computations are placed randomly by hashing requests
keys — the standard Cascade behavior. In affinity grouping,
we group requests as described above. Hash-based pseudo-
random mapping from key to shard is standard in key-value
stores. Our discovery is that by combining affinity group-
ing with randomization on the affinity key, we get the best
of both worlds: excellent load-balancing and scaling with
sharply higher cache hit rates, hence less data movement.

4.6 Results

We now report results for just one client, varying the num-
ber of shards for MOT (1, 3), PRED (1, 3, 5) and CD (1, 3,
5). Figure 3 shows a box plot of the E2E latency (in mil-
liseconds) for different layouts and placement strategies. We
show only client gates3, results for other clients followed
the same pattern. Both median and 75th percentile latencies
were significantly reduced by affinity grouping, except for
layout 1/1/1: grouping had no effect since there was only 1
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Figure 4. E2E latency for three clients on Cascade.

shard per step. Adding shards does not help with the ran-
dom placement strategy. Although increasing from 1/1/1 to
1/3/3 did help, increasing the number of shards even further
results in higher median and percentile latencies, as fetch-
ing overheads increase due to more cache misses. We now
increase the workload. Figure 4 shows the E2E latency for
three simultaneous clients (little3 + hyang5 + gates3), employ-
ing different layouts and placement strategies. Latency was
significantly lower and more consistent as the deployment
scaled out when employing affinity grouping.

To further highlight the benefit of collocation, we disabled
object caching in our application. Each step then always has
to fetch objects from the K/V store. Here, the main difference
between random placement and affinity grouping is that
the latter guarantees that objects being fetched are always
stored locally, in the same Cascade node (and shard) where
the task is running. For random placement, there is no such
guarantee. Figure 5 shows the results for three clients and
3/5/5 shards. Due to the zero-copy design of Cascade, E2E
latency was the same with or without caching for affinity
grouping, since memory copies are minimized and there is
no serialization overhead when an UDL makes a get request
to the same node where it is running: keeping objects in the
application memory or fetching them locally from the K/V
store incurs virtually the same cost. However, for random
placement, disabling caching significantly increased latency
and reduced throughput. The median latency was off-scale
at more than 58 seconds, hence the bar is replaced with an
arrow. Throughput was on average 6.7 FPS, thus the pipeline
was not able to handle the 7.5 FPS sent by clients collectively.

We also evaluated the impact of replication on E2E latency.
Different layouts with more than one node per shard were
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Figure 6. E2E latency with replication on Cascade.

employed. In Cascade, when a shard has more than one node,
any object stored in that shard is replicated to all nodes in the
shard, before any task is triggered. As a result, tasks in such a
shard will have local access to the objects in that shard, even
if the previous computation (e.g. state of the previous frame)
was performed in another node. This behavior can be seen as
a form of prefetching, since nodes store objects that will be
used in the future before the corresponding request arrives.
However it incurs extra latency since the corresponding com-
putation is only triggered after the replication is completed,
while a more sophisticated prefetching feature would not
prevent the computation to start while prefetching is done in
other nodes. Figure 6 shows results for different layouts. As
a reference, the first group of bars show the latency for 3/5/5
shards, one node per shard (no replication). The next two
bars show results for 1/1/1 shards, with different number
of nodes per shard (3 and 3/5/5), so there is no difference
between random placement and affinity grouping. The last
layout has 1/3/3 shards, two nodes per shard, configuring a
compromise between many shards with just one node each
and a single shard with many nodes. Results show that repli-
cation reduced latency compared to the baseline (first bar).
However, employing affinity grouping and multiple shards
still results in better latency. We argue that these results
show the potential of further investigating the integration
of affinity grouping with prefetching and scheduling.

4.7 Insights

Affinity grouping significantly reduces the latency of the
RCP application on Cascade, compared to other placement
options. Although the sharding policy in Cascade makes
it scalable by design, results show that affinity grouping
improved Cascade scalability even further compared to the
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standard random placement, where adding nodes sometimes
degraded performance due to increased cache misses. It is
important to note that the scalability of affinity grouping
is orthogonal to the scalability of the system as a whole.
The scalability of the affinity grouping mechanism itself is
discussed in Section 3.

Changes to the application were primarily to register reg-
ular expressions (Table 1 during initialization, as illustrated
in Listing 1). Support for affinity grouping required minor
changes to Cascade itself, yet enabled the system to use
affinity keys to place objects and route requests. Our results
on replication indicate that there is potential to improve
latency even further by integrating affinity grouping with
prefetching.

5 Evaluation on Azure Cloud

A natural question to ask is whether our claim that exist-
ing SP and Al serving platforms are inadequate is correct.
To address this, we now describe a second deployment of
RCP on Microsoft Azure Cloud. Granted, Azure is a public
cloud whereas Cascade primarily targets a private cluster,
but we believe this is a fair comparison because it genuinely
represents a state-of-the-art alternative.

The goal of the section is to show evidence that: (i) data
access patterns of applications such as RCP indeed result
in extra fetching overheads; and (ii) although it is possible
to overcome these overheads, it comes at the cost of a high
coupling between application and deployment, since there
is no unified mechanism available in modern platforms such
as the proposed affinity grouping.

5.1 Deployment on Microsoft Azure Cloud

The RCP pipeline was implemented on Stream Analytics
(SA) — Azure’s SP platform. We reused the source-code of
each of the 3 steps (MOT, PRED, and CD), with few modifi-
cations. Each of the Al models was first configured on Azure
Machine Learning (AML) as real-time endpoints, using a
web-services interface. AML is elastic: depending on load,
endpoints can be backed by worker instance pools of vary-
ing size [21]. Pipeline stages were connected using Azure
Event Hubs (EHs) [13]. Clients were deployed in a virtual
machine. Frames from all three videos were stored in Azure
Blob Storage [4], which was also used to store MOT state
data. Positions of actors and trajectory predictions are stored
using Cosmos DB [27]. The resulting architecture is shown
in Figure 7, and is compliant with recommendations from
the cloud vendor. The individual Al tasks were properly
configured with ample resources (similar to the resources
employed previously in the Cascade experiments).

Clients stream frames to the first SA job in the pipeline
at 2.5 FPS, through an EH. The SA job invokes an MOT
endpoint: one instance in the endpoint is selected by a load
balancer to serve the request. The instance fetches the video
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frame from Blob storage and performs the inference (we
assume the client has already uploaded the frame). The state
from the previous frame is also fetched from Blob storage if
it is not already cached in the instance’s memory. Results are
sent through another EH to the next SA job responsible for
invoking PRED endpoints for actor positions. For each invo-
cation, the selected instance of the invoked PRED endpoint
stores the new position on Cosmos DB, and also fetches the
past positions of the corresponding actor that are not already
cached in memory. The CD step is performed in a similar
fashion. The final output of the pipeline is sent back to the
client running on the virtual machine. End-to-end latency
of a frame is the time elapsed from when the frame request
was first sent by the client, until the last output from the CD
step for that frame was received by the client.

All instances in AML endpoints maintain MOT states, po-
sitions and trajectory predictions cached in memory for later
reuse, thus avoiding fetching from Blob storage or Cosmos
DB as much as possible. In the experiments reported in this
section, we employ, for each step in the pipeline, a varying
number of endpoints and instances per endpoint, as indi-
cated. Instances in MOT and PRED endpoints were of type
Standard_NC4as_T4 v3 (equipped with NVIDIA T4 GPUs),
while CD instances were of type Standard_DS3_v2.

We employed as many partitions in EHs and streaming
units in SA as supported by the endpoints (2*number of
instances), maximizing parallelism [22]. The partition key
for MOT requests was the video name, ensuring that frames
originating in any single client were processed sequentially.
Similarly, the partition key for PRED was the actor identifier,
and for CD the frame number. We set the batch size when
invoking AML endpoints to 1, a configuration intended to
minimize per-frame latency.

Our experiments stream 700 frames, but we discard mea-
surements the first 100 to give the framework time to warmup.
Each experiment was repeated three times. To vary the work-
load (the number of simultaneous clients streams), we first
tested with a single video at a time (little3, hyang5, and
gates3), then with two concurrent video streams (little3 +
hyang5), and finally with three (little3 + hyang5 + gates3).

5.2 Increasing Workload

We now report results for experiments with just one client, a
case that establishes baseline latency for each video stream,
processed individually in a heavily provisioned, dedicated
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Figure 9. MOT latency breakdown.

infrastructure. In this set of experiments, each step of the
application had one corresponding endpoint, and we varied
the number of instances. The MOT endpoint had only one
instance, while PRED and CD endpoints had 1, 3, and 5.

Figure 8 shows a box plot of the E2E latencies (in seconds)
for each video and number of PRED/CD instances. The num-
ber of instances for PRED and CD endpoints is indicated on
the horizontal axis. For gates3, the latency for 1 instance was
significantly high and thus the bar was replaced by an arrow.
The plot shows that increasing the number of instances from
1 to 3 reduced the median and 75th percentiles. However, no
significant benefit was observed when increasing the number
of instances to 5 for little3 and hyang5. The reason for this is
that 3 instances were enough to significantly parallelize in-
vocations to PRED. Increasing the number of instances even
further resulted in more network overhead of fetching actor
positions that offset the gain of extra parallelism, since the
rate of cache misses increased. With 3 instances, 64ms was
spent per frame fetching data in the PRED step for hyang5,
while 74ms was spent on average with 5 instances.

We increased the workload to two simultaneous clients
(little3 + hyang5), using the same configuration as the exper-
iments above for individual clients. The average E2E latency,
for 5 instances of PRED/CD, was about 67 seconds. The main
reason for this significant increase in latency is that a sin-
gle instance for the MOT step is inadequate to handle the
increased rate of incoming frames (5 FPS in the aggregate
from the two clients). It is necessary to increase the number
of instances of the MOT endpoint.
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We conducted experiments with two simultaneous clients,
employing 5 instances for PRED and CD endpoints and a
varying number of instances for the MOT endpoint (3, 5, 7,
and 9). For 3 MOT instances, the E2E latency was signifi-
cantly high. With 5 to 9 instances, the median latencies were
all above 4 seconds, with similar distributions. The benefit of
increasing the number of instances was limited, mainly due
to the extra network overhead of fetching the MOT states.
The extra delay causes requests to pile up in queues, result-
ing in a significantly higher E2E latency. Figure 9 shows a
breakdown of the MOT step for each of the videos, when em-
ploying 3 instances on the MOT endpoint. The breakdown
shows how much time was spent on average (in ms) on dif-
ferent MOT sub-steps: fetching the video frame, retrieving
the state from the previous frame, inference, and uploading
the state of the current frame.
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Figure 10. Grouped MOT with 2 and 3 clients.

5.3 Slashing Overheads From MOT

Since we know that the MOT step requires state data re-
garding frames from the same video, we deployed a separate
MOT endpoint for each video, with one instance each. A
separate SA job was also deployed for each endpoint, receiv-
ing requests from a separate EH. Then, each client sends
requests to the corresponding EH. This ensures that frames
from the same video will always be received by the same
instance, avoiding the overhead of fetching states since they
will be already in memory. We say that MOT step is now
grouped. Figure 10 shows the E2E latency of two and three
simultaneous clients, employing three MOT endpoints with
one instance each, and a varying number of PRED and CD
instances (3, 5, and 7). It is possible to see that latency be-
came lower and more consistent as the number of instances
for PRED and CD endpoints increased.

However, we observed that there is still potential to further
cut network overheads. As we increased the number of PRED
and CD instances, parallelism is increased, but so is the time
spent fetching actor positions and trajectory predictions
from Cosmos DB. Figure 11 shows the latency breakdown for
PRED and CD steps, with three simultaneous clients, three
grouped MOT endpoints, and a varying number of PRED
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and CD instances (3, 5, and 7). The plot shows the average
time spent per frame (in ms) fetching the necessary input
data and running the corresponding inference. The values
shown are a sum of the measured times for all invocations.
With 7 PRED/CD instances, for example, the average time
spent fetching data per frame in PRED and CD steps was
almost 200ms (roughly 100ms for each step).

5.4 Slashing Overheads From PRED and CD

Here we employ the same approach as described above for
MOT, leveraging application-specific knowledge to group
PRED and CD. We deploy multiple endpoints with one in-
stance each, instead of one endpoint with multiple instances.
However, it is not possible to rely any longer on the endpoint
load balancer to select which instance will receive each re-
quest. Thus, we manually select in the SA jobs code which
endpoint to forward each request, by writing the output of
the previous step to the corresponding EH. For PRED, this
selection was based on the actor identifier, modulo the num-
ber of PRED endpoints. For CD, the selection was based on
the frame number, modulo the number of CD endpoints.
Listing 2 shows a code excerpt (simplified for the sake
of presentation) from the SA job responsible for the MOT
endpoint associated with the video little3. In the code, from-
little3-client is an EH where the client responsible for the
little3 video sends requests. Function mot-little3-endpoint
invokes the AML endpoint containing a single instance that
performs the MOT inference. There are two queries (lines 9
and 12) that forwards the position of each actor to a specific
EH (to-pred-0 or to-pred-1) depending on the actor identifier
and the number of PRED endpoints. The EHs to-pred-0and to-
pred-1will deliver the actors positions to the corresponding
SA jobs that will invoke their associated PRED endpoints.
Figure 12 shows a comparison between the pipeline with
only the MOT step grouped and the pipeline with all three
steps grouped. We varied the number of endpoints (with one
instance each) for PRED and CD (3, 5, and 7, in different com-
binations), while MOT always had three endpoints (one for
each video). As a workload, we configured three side-by-side
client streams. Latency for 3 PRED/CD instances and only
MOT grouped was significantly high (median 95 seconds)
and was replaced by an arrow for the sake of presentation.
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Listing 2. Code excerpt for the MOT SA job.

WITH mot_output AS (
SELECT [mot-little3-endpoint](input) AS res
FROM [from-little3-client] AS input

), expanded_output AS (
SELECT r.arrayvalue.» FROM mot_output
CROSS APPLY GetArrayElements(res) AS r

)

[ R S o

SELECT » INTO [to-pred-0] FROM expanded_output
WHERE actor_id % num_pred_endpoints = 0

= = o
= o

SELECT + INTO [to-pred-1] FROM expanded_output
WHERE actor_id % num_pred_endpoints = 1
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Figure 12. Grouping only MOT vs grouping all steps.

It is possible to observe a significant benefit when group-
ing all three steps. The measured latency stabilizes with 5
PRED/CD instances, no benefit was observed when further
adding more instances. The gain in parallelism was limited,
however, we argue that more instances would be able to
handle a heavier workload without an increase in latency.

5.5 Insights, Trade-offs, and Limitations

Without our manual grouping, scaling in Azure is straight-
forward: it suffices to increase the number of AML instances,
SA streaming units and/or EH partitions. AML endpoints
will distribute requests across all the available instances au-
tomatically according to their load. Furthermore, the pattern
lends itself to autoscaling. In contrast, with manual grouping
scaling entails adding or removing endpoints, which requires
that the application be reconfigured. In the case of Azure,
changing endpoints requires code changes to client and SA
jobs and the creation of new EHs, and the application itself
would have to do load-balancing/auto-scaling.

The benefit of grouping is significant, echoing our ob-
servation in Section 4. For MOT, grouping was essential to
support more than one client. Without grouping, the over-
head of fetching states inflates runtimes to more than 400ms,
meaning that the next frame arrives before the current frame
is processed (at 2.5 FPS). Requests will pile up at the first
pipeline stage. For a time-pressured scenario such as the
RCP application, the 400ms threshold is of high importance:
the AI model employed in the PRED step predicts actors
trajectories in the next 4.8 seconds. If it takes too long to
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process each frame, due to queuing, it will be too late to
act. Furthermore, since the application handles a real-time
video stream, the MOT state data for each frame will only be
used once (by the subsequent frame), yet without grouping
is moved twice (upload and download).

6 Related Work

Prior efforts [1, 15, 16, 25, 26] argue for a white box approach,
in which optimizations are employed in compilation or train-
ing time, based on specific features such as topology of neural
networks. While such approaches can reduce the compu-
tational cost of model serving, our work employs a black
box approach in which the application only needs to iden-
tify data/compute correlations. Although the authors in [16]
criticize black box approaches, they focus only on caching,
buffering and batching in non-pipelined applications. The
affinity grouping mechanism can support all of these capa-
bilities but also enables additional optimizations, such as
proactive data/computation collocation and prefetching.

Existing systems offer a number of mechanisms to ex-
press application-specific knowledge and/or request group-
ing; these features can be found in Redis hash tag, Azure
Cosmos DB, EHs and SA partition key, RDD location prefer-
ences, Apache Spark Streaming partitions, and Apache Storm
stream grouping. However, as noted in Section 3, such mech-
anisms: (i) are highly coupled with deployment; (ii) do not
collocate data and computation in a unified fashion; (iii) are
not able to express all possible correlations between data
and computation; and/or (iv) may have a non-negligible com-
putational cost as the deployment scales out. We compare
affinity grouping with these other approaches in more detail
in Section 3.2.

The Pheromone [37] system offers a data bucket abstrac-
tion, in which the outputs of functions are automatically
grouped into buckets. Developers can then arrange for down-
stream functions to use data buckets as inputs. This en-
ables Pheromone to place functions close to where the data
is stored. The data bucket abstraction is similar to affin-
ity grouping, however outputs in data buckets are always
volatile (once consumed, they are garbage collected). The
affinity grouping approach is compatible with data persis-
tence, and we would argue that this gives greater flexibility.
Furthermore, the authors do not consider more complex
workflows in which multiple functions may require access
to the same output in different stages, or in which a function
requires data from multiple buckets.

Several works improve data locality by scheduling tasks
where input data (or most of it) is located [2, 6, 23, 24, 33, 36,
39], or by scheduling tasks that interact with each other in
the same location (node, VM, or container) [14, 17]. These
solutions follow a reactive approach: data is first placed with-
out taking into account their correlations, and then tasks
are placed where “most of input data” is located. Due to
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the data access patterns of latency-sensitive Al pipelines, a
proactive approach, such as enabled by affinity grouping,
may be necessary. We claim that our proposed mechanism
is complementary to scheduler-based solutions.

Finally, data collocation is widely explored in literature
and thus is not a novel concept per se [20]. However, we
argue that our novelty lies in providing developers with an
easy-to-use mechanism that requires no knowledge of de-
ployment/environment details, while still achieving effective
collocation. The experiments in Appendix 5 are evidence of
the limitation of modern platforms and the potential to im-
prove latency by applying collocation principles. Neverthe-
less, achieving such collocation is challenging for developers
and pose trade-offs, hence the need for a better mechanism.

7 Beyond RCP and Cascade

In this work we employed the RCP application as a running
example, and implemented affinity grouping only on the
Cascade platform. A natural question that arises is whether
affinity grouping can be generalized to other applications
and/or Al hosting platforms. To address such question, we
discuss next how the affinity grouping mechanism could be
implemented in Azure, as well as other emerging applications
where affinity grouping can have a great impact.

7.1 Affinity grouping in Azure

In Section 4 we described an implementation on a platform
based on a K/V store. Few modifications would be required
to implement our proposals in Azure. For example, if Azure’s
storage solutions and AML operated in a consistent fashion,
data stored in Cosmos DB or Blob storage with a certain
affinity key could be prefetched by physical servers running
the AML instance handling requests with that affinity key.
AML endpoints with multiple instances should ideally route
requests with the same affinity key to the same instance.
If the load balancer will add instances to reduce load on a
hot-spot, it could prefetch correlated data to pre-warm those
instances. Azure has many caching components; these could
be extended to load or evict object sets, applying the identical
policy objects sharing a single affinity key.

7.2 Emerging applications

In reinforcement learning (RL) [31], an ML system might run
for hours or days repeatedly accessing the same data objects,
but not always using the same nodes for running tasks. A
developer of such system knows which data objects are ac-
cessed by each task, and therefore can map affinity keys to
tasks and data objects. Such mapping allows a node to fetch
all needed objects for a task invocation (they all share the
same affinity key) at once and in parallel, and cache them
as a set (or evict them as a set). Such objects may be a set
of cached K/V pairs, corresponding to the activation state
of the training NN, needed by a Low Rank Adapter (LoRA).

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

Fetching one by one incurs significantly higher delays, be-
cause it doesn’t leverage the parallelism of the network, and
caching systems lack semantic knowledge of the application,
which is clear for the developer and can be easily encoded
through affinity grouping.

The same rationale above also applies in the training of
modern transformer-based models (e.g. LLMs). In such con-
text, it is common practice to cache collections of Query (Q),
Key (K), Value (V) tuples, which are a snapshot of the DNN
state of some layer L at step T, triggered by input query Q.
Any given (Q, K, V) tuple is updated by only one neuron in
layer L, but the iterated (“auto-regressive”) training algo-
rithm requires that at each step every neuron in layer L read
the full set of layer L tuples from the prior step, adapt its
own weights (compute a gradient), apply the gradient to the
layers around it (forward and back propagation), and then
update its (Q, K, V) tuple. By hashing Q, L and T we can
identify an affinity group: the entire group of tuples for this
query at this time step for layer L can be cached (or evicted)
jointly. Updates will stream from individual neurons to the
tuples they own, and as each step finishes, the neurons active
in the next step will simply read the cached prior values.

In contrast, suppose we viewed this affinity grouping as
a key in a standard K/V store like Reddis. Clearly, we could
form a single object collecting the set of (Q, K, V) tuples
for layer L at step T. Once serialized to a byte vector, we
would have a K/V object that can be stored in a sharded key-
value storage service. But because this one big object has
contributions from all neurons in L, we would either need to
run AllReduce simply to compute it, or pick a K/V store that
supports coherent in-place updates and have each neuron
read the working value, update it to add its own (Q, K, V)
tuple, and write the result back. After one update per neuron,
the version of the object would be complete for step T, and
step T + 1 could run. The issue here is that all the neurons
in layer L contribute to this object, and because they run
concurrently, all contend to read, modify, and rewrite the
object when creating it. That will take time: one layer can
have many neurons, so these two alternative approaches
(AllReduce or one big object holding the collection) would
be very slow in comparison to an affinity-based solution,
where each node only reads tuples from its own cache.

8 Conclusion

We proposed an affinity grouping mechanism that enables
developers to express application-specific knowledge of da-
ta/computation correlations, and then for platforms to use
this information to reduce latency and improve efficiency.
Our results show that the proposed mechanism is able to
maintain significantly lower latency as the application work-
load increases and the infrastructure scales out. Results also
show great potential for integrating the proposed mechanism
with other approaches such as prefetching and scheduling.
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