
Autonomic Computing–A System-Wide Perspective∗

Robbert van Renesse Kenneth P. Birman

Department of Computer Science
Cornell University, Ithaca, NY 14853

{rvr, ken}@cs.cornell.edu

Autonomic computing promises computer sys-
tems that are self-configuring and self-managing,
adapting to the environment in which they run, and to
the way they are used. In this chapter, we will argue
that such a system cannot be built simply by compos-
ing autonomic components, but that a system-wide
monitoring and control infrastructure is required as
well. This infrastructure needs to be autonomic it-
self. We demonstrate this using a datacenter archi-
tecture.

1 Introduction

Computer systems develop organically. A computer
system usually starts as a simple clean system in-
tended for a well-defined environment and applica-
tions. However, in order to deal with growth and
new demands, storage, computing, and networking
components are added, replaced, and removed from
the system, while new applications are installed and
existing applications are upgraded. Some changes
to the system are intended to enhance its functional-
ity, but result in loss of performance or other unde-
sired secondary effects.. In order to improve perfor-

∗The authors were supported by grants from the Autonomic
Computing effort at Intel Corporation, from DARPA’s Self Re-
generative Systems program, and from NSF through its TRUST
Science and Technology Center.

mance or reliability, resources are added or replaced.
The particulars of such development cannot be antic-
ipated; it just happens the way it does.

Organic development seldom leads to simple or
optimal systems. On the contrary, an organically de-
veloping system usually becomes increasingly com-
plex and difficult to manage. Configurations of indi-
vidual components become outdated. Originally in-
tended for a different system, they are no longer opti-
mal for the new environment. System documentation
also becomes outdated, and it is difficult for new sys-
tem managers or application developers to learn how
and why a system works. While the original system
was designed with clear guidelines, an organically
developed system appears ad hoc to a newcomer.

The autonomic computing effort aims to make
systems self-configuring and self-managing. How-
ever, for the most part the focus has been on how to
make system components self-configuring and self-
managing. Each such component has its own feed-
back loop for adaptation, and its own policies for
how to react to changes in its environment. In an
organic system, many of such components may be
composed in unanticipated ways, and the composi-
tion may change over time in unanticipated ways.
This may lead to a variety of problems, some of
which we now address.

1



First, the components, lacking global control, may
oscillate. Consider, for example, a machine that runs
a file system and an application that uses the file sys-
tem. Both the file system and the application are
adaptive—they both can increase performance by us-
ing more memory, but release memory that is un-
used. Now apply a load to the application. In or-
der to increase request throughput, the application
tries to allocate more memory. This memory is taken
from the file system, which as a result cannot keep
up with the throughput. Due to decreased through-
put, the application no longer requires as much mem-
ory and releases it. The file system can now increase
its throughput. In theory, an autonomic allocation
scheme exists so that these components may con-
verge to an optimal allocation of memory between
them. However, if the components release the same
amount of memory each time, they are more likely to
oscillate and provide sub-optimal throughput. While
with two components and one shared resource such
a situation is relatively easy to diagnose and correct,
with more components and resources doing so be-
comes increasingly hard.

Second, even if all components of a system are au-
tonomic, the configuration of the system as a whole
is typically done manually. For example, some of
the machines may be used to run a database, while
other machines may be dedicated to run web servers
or business logic. Such partitioning and specializa-
tion reduces complexity, but likely results in non-
optimal division of resources, particularly as a sys-
tem changes over time. Perceived inefficiencies are
usually solved by adding more hardware for specific
tasks; for example, more database machines may be
added. In a system spanning multiple time zones,
performance critical data or software licenses may
need be moved over time. Such changes often re-
quire that the configuration of many other machines
have to be updated, and finding and tracking such
dependencies is non-trivial.

Perhaps the most difficult problem is the one of
scale. As an organic system grows in the number of
resources, applications, and users, its behavior be-
comes increasingly complex, while individual com-
ponents may become overloaded and turn into bot-
tlenecks for performance. Few if any system admin-
istrators will have a complete overview of the system
and its components, or how its components interact.
This not only makes it more difficult to manage a
system, but it also becomes harder to develop reliable
applications. Installing new resources or applica-
tions may break the system in unexpected ways. To
make matters even more complicated, such breakage
may not be immediately apparent. By the time the
malfunction is observed, it may no longer be clear
which system change caused the problem.

In this chapter, we argue that a system-wide au-
tonomic control mechanism is required. We de-
scribe a Scalable Monitoring and Control Infrastruc-
ture (SMCI) that acts as a system-wide feedback
loop. The infrastructure allows administrators to
view their system and zoom into specific regions
with directed queries, and also allows administrators
to change the behavior of the system. Administra-
tors can create global policies for how components
should adapt. While it is still necessary for the in-
dividual components to adapt their behavior, the in-
frastructure guides such local adaptation in order to
control system-wide adaptation. This way, internal
oscillation may be all but eliminated, and the infras-
tructure can control how applications are assigned to
hardware in order to maximize a global performance
metric.

2 Scalable Monitoring and Control
Infrastructure

An SMCI can be thought of as a database, describing
the underlying managed system. For convenience,

2



the database reflects an organizational hierarchy of
the hardware in the system. We call the nodes in
such a hierarchy domains. For example, a building
may form a domain. Within a building, each machine
room forms a domain. Each rack in the machine
room forms a subdomain. Associated with each do-
main is a table with a record for each subdomain.
The records reflect and control the subdomains. See
Figure 1 for an example.

For example, in the table of the domain of a rack,
there may be a record for each machine, specifying
attributes like the CPU type, the amount of memory,
its peripherals, what applications it is running, and
the load on the machine. Some attributes are read-
only values, and can only be updated by the machine
itself. An example is the number of applications that
is running on the machine. Other attributes may be
written by external sources in order to change the be-
havior of the component. For example, the machine
record may contain attributes that govern relative pri-
orities of the applications that it is running.

The tables look like database relations, and would
typically be accessed using a query language like
SQL. An SMCI will allow one-shot queries like:
“how many machines are there?” as well as contin-
uous standing queries like “inform me of updates to
the number of machines.” The latter query works in
conjunction with a publish/subscribe or event noti-
fication mechanism, and publishes updates to inter-
ested parties.

A unique feature of SMCIs as compared to ordi-
nary relational databases is their ability to do “hier-
archical aggregation queries.” An ordinary aggrega-
tion query is limited to a single table, while a hierar-
chical query operates on an entire domain, compris-
ing a tree of tables. For example, one may ask, “How
many machines are there in room 4105?” This query
adds up all the machine in all the racks in room 4105.

Note that unlike a database an SMCI is not a true
storage system. It gathers attributes from system

components and can update those attributes, but it
does not store them anywhere persistently. It may
store them temporarily for caching purposes. In
other words, the tables observed in an SMCI are vir-
tual, and dynamically materialized as necessary in
order to answer queries about the system. In order
to do so, an SMCI does need to keep track of the or-
ganizational hierarchy of the system as well as the
standing queries. In addition, an SMCI has to de-
tect and reflect intentional reconfigurations as well
as changes caused machine crashes or network link
failures.

An SMCI allows clients, which may include both
administrators and running programs, to ask various
questions about the system. Examples of such ques-
tions include “where is file foo,” or, “where is the
closest copy of file foo?” “Which machines have a
virus database with version less than 2.3.4?” “Which
is the heaviest loaded cluster?” “Which machine in
this cluster runs a DNS resolver?” “How many web
servers are currently up and running?” “How many
HTTP queries per second does the system receive as
a whole?” “Which machines are subscribed to the
topic bar?” And so on.

The real power of the system derives from the fact
that the query results may be fed back into the sys-
tem in order to control it. This creates an autonomic
feedback loop for the system as a whole. It can drive
the configuration of the system, and have the system
adapt automatically to variations in its environment
and use, as well as recover from failures. For exam-
ple, the number of replicas of a service may depend
on the measured load on the service. The replica
placement may depend on where the demand orig-
inates and the load on the machines. All this may be
expressed in the SMCI.

In order for an SMCI to work well, it needs to be
autonomic itself. Should an SMCI require signifi-
cant babysitting compared to the system it is manag-
ing, it would cease to be useful. An SMCI should

3



Room 4105

Rack 3

Machine 12

Building Upson
name

Rack 1

Rack 2

Rack 3

Rack 4

#nodes

16

16

15

16

min.load

0.2

1.4

0.7

1.7

Campus Ithaca

Root

Figure 1: An example of a SMCI hierarchy. On the right is the domain table of the room 4015, which has
four racks of machines. Each rack has three attributes: its name, the number of operational machines in the
rack, and the minimum load across the machines.

be robust and handle failures gracefully. It should be
self-configuring to a large extent, and provide accu-
rate information using a minimum of network traffic.
It should scale well, allowing for the hierarchy to be
grown as new clusters, machine rooms, or buildings
are added to the organizational structure.

Our choice of language deliberately suggests that
a system would often have just one SMCI hierar-
chy, and indeed for most uses, we believe one to be
enough. However, nothing prevents the user from
instantiating multiple, side-by-side but decoupled,
SMCI systems, if doing so best matches the char-
acteristics of a given environment.

A number of SMCIs have been developed, and be-
low we give an overview of various such systems.
All are based on hierarchies. Most use a single ag-
gregation tree. Examples are Captain Cook [9], As-
trolabe [10], Willow [11], DASIS [1], SOMO [13],
TAG [5], and Ganglia [8, 6]. SDIMS [12] and

Cone [2] use a tree per attribute. Below we give an
example of two peer-to-peer SMCIs, one that use a
single tree, and one that uses a tree per attribute.

2.1 Case Study: Astrolabe

The Astrolabe system [10] is a peer-to-peer SMCI, in
that the functionality is implemented in the machines
themselves and there are no centralized servers to
implement the SMCI. Doing so improves the auto-
nomic characteristics of the SMCI service. In As-
trolabe, each machine maintains a copy of the ta-
ble for each domain it is a member of. Thus it has
a table for the root domain and every intermediate
domain down to the leaf domain describing the ma-
chine itself. Assuming a reasonably balanced orga-
nizational, the amount of information that a machine
stores is logarithmic in the number of machines.

The attributes of a leaf domain in Astrolabe are
attributes of the machine corresponding to the leaf

4



name

Rack 1

Rack 2

Rack 3

Rack 4

#nodes

16

16

15

16

min.load

0.2

1.4

0.7

1.7

name

Room 1

Room 2

Room 3

#nodes

23

94

63

min.load

0.5

0.4

0.2

gossip with other rooms

gossip with other rackslo
ca

l a
gg

re
ga

tio
n

Figure 2: Data structure of a machine in Rack 3 inside Room 3 of some building. The machine generates
the attributes of Rack 3 and Room 3 using local aggregation. The attributes of peer racks and rooms are
learned through gossip.

domain, and may be writable. Standing aggregation
queries generate the attributes of non-leaf domains
(so-called internal domains), and are strictly read-
only. The table of a domain is replicated on all the
machines contained in that domain, and kept consis-
tent using a gossip protocol.

Using an organizational hierarchy based on
DNS as an example, consider the leaf domain
fox.cs.cornell.edu, and consider how this machine
may generate the attributes of the cornell.edu do-
main has subdomains cs, bio, chem, etc. The ma-
chine fox.cs.cornell.edu can generate the attributes
of the cs.cornell.edu domain locally by aggregating
the attributes in the rows of its copy of the domain
table of cs.cornell.edu. In order to learn about the at-
tributes of bio.cornell.edu and chem.cornell.edu, the
machine has to communicate with machines in those
domains.

In order to do so efficiently, Astrolabe utilizes its
mechanisms to manage itself. Astrolabe has a stand-
ing query associated with each domain that selects a
small number, say 3, of machines from that domain.
The selection criteria do not really matter for this dis-
cussion, and can be changed by the system adminis-
trator. These selected machines are called the repre-
sentatives of the domain. Peer representatives gossip
with one another, meaning that they periodically se-
lect a random partner and exchange their versions of
the domain table. The tables are merged pair-wise
(Astrolabe uses a timestamp for each record in order
to determine which records are most recent). Apply-
ing this procedure with random partners results in an
efficient and highly robust dissemination of updates
between representatives. The representatives gossip
the information on within their own domains.

5



Thus, fox.cs.cornell.edu computes the attributes of
the cs.cornell.edu domain locally, and learns the at-
tributes of bio.cornell.edu etc. through gossip. Ap-
plying this strategy recursively, it can then compute
the attributes of cornell.edu locally and learn the at-
tributes of the peer domains of cornell.edu through
gossip. Using this information it can compute the
attributes of the edu domain. Note, however, that
there is no consistency guaranteed. At any point in
time, fox.cs.cornell.edu and lion.cs.cornell.edu may
have different values for the attributes in their com-
mon domains, but the gossip protocols disseminate
updates quickly leading to fast convergence.

2.2 Case Study: SDIMS

Another peer-to-peer approach to an SMCI is taken
by SDIMS (Scalable Distributed Management In-
formation System) [12]. SDIMS is based on Plax-
ton’s scheme for finding nearby copies of objects [7]
and also upon the Pastry Distributed Hash Table, al-
though any Distributed Hash Table (DHT) that em-
ploys bit-correcting routing may be used.

In a DHT, there is a key space. Each machine has
a key in this key space, and maintains a routing table
in order to route messages, addressed to keys, to the
machines with the nearest-by keys. For each position
in a key, a machine maintains the address of another
machine. For example, supposed that keys consist of
8 bits and a particular machine has key 01001001. If
this machine receives a message for key 01011100,
the machine determines the common prefix, 010, and
finds in its routing table the address of a machine
with address 0101xxxx. It then forwards this mes-
sage to that machine. This continues until the entire
key has been matched or no machine is found in the
routing table.

In SDIMS, the name of an attribute is hashed onto
a key. The key induces a routing tree. This tree is
then used to aggregate attributes of the same name

on different machines. Unlike Astrolabe, SDIMS
has a flexible separation of policy and mechanism
that governs when aggregation happens. In SDIMS,
one can request that aggregation happens on each
read, in which case the query is routed from the re-
quester to the root of the tree, down to the leaves in
the tree, retrieving the values, back up the tree ag-
gregating the values, and then down to the requester
in order to report the result. For attributes that are
read rarely, this is efficient. For attributes that are
written rarely, SDIMS also provides a strategy that
is triggered on each write, forwarding the update up
the tree and down to subscribers to updates of the ag-
gregate query. SDIMS provides various strategies in
between these extremes, as well as a system that au-
tomatically tries to determine which is the best strat-
egy based on access statistics.

In order to make Pastry suitable for use as an
SMCI, several modifications were necessary. Most
importantly, the original Pastry system does not sup-
port an organizational hierarchy, and cannot recover
from partition failures.

2.3 Discussion

Because SDIMS utilizes a different tree for each at-
tribute, and optimizes aggregation for each attribute
individually, it can support more attributes than As-
trolabe. On the other hand, Astrolabe can support
multi-attribute queries in a straightforward way. As-
trolabe’s gossip protocols are highly robust and work
even in partially connected systems, but are less effi-
cient than SDIMS’s protocols.

Both Astrolabe and SDIMS are self-configuring,
self-managing protocols. Each requires that each
node is given a unique name, and an initial set of
“contact nodes” in order to bootstrap the system. Af-
ter that, failure detection and recovery, and member-
ship management in general is taken care of automat-
ically.

6



3 Service-Oriented Architecture

Many large datacenters, including Google, eBay,
Amazon, Citibank, etc., as well as at datacenters
used in government, organize their systems as a
Service-Oriented Architecture (SOA). In [4], the au-
thors introduce a common terminology for describ-
ing such systems. Below we will review this termi-
nology, and give an example of how a web-based
retailer might create a self-configuring and self-
managing datacenter using a SMCI.

A collection of servers, applications, and data at a
site is called a farm. A collection of farms is called a
geoplex.

A service may be either cloned or partitioned.
Cloning means that the data is replicated onto a col-
lection of nodes. Each node may provide its own
storage (inefficient if there are many nodes), or use a
shared disk or disk array. The collection of clones is
called a Reliable Array of Cloned Services or RACS.
Partitioning means that the data is partitioned among
a collection of nodes. Partitions may be replicated
onto a few nodes, which then form a pack. The set
of nodes that provide a packed-partitioned service
is called a Reliable Array of Partitioned Services or
RAPS.

While a RAPS is functionally superior to a RACS,
a RACS is easier to build and maintain, and there-
fore many datacenters try to maximize the use of the
RACS design. RACS are good for read-only, state-
less services such as often found in the front-end of a
datacenter, while RAPS are better for update-heavy
state as found in the storage back-end. A system built
as a RAPS in which each services is a RACS poten-
tially combines the best of both options, but can be
complex to implement.

SOA principles are being applied in most if not
all large datacenters. All these systems have devel-
oped as described in the introduction, in an organic
way, starting with a few machines in a single room.

Now they are geoplexes with thousands to hundreds
of thousands machines, with hundreds or thousands
of applications deployed. Literally billions of users
depend on the services that these systems provide.

The configuration and management of such sys-
tems is a daunting task. Problems that result in black-
outs or brown-outs need to be resolved within sec-
onds. Automation is consequently highly desired.

The state-of-the-art is that each service has its own
management console. Yet the deployed services de-
pend on one another in subtle or not so subtle ways.
If one service is misbehaving, this may be caused
by the failure of another service. Obtaining a global
view of what is going on and quickly locating the
source of a problem is not possible with the monitor-
ing tools currently provided. Also, while such ser-
vices may have some support for self-configuration
and self-management built-in, doing so on a global
scale is not supported.

A SMCI can be used to solve such problems. A
SMCI has a global presence, and can monitor arbi-
trary sensory data available in the system. Subse-
quently, the SMCI can provide a global view by in-
stalling an appropriate aggregation query. While use-
ful to a system administrator, such data can also be
fed back into the system help automate the control of
resource allocation or drive actuators, rendering the
system self-configuring and self-managing. We will
demonstrate this for a web-based retailer.

4 An Example

A web-based retailer’s datacenter typically consists
of three tiers. The front-end consists of web servers,
and handles HTTP requests from remote clients. The
web servers issue parallel calls to services imple-
mented by applications running in the middle tier.
A web page typically requires calls into various ser-
vices for the various sections of the page. Examples

7



RACS RAPS

4

3

2

5

3

2

1

4

3

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

Figure 3: Example of RACS and RAPS architectures. In RACS, each object is replicated on all three
machines. In RAPS, an object is replicated only on a subset of the machines, allowing more objects to be
stored and offering greater flexibility in availability guarantees.

of services include an HTTP Session Service, prod-
uct search and browsing, various services that de-
scribe a product (pictures, technical data, availabil-
ity, pricing, etc.), a service that recommends related
products, and many more. The services may need to
call on one another. Long-term storage is handled by
the back-end tier.

The front-end servers typically are stateless. For
every incoming request they simply call into the sec-
ond tier. A RACS architecture is an obvious choice:
each web server is essentially identical, and main-
tains little data. The third tier’s storage reflects
the actual assets held by the retailer, and also deals
with credit card information and transactions, and
therefore needs to be highly reliable and consistent.
A RACS architecture would not scale, as updates
would have to be applied, consistently, at each server.
Consequently, the third tier is typically implemented
as a RAPS. For the middle tier, a choice between
RACS and RAPS can be made on a per-service ba-
sis.

The description so far is a logical depiction of a
datacenter. Physically, the datacenter consists of a

collection of machines, disks, networks, and often,
load balancers that distribute requests among nodes
of a service. Both the logical and physical aspects
of a datacenter are in flux. Physically, machines
die, are added, or are replaced, while the network
architecture may also change frequently. Logically,
many datacenters deploy several new applications
per week, and retire others. As a result, the configu-
ration of a datacenter must be updated continuously,
and more frequently as a datacenter grows.

The web servers in the front-end need to know the
layout of a web page, which services it should in-
voke for the various sections, and how it should con-
tact these services so as the balance the load across
the nodes that comprise the service, while avoiding
nodes that are faulty or overloaded. The services
in the middle tier depend on other services in the
middle and third tier, and also need to know how to
contact those services. The number of machines as-
signed to a service depend on the load distribution
among the machines. Which machines are assigned
to which applications depends upon data placement,
and it may be necessary to move data when the sys-

8



Front−End Web Servers

Various Services/Applications

Back−End Database Servers

Client HTTP requests

High

Disk

Speed

Figure 4: A datacenter is typically organized as three tiers.

tem is reconfigured. We will now show how a SMCI
can be used in such an environment.

A simple SMCI organization for this system could
be as follows. The root of the tree would describe
a geoplex, with a child node for each farm. Each
farm would have a child node for each cluster of ma-
chines. For each cluster, there would be a child node
for each machine in the cluster. Each machine would

be able to report what applications it is running, as
well as various information about these applications.

4.1 Using a RACS

As an example, consider the Session Service which
keeps track of sessions with web clients. When an
HTTP request arrives at a web server, the web server

9



contacts the Session Service in order to obtain infor-
mation about the current session. In order to do so,
the web server has to find a machine that runs the
Session Service (called a Session Server henceforth)
and knows about the session. If the Session Service
is organized as a RACS, any machine will do. If it
is organized as a RAPS, only some of the machines
in the RAPS know about the session. For now we
assume the Session Service is organized as a RACS.

The system has permanently installed an aggrega-
tion query in the SMCI that counts the number of
Session Servers in a SMCI domain (1 for the leaf do-
mains that represent the machines that run the Ses-
sion Service). Starting in the root domain, the web
server would first locate the child node correspond-
ing to its own farm. Then it would locate a child node
(a cluster) that has more than Session Server. If there
is more than one such cluster, it could pick one at
random, weighted by the number of Session Servers
for fairness. Finally, it would pick one of the Session
Servers at random from the cluster. Additionally, the
Session Servers could report their load. Using an ag-
gregation function that reports the minimum load in
a domain, web servers could locate the least loaded
Session Server.

4.2 Using a RAPS

Should the Session Service be implemented as a
RAPS, then there are various options in order to lo-
cate one of the Session Servers in the pack for the
given session identifier. One possibility is that the
Session Servers themselves maintain such a map. A
request from a web server is first sent to an arbitrary
Session Server, and then forwarded to the correct
one. This delay can be avoided by using a Bloom
filter [3]. A Bloom filter is a concise representation
of a set in the form of a bitmap.

Each Session Server would report in a Bloom filter
the set of sessions they are responsible for. An ag-

gregation function would simply ‘bitwise or’ these
filters together in order to create a Bloom filter for
each domain. As a result, each domain would re-
port what sessions it is responsible for. Using this
information, a web server can quickly find a Session
Server in the pack responsible for a particular ses-
sion.

So far we have described how the web servers
can use the SMCI in order to find Session Servers,
and this is part of how the datacenter manages itself.
As another example of self-management, the Session
Service can use the SMCI to manage itself. We will
focus on how Session Servers in a RAPS architec-
ture choose which sessions they are responsible for.
This will depend on load distribution. Complicating
matters, machines may be added or removed. We
also try to maintain an invariant of k replicas for each
session, no less, but also no more.

Each Session Server can keep track of all the ma-
chines in the Session Service simply by walking the
SMCI domain tree. Using the Session Service mem-
bership, it is possible to apply a deterministic func-
tion that determines which machines are responsible
for which sessions. For example, a session could be
managed by the k machines with the lowest values of
H(machine ID, session ID), where H is a hash func-
tion. These machines would be responsible for run-
ning a replication protocol to keep the replicas con-
sistent with one another.

5 Conclusion

A large autonomic computing system cannot be
composed from autonomic components. The con-
figuration of the components would not self-adapt,
the composition could oscillate, and individual com-
ponents might become bottlenecks. In order to
have system-wide autonomy, a system-wide feed-
back loop is necessary. We described the concept

10



of a Scalable Monitoring and Control Infrastructure,
and how it may be applied in an autonomic Service
Oriented Architecture.

References

[1] K. Albrecht, R. Arnold, and R. Wattenhofer.
Join and leave in peer-to-peer systems: The
DASIS approach. Technical Report 427, Dept.
of Computer Science, ETH Zurich, November
2003.

[2] R. Bhagwan, G. Varghese, and G.M. Voelker.
Cone: Augmenting DHTs to support dis-
tributed resource discovery. Technical Report
CS2003-0755, UC, San Diego, July 2003.

[3] B. Bloom. Space/time tradeoffs in hash coding
with allowable errors. CACM, 13(7):422–426,
July 1970.

[4] B. Devlin, J. Gray, B. Laing, and G. Spix. Scal-
ability terminology: Farms, clones, partitions,
packs, racs and raps. Technical Report MSR-
TR-99-85, Microsoft Research, 1999.

[5] S.R. Madden, M.J. Franklin, J.M. Hellerstein,
and W. Hong. TAG: a Tiny AGgregation ser-
vice for ad-hoc sensor networks. In Proc. of the
5th Symp. on Operating Systems Design and
Implementation, Boston, MA, December 2002.
USENIX.

[6] M.L. Massie, B.N. Chun, and D.E. Culler. The
Ganglia distributed monitoring system: De-
sign, implementation, and experience. Parallel
Computing, 30(7), July 2004.

[7] C.G. Plaxton, R. Rajaraman, and A.W. Richa.
Accessing nearby copies of replicated objects

in a distributed environment. In ACM Sympo-
sium on Parallel Algorithms and Architectures,
pages 311–320, 1997.

[8] F.D. Sacerdoti, M.J. Katz, M.L. Massie, and
D.E. Culler. Wide area cluster monitoring with
Ganglia. In Proc. of the IEEE Cluster 2003
Conference, Hong Kong, 2003.

[9] R. van Renesse. Scalable and secure resource
location. In Proc. of the 33rd Annual Hawaii
Int. Conf. on System Sciences, Los Alamitos,
CA, January 2000. IEEE, IEEE Computer So-
ciety Press.

[10] R. van Renesse, K.P. Birman, and W. Vo-
gels. Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, man-
agement, and data mining. ACM Transactions
on Computer Systems, 21(3), May 2003.

[11] R. van Renesse and A. Bozdog. Willow: DHT,
aggregation, and publish/subscribe in one pro-
tocol. In Proc. of the 3rd Int. Workshop on
Peer-To-Peer Systems, San Diego, CA, Febru-
ary 2004.

[12] P. Yalagandula and M. Dahlin. A Scalable Dis-
tributed Information Management System. In
Proc. of the ’04 Symp. on Communications Ar-
chitectures & Protocols, Portland, OR, August
2004. ACM SIGCOMM.

[13] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO:
Self-Organized Metadata Overlay for resource
management in P2P DHT. In Proc. of the
Second Int. Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, February 2003.

11


