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Abstract. This paper describes and evaluates Sprinkler, a reliable high-
throughput broadcast facility for geographically dispersed datacenters.
For scaling cloud services, datacenters use caching throughout their in-
frastructure. Sprinkler can be used to broadcast update events that inval-
idate cache entries. The number of recipients can scale to many thousands
in such scenarios. The Sprinkler infrastructure consists of two layers: one
layer to disseminate events among datacenters, and a second layer to dis-
seminate events among machines within a datacenter. A novel garbage
collection interface is introduced to save storage space and network band-
width. The first layer is evaluated using an implementation deployed on
Emulab. For the second layer, involving thousands of nodes, we use a
discrete event simulation. The effect of garbage collection is analyzed
using simulation. The evaluation shows that Sprinkler can disseminate
millions of events per second throughout a large cloud infrastructure,
and garbage collection is effective in workloads like cache invalidation.
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1 Introduction

Today’s large scale web applications such as Facebook, Amazon, eBay, Google+,
and so on, rely heavily on caching for providing low latency responses to client
queries. Enterprise data is stored in reliable but slow back-end databases. In
order to be able to keep up with load and provide low latency responses, client
query results are computed and opportunistically cached in memory on many
thousands of machines throughout the organization’s various datacenters [21].
But when a database is updated, all affected cache entries have to be invali-
dated. Until this is completed, inconsistent data can be exposed to clients. Since
the databases cannot keep track of where these cache entries are, it is necessary
to multicast an invalidation notification to all machines that may have cached
query results. The rate of such invalidations can reach hundreds of thousands per
second. If any invalidation gets lost, inconsistencies exposed to clients may be
long-term. Other important uses of reliable high-throughput broadcast through-
out a geoplex of datacenters include disseminating events in multi-player games
and stock updates in financial trading.

Much work has been done on publish-subscribe and broadcast mechanisms
(see Section 6). Pub-sub services focus on support for high throughput in the face
of many topics or even content-based filtering, but reliability is often a secondary
issue and slow subscribers may not see all updates. Some recent systems [4,20]



do provide high reliability and many topics, but the number of subscribers per
topic is assumed to be small (such as a collection of logging servers). Group
communication systems focus on high reliability, but such systems may stall in
the face of slow group members and, partly for that reason, assume that group
membership is small.

This paper describes Sprinkler, a high-throughput broadcast facility that is
scalable in the number of recipients while providing reliable delivery. Sprinkler
achieves its objectives through a novel broadcast API that includes support for
garbage collection and through a careful implementation that is cognizant of the
physical networking infrastructure.

Garbage collection both reduces load and makes it easier for clients or dat-
acenters to recover from an outage. For example, if there are two updates or
invalidations to the same key, then the first update is obsolete and it is no longer
necessary to try and deliver it to clients. Similarly, if a temporary key is deleted,
all outstanding updates can be garbage collected. As we show in Section 5, in
applications where there are many updates to a small set of popular keys, and
where there is significant use of temporary keys, such garbage collection can
significantly reduce the demands on the broadcast service.

Sprinkler is designed for a system consisting of a small and mostly static
number of datacenters each containing a large and dynamic set of machines.
Consequently, Sprinkler uses two protocols: reliable multi-hop broadcast between
datacenters, followed by reliable broadcast within a datacenter. Each datacenter
deploys a replicated proxy to participate in the first protocol. While the de-
tails are different, both protocols depend on each peer periodically notifying its
neighbors about its state (i.e., gossip [13]).

To evaluate Sprinkler and find suitable values for certain configuration pa-
rameters, we conducted throughput, latency, and fault tolerance experiments.
We first evaluated an incomplete prototype implementation of Sprinkler. Using
Emulab [1] we were able to emulate realistic deployment scenarios and see what
broadcast throughput is possible through a small number of datacenters. As
a datacenter may contain thousands or tens of thousands of clients, we evalu-
ated a complete implementation of the protocol through simulation, calibrated
using measurements from experiments on the prototype implementation. We
also quantified the effectiveness of garbage collection by conducting a simulation
study on savings in storage space and network bandwidth using a workload mim-
icking cache invalidation in Facebook [21]. As a result of these experiments, we
believe that Sprinkler is capable of disseminating millions of events per second
throughout a large cloud infrastructure even in the face of failures.

The scientific contributions of this paper can be summarized as follows:

– the design and implementation of Sprinkler, a reliable high-throughput broad-
cast facility that scales in the number of recipients;

– a novel garbage collection interface that allows publishers to specify which
messages are obsolete and do not need to be delivered;

– an evaluation of the throughput, latency, fault tolerance, and garbage col-
lection of Sprinkler.



This paper is organized as follows. We start by giving an overview of the
Sprinkler interface, as well as of the environment in which Sprinkler is intended
to be deployed, in Section 2. Section 3 provides details of the various protocols
that make up Sprinkler. Section 4 briefly describes the current implementation of
Sprinkler. Evaluation of Sprinkler is presented in Section 5. Section 6 describes
background and related work in the area of publish-subscribe and broadcast
facilities. Section 7 concludes and presents areas for future work.

2 System Overview
2.1 Sprinkler Interface

Sprinkler has the following simple interface:

– client.getEvent()→ event – client.publish(event)

Each event e belongs to a stream, e.stream. There are three types of events: data
events, garbage collection events, and tombstone events. Data events are simple
byte arrays. A garbage collection event is like a data event, but also contains a
predicate P (e) on events e—if P (e) holds, then the application considers e ob-
solete. A tombstone event is a placeholder for a sequence of events all of which
are garbage collected. An event is considered published once the corresponding
client.publish(event) interface returns. We consider each event that is pub-
lished unique. An event e is considered delivered to a particular client when
client.getEvent() → e′ returns and either e′ = e or e′ is a tombstone event
for e.

The interfaces satisfy the following: Sprinkler only delivers data and garbage
collection events that are published, or tombstone events for events that were
published and garbage collected. Published events for the same stream s are
ordered by a relation ≺s, and events for s are delivered to each client in that
order. If the same client publishes e and e′ for stream s in that order, then
e ≺s e

′.
For each event e that is published for stream s, each client is either delivered

e or tombstone event for e followed by a matching garbage collection event g. A
garbage collection event g containing predicate g.P matches e if g.P (e)∧ e ≺s g
holds—that is, a garbage collection event cannot match a future event. A garbage
collection event g can match another garbage collection event g′. In that case we
require (of the application programmer) that ∀e : e ≺s g

′ ⇒ (g′.P (e)⇒ g.P (e)).
For example, if g′ matches all events (prior to g′) that are red, then g also
matches all events (prior to g′) that are red. The intention is to ensure that
garbage collection is final and cannot be undone.

A tombstone event matches a sequence of events that have been garbage
collected. For each event being garbage collected, at least one tombstone event
matching it is generated. A tombstone event t can also be garbage collected
by another tombstone event t′ that contains all events in t. For example, two
consecutive tombstone events as well as two overlapping tombstone events can be
replaced by a single tombstone event. However, tombstone events cannot contain
“holes” (missing events in a consecutive sequences of events).



These properties hold even in the case of client crashes, except that events
are no longer delivered to clients that have crashed. Sprinkler is not designed
to deal with Byzantine failures. Note that the Sprinkler interface requires that
all events are delivered to each correct client, and events can only be garbage
collected if matched by a garbage collection event. Trivial implementations that
deliver no events or garbage collect all events are thereby prevented.

2.2 Implementation Overview

Sprinkler is intended for an environment consisting of a relatively small and
static number of datacenters, which we call regions, each containing a large and
dynamic number of clients. A stream belongs to a region—we support only a
small number of streams per region. A typical stream is “key invalidation” and
a corresponding event contains the (hash of the) key that is being invalidated.
The key’s master copy is stored in the stream’s region, as only the key’s master
copy broadcasts invalidation messages.

The rate at which events get published may be high, so high throughput is
required. Low latency is desirable as well, although the environment is asyn-
chronous and thus we cannot guarantee bounds on delivery latencies.

Each region runs a service, called a proxy, each in charge of a small number
of streams. The proxy may be replicated for fault-tolerance. Sprinkler clients
connect to the local proxy. When a client publishes an event, it connects to the
proxy that manages the stream for the event. (Typically a client only publishes
events to streams that are local to the client’s region.) The proxy assigns a per-
stream sequence number to the event and disseminates the event among the
other proxies through the proxy-level protocol (PLP). Each proxy that receives
the event stores the event locally and disseminates the event among the local
clients through the region-level protocol (RLP). The details of the two protocols
are described in the next section, and more on the implementation follows in
Section 4.

3 Details of the Protocols

3.1 Proxy-Level Protocol (PLP)

Figure 1 contains a state-transition specification for proxies. The state of a proxy
p is contained in the following variables:

– pxIDp contains a unique immutable identifier for p;
– streamsp contains the set of streams that p is responsible for;
– Histp contains the events received by p and that are not yet garbage collected.

Histp is empty initially;
– cntsp: an event counter for each stream s, initially 0;
– expectssp: for each stream s, a tuple consisting of a proxy identifier, a counter,

and a timestamp.

Events are uniquely identified by the tuple (e.type, e.stream, e.seq, e.range). Here
e.type is one of DATA, GC, or TOMBSTONE; e.stream is the stream of the event,



specification Proxy-Level-Protocol:
state:

pxIDp: unique id of proxy p
streamsp: set of stream ids managed by p
Histp: set of events that proxy p stores
cntsp: counters for each stream s
expectssp: (proxy, counter, time)

initially:
∀p :

Histp := ∅
∀p′ : p′ 6= p⇒

pxIDp 6= pxIDp′

streamsp ∩ streamsp′ = ∅
∀s:

cntsp = 0
expectss

p = (⊥, 0, 0)

transition addLocalEvent(p, e):
precondition:

e.stream ∈ streamsp ∧ e.seq = ⊥
action:

cnte.streamp := cnte.streamp + 1;
e.seq := cnte.streamp ;
Histp := filter(Histp ∪ {e});

transition addRemoteEvent(p, e):
precondition:

e.stream 6∈ streamsp ∧ e.seq > cnte.streamp

action:
cnte.streamp := e.seq;
Histp := filter(Histp ∪ {e});

transition rcvAdvertisement(p, p′, cnt , T ):
precondition:

TRUE
action:
∀s 6∈ streamsp:

if cnts > expectss
p.seq +

C/(T − expectss
p.time) then

if expectss
p.source 6= p′.pxID then

if expectss
p.source 6= ⊥ then

Unsubscribe(expectss
p.source, T )

Subscribe(p′.pxID , s, cnts)
expectss

p = (p′.pxID , cnts, T )

Fig. 1: Specification of a proxy. filter(H) is a function on histories that replaced all
events from H that are matched by a garbage collection event in H with a tombstone
event.



and e.seq is the sequence number of the event. For tombstone events, e.range
is the number of garbage-collected events represented by the tombstone—and
e.seq is the sequence number of the last such event. For non-tombstone events,
e.range = 1.

Transition addLocalEvent(p, e) is performed when proxy p receives an event
from a client that is trying to publish the event. The proxy only accepts the event
if it manages the stream of the event, and in that case assigns a sequence number
to the event. Finally, e is added to the history and a filter is applied to replace
garbage collected events by tombstone events and to aggregate consecutive and
overlapping tombstone events into single tombstone events.

Events for a stream s are ordered by their sequence number, that is, e ≺s e
′

iff e.stream = e′.stream = s ∧ e.seq < e′.seq.

Proxies forward events to one another over FIFO channels. Performing tran-
sition addRemoteEvent(p, e) adds an event to p’s history for a stream that is not
managed by p but by some other proxy. The transition applies the same filter to
replace events that are garbage collected by tombstone events, and also updates
cnte.streamp to keep track of the maximum sequence number seen for e.stream.

It is an invariant that Histp does not contain any events e for which e.seq >
cnte.streamp , as is clear from the specification. We note without proof that it is
also invariant that Histp contains all published events with e.seq ≤ cnte.streamp ,
or matching tombstone event and garbage collection events.

Fig. 2: Space-time diagram for
subscription change when the link
between two datacenters goes down.

A simple way for events to propagate be-
tween proxies would be to have each proxy
broadcast its events to the other proxies.
However, such an approach may not work if
certain datacenters can no longer communi-
cate directly. To address this, the way a proxy
receives events from another proxy is through
a subscription mechanism. For each non-local
stream, a proxy subscribes to events from at
most one other proxy, which does not have
to be the owner of that stream. Periodically,
each proxy p′ broadcasts advertisements con-
taining cntp′ to the other proxies, notifying
them of its progress on each stream.

Proxy p maintains for each stream s a
variable expectssp, containing a tuple consist-
ing of a proxy identifier, a sequence number,
and a timestamp. If p is not subscribed for
the stream as is initially the case, then the
tuple is (⊥, 0, 0). If p is subscribed to receiv-
ing events from p′, then expectssp contains the
proxy identifier of p′, and the sequence num-
ber and time that p received in the latest ad-
vertisement from p′.



Transition rcvAdvertisement(p, p′, cntp′ , T ) shows what happens when proxy
p receives an advertisement from p′ at time T . For each non-local stream, p checks
to see if the advertisement is further advanced than the last advertisement that
it got for the same stream and by how much. C is a configuration variable. If set
to 0, proxies tend to switch between subscriptions too aggressively. We divide
C by the time expired since the last advertisement so that a proxy does not
indefinitely wait for a proxy that may have crashed. When switching from one
proxy to another p′, p specifies to p′ how far it got so that p′ knows which event
to send to p first.

Figure 2 illustrates how the subscription pattern changes adaptively in the
presence of network outage. The figure shows three proxies X, Y , and Z, and
messages flowing between them. For convenient reference, all messages are num-
bered. Initially, proxies can communicate with each other directly. Proxy Y is in
charge of stream s, and events up to 3 have already been published. Proxies X
and Z do not yet store any events for s, and are not subscribed to any source.

Messages 1 and 2 are advertisement messages for s, in which the count for
s is 3. (Actual advertisement messages also include counters for other streams,
but only s is shown for brevity.) Proxies X and Z send messages 3 and 4 to
subscribe to stream s from proxy Y . In response, proxy Y starts sending events
for s to proxies X and Z, shown as messages 5 through 11. The network between
proxies Y and Z goes down at the broken line that is labeled 12, and subsequent
events published by proxy Y cannot get through to Z (message 13). Message
14 is an advertisement message sent from proxy X to proxy Z for stream s,
which contains a larger sequence number for stream s than the most recent
advertisement message that proxy Z received from Y . So proxy Z changes its
subscription to proxy X using message 15, and consequently starts receiving
events from proxy X (messages 16 and 17). Meanwhile, proxy X continues to
receive events for s directly from proxy Y , as illustrated by messages 18 and 19.

3.2 Region-Level Protocol (RLP)
The Region-Level Protocol delivers events from a proxy to all the clients within
the region of the proxy. Reliability and throughput are key requirements: all
events should be delivered to each correct client at high rate as long as it does
not crash. Compared to the Proxy-Level Protocol, there are the following im-
portant differences: First, there are only a few number of proxies and the set of
proxies is more or less static, while there are many clients in a region (on the
order of thousands typically) and clients come and go as a function of reconfig-
urations for a variety of reasons. Second, proxies are dedicated, high-end, and
homogeneous machines with resources chosen for the task they are designed for,
while clients have other tasks and only limited resources for event dissemination.
Third, proxies may be replicated for fault tolerance of event dissemination, but
clients cannot be.

The Region-Level Protocol (RLP) consists of two sub-protocols: a gossip-
based membership protocol based on [5], combined with a peer-to-peer event
dissemination protocol loosely based on Chainsaw [23]. The membership protocol
provides each client with a view that consists of a small random subset of the



other clients in the same region. The views are updated frequently through
gossip. At any particular time, the clients and their views induce a directed
graph over which clients notify their progress to their neighbors and request
missing events, similar to the Proxy-Level Protocol. However, unlike proxies,
clients do not keep track of old events for long because they have only limited
capacity. But clients that cannot retrieve events from their neighbors can always
fall back onto their local proxy, a luxury proxies do not possess.

We describe the two protocols in more detail below.

Membership Protocol In the membership protocol, each client maintains a
local view, which is a subset of other clients that has to grow logarithmically
with the total number of clients. In the current implementation, the maximum
view size V is configured and should be chosen large enough to prevent parti-
tioning [5]: selecting a large view size increases overhead but makes partitions
in the graph less likely and reduces the diameter of the graph and consequently
event dissemination latency. Typically, V is on the order of 10 to 20 clients.

We call the members of the view the client’s neighbors. A client periodically
updates its local view by periodically gossiping with its neighbors. When a client
c receives a view from its neighbor c′, c computes the union of its own view and
the view of c′, and then randomly removes members from the new view until it
has the required size. However, it makes sure that c′ is in the new view. This last
constraint, called reinforcement [5], is subtle but turns out to be important—
without it the induced graph is likely to become star-like rather than to converge
to a random graph. [5] shows that with reinforcement the protocol maintains
a well-connected graph of clients with O(logN) diameter, where N is the total
number of clients. Clients that have crashed or have been configured to no longer
participate in the protocol automatically disappear from views of other clients
because they do not reinforce themselves.

The Sprinkler membership protocol deviates from [5] in only minor ways.
The local proxy is one of the clients that is gossiping. While partitioning in this
graph is rare, it can happen. For this reason, each client occasionally gossips
with its local proxy even if the proxy is not in its view. This causes partitions to
fix themselves automatically. As shown in [5], partitions tend to be small in size:
on the order of two to three clients. Therefore, if the view of a Sprinkler client is
smaller than V , the client adds the local proxy to its view automatically. Such
small partitions thus join the larger graph immediately. New clients start with
a view consisting of only the local proxy.

Data Dissemination Protocol Figure 3 presents a state-transition diagram
for the data dissemination protocol. The state of a client c is contained in the
following variables:

– Recvc contains the events delivered to c and that are not yet discarded. Recvc
is empty initially. If c is a proxy, then Recvc = Histc;

– cntsc: is the sequence number for the last event that c received for stream s,
initially −1;

– nextsc: is the sequence number of the next event that c wants to request for
stream s, initially 0.



specification Region-Level-Protocol:
state:

Recvc: set of events that node c stores
cntsc: counters for delivered events for stream s
nextsc: counters for requests for stream s

initially:
Recvc := ∅
∀t:

cntsc = −1
nextsc = 0

transition deliverEvent(c, e):
precondition:

e.seq− e.range ≤ cnte.streamc < e.seq
action:

Recvc := filter(Recvc ∪ {e})
cnte.streamc := e.seq
sendNotify(e.stream, cnte.streamc )

transition receiveNotify(c, c′, s, cnt):
precondition:

nextsc ≤ cnt
action:

sendRequest(c′, s,nextsc, cnt)
nextsc := cnt + 1

transition receiveRequest(c, c′, s,nxt, cnt):
precondition:

TRUE
action:

E := {e ∈ Recvc | e.stream = s ∧
∃s ∈ (e.seq− e.range, e.seq] : nxt ≤ s ≤ cnt}

sendEvents(c′, cntsc, E)

transition discardEvent(c, e):
precondition:

e ∈ Recvc
action:

Recvc := Recvc − {e}

transition requestFromProxy(c, p, s):
precondition:

cntsc < nextsc − 1
s ∈ p.streams

action:
sendRequest(p, s, cntsc + 1,nextsc − 1)

Fig. 3: Specification of a client for data dissemination.



Performing transition deliverEvent(c, e) delivers an event to client c. If c is a
proxy, this corresponds to c receiving the event in an addLocalEvent(c, e) or
addRemoteEvent(c, e) transition. Otherwise c is an ordinary client that received
the event either from the proxy or from a peer client in its region. Event e is
delivered only if its sequence number is directly after the maximum sequence
number delivered to c. When delivered, e is added to Recvc and cnte.streamc is
updated. Finally, client c broadcasts a NOTIFY message its current neighbors
(determined by the membership protocol), notifying them of its progress with
respect to e.stream.

Transition receiveNotify(c, c′, s, cnt) shows what happens when client c
receives a NOTIFY message from client c′ for stream s. If the sequence number in
the NOTIFY message exceeds the events that client c has already requested, then
c sends a REQUEST message to c′ for the missing events.

Transition receiveRequest(c, c′, s,nxt, cnt) is performed when client c re-
ceives a request from client c′ for stream s. The client responds with an EVENTS

message containing all events between nxt and cnt (possibly a sequence with
holes, or even an empty sequence). The message also contains cntsc so the recip-
ient can detect what events exactly are missing from Recvc.

Non-proxy clients may have limited space to store events. The Sprinkler spec-
ification gives clients the option of not keeping all events. In our implementation
each client c has only limited capacity in Recvc and replace the oldest events
with the newest events. Transition discardEvent(c, e) happens when client c
removes event e from Recvc.

Because clients do not keep all events, clients sometimes need to request
missing events from the local proxy. In transition requestFromProxy(c, p, e),
client c sends a REQUEST to the client’s local proxy p. The client only sends
requests for events that it previously requested from other clients.

Shuffling In the protocol described above, a client c broadcasts a NOTIFY mes-
sage to all its neighbors, each neighbor immediately sends REQUEST message to c,
and c immediately responds with the requested events. Depending on the view
size of c (bounded by V ), this could create a large load on c.

In order to deal with this imbalance, each client only broadcasts the NOTIFY

message to a subset of its neighbors of size F (for Fanout). This subset is of
configurable size, and is changed periodically, something we call a shuffle. In the
limit F = 1, but as we shall see in evaluation studies, a slightly larger subset has
benefits for performance. We provide a simulation-based analysis on the effect
of choosing different values for F and the shuffle time.

3.3 Fault Tolerance of a Proxy

So far we have described a proxy as if it were a single process, and as such it would
be a single point of failure, depriving clients in its region from receiving events.
The Sprinkler proxy is replicated using Chain Replication [27]. To tolerate f
failures in a region, there are f + 1 proxy replicas configured in a chain. Clients
submit events by sending them to the head of the chain. The events are forwarded



along the replicas in the chain, each replica storing the events in its copy of Hist.
The tail of the chain communicates with the head replicas of its peer proxies,
and also participates in the local RLP.

The chain is under the management of a local configuration service. In case a
replica fails, it is removed from the chain. If the removed replica is not the tail,
the impact is minimal—the predecessor of the replica may have to retransmit
missing events to its new successor. It the head is removed, peer proxies and
clients that try to publish events have to be notified. If it is the tail that is
removed, a new tail ensues that has to set up new connections with the head
nodes of its peer proxies. Both endpoints on each new connection exchange
advertisements to allow the proxies to recover. A beneficial feature of Chain
Replication is that the new tail is guaranteed to have all events that the old tail
stored, and thus no events can get lost until all replicas in the chain fail and lose
their state.

Sprinkler allows recovery of a crashed replica, as well as adding a replica with
no initial state. The replica to the end of the chain, beyond the current tail, and
will start receiving the events that it missed. Once the new tail is caught up, the
old tail gives up its function and passes a token to the new replica. The replica
then sets up new connections as described above.

3.4 Garbage Collection

In typical settings, Sprinkler broadcasts each event to thousands of hosts. All
the events that are not garbage collected are stored at each of the proxies. In an
environment with high load, the amount of data needs to be stored and trans-
ferred is huge. Efficient garbage collection would save critical storage space and
network bandwidth. In this section, we give two examples of garbage collection
policy.

One possible approach for garbage collection is to keep only the most recent
events, and discard old events once they meet certain “age” criteria. An example
is to keep only the most recent N events. In this case, each data event is also
a garbage collection event: an event at index i collects all events with indices
less that i−N . Another example is to discard all the events that are older than
a certain period of time, say, k days. If this policy is enforced in a daily basis,
the system generates one garbage collection event each day that collects all the
events that are more than k days old. Such approach is useful if there is time
bound on the usefulness of the data. LinkedIn uses such approach in processing
log data with Kafka [20].

Another class of policy is key-based. In applications like cache invalidation,
each data event states that the cache entry for a specific key is no longer valid.
For any two events invalidates the same key, the later event implies the earlier
one. From a client’s perspective, if the later event is delivered, there is no need
for the earlier one. So in this case, each data event is also a garbage collection
event that collects all previous events on the same key.

The effectiveness of the key-based policy depends on actual workload. We
show in section 5 that it is effective under our synthesized workload that shares
similar properties to that of a popular, real web service.



4 Implementation

We have implemented a limited prototype of Sprinkler in the C programming
language. We also have implemented a discrete event simulator of the full Sprin-
kler protocol described in this paper.

Nodes in the Sprinkler prototype communicate by exchanging messages across
TCP connections. Each message starts with a header followed by an optional pay-
load that contains the application data if needed. Batching of multiple events
within a message is extensively used to optimize throughput.

We also have an initial implementation of the client library, except that we
do not yet provide a comprehensive evaluation of it. Instead, in our evaluation,
each client is configured to just receive events from proxies. Each proxy process
also acts as client and is running both the Proxy-Level Protocol and the Region-
Level Protocol. Proxy replication has only been implemented in the simulator.

5 Evaluation

In this section we evaluate the throughput and latency provided by Sprinkler
for various scenarios, determine good values for parameters such as the fanout
F , and investigate the efficacy of fault tolerance mechanisms within Sprinkler.

The performance of Sprinkler depends on both the Proxy-Level Protocol and
the Region-Level Protocol. Given the small number of regions in a typical cloud
infrastructure, we can use a prototype implementation of proxies to evaluate the
Proxy-Level Protocol. However, since each region may have many thousands of
clients, we evaluate the Region-Level Protocol using discrete event simulation.
We use experimental measurements of the prototype implementation to calibrate
the simulation of a large number of clients. For these measurements, each proxy
is configured with a static view of clients.

5.1 Throughput of Proxy-Level Protocol

We tested the Proxy-Level protocol on an Emulab cluster1. Each node in the
cluster is equipped with an AMD 1.6 GHz Opteron 242 processor and 16 GB of
RAM. Nodes are connected to a single gigabit Ethernet switch.

We set up experiments with one, two, or three proxies. In these experiments,
each proxy can communicate directly with each other proxy. The maximum view
size V and the fanout F are both set to 3, and as described above, the local view
of proxies do not change over time. Consequently there is no shuffling present in
these experiments.

Some clients are used to publish events, and we call those clients drivers.
Drivers do not receive any events—they just send events to proxies. Conse-
quently, drivers do not run the Region-Level Protocol. Each driver invokes
publish() in a closed loop with no wait time between invocations. The size
of each event is fixed at 10 bytes, large enough to contain the hash of a key to
be invalidated, say. Each published event is a garbage collection event: an event

1 We used the Marmot cluster of the PRObE project [3].



(a) Aggregate throughput (b) Throughput per driver

Fig. 4: Throughput as a function of the number of drivers per proxy.

at index i specifies that all events with indices less than i− 100, 000, 000 can be
garbage collected. We control the load on Sprinkler by varying the number of
drivers attached to a proxy. In our experiments, each process, whether proxy,
client, or driver, runs on a separate machine.

Figure 4(a) shows the throughput as a function of the number of drivers per
proxy. Each data point shows an average over five experiments, as well as minima
and maxima. The graph has three lines, one for each scenario. As the number
of drivers increases, the throughput increases until the traffic load saturates the
system. Peak throughput decreases slightly as the number of proxies increases
because of the overhead of forwarding events between proxies. Figure 4(b) shows
the throughput per driver for the same experiment.

5.2 Simulation Study

In the next experiment, we evaluate the performance of the complete Sprinkler
protocol using discrete time simulation. The basic settings are as follows: There
are three regions connected by 10 Gbps links (the bandwidth that is provided by
the National Lambda Rail, a transcontinental fiber-optic network). Figure 5(a)
shows the latencies between the three regions, chosen to reflect typical latencies
for datacenters located on the west coast and the east coast of the United States.

Within a region, processes communicate over 1 Gbps networks and one-way
latencies are 1ms. Each region has 1000 clients and a proxy that has three repli-
cas. Each client (as well as the tail server of the proxy) maintains a maximum
view size of 20 peers.

In the 3-region prototype experiment of the previous section, the throughput
peaks between 2.6-2.7 million events per second. We send 864k events per second
to each proxy at a fixed rate, for a total of 2.592 million events per second,
approximately matching the maximum throughput of the prototype.

Figure 5(b) shows the average throughput the simulator achieves varying the
fanout F and the shuffle time. We do not show variance for clarity—it is small
in our simulations. Each data point is the average throughput. To remove bias,
measurements do not start until 300ms into an experiment, at which point the
subscriptions are established and the throughput has stabilized. As can be seen,
a consequence of this is that the throughput is slightly higher than the load
added to the system, as the proxies catch up to deliver old events. Eventually,



(a) Topology (b) Throughput

Fig. 5: (a) The experimental topology used to simulate throughput and latency. (b)
Average throughput as a function of shuffle time.

(a) Origin: region 0 (b) Origin: region 1

Fig. 6: Average latency and throughput observed as load is increased. The figures shows
events added by clients in two different regions. The third region is similar.

the throughput matches the load imposed on the system. The best throughput
is achieved for a fanout of 4. For larger fanouts, the outbound bandwidth of a
client gets exhausted for a relatively small number of events. Such clients cannot
forward other events and start dropping events from their Recv buffer. This in
turn results in an increase of requests made for missing events to the proxy,
competing with bandwidth for normal traffic.

A similar effect happens when the fanout is small, but the shuffle time is long.
Decreasing the shuffle time allows a client to forward events to more neighbors,
effectively reducing the diameter of the forwarding graph, in turn reducing event
loss in clients and the load on proxies.

Figure 6 shows latency and throughput as load is increased, for various values
for the fanout F . The latency of an event is the time from the event arriving at the
local proxy until it is delivered to all clients. The shuffle time in these experiments
is fixed at 30ms. In each line there are 6 data points, corresponding to increasing
the load. At the first (leftmost) data point, 1/6 of the maximum throughput
of the prototype implementation is introduced, that is, 1/6th of 2.592 million
events per second. At the next data points we add 1/3rd of the load successively.



(a) Average throughput (b) Average latency

Fig. 7: Performance over time with inter-region link failure.

Consequently, at the last data point we introduce 1/6 + 5 × 1/3 = 11/6 of the
maximum load achieved on the prototype implementation. The halfway point on
the line corresponds to the maximum load. Note that in some experiments the
system becomes overloaded and cannot keep up with the load. We show results
for events originating from different regions separately.

Fig. 8: The experimental
topology used to simulate the
impact of inter-region link fail-
ure, with the failed link (15ms)
on the right side.

As shown in the figure, throughput gradually
goes up until the system saturates. Before satura-
tion, latency of events disseminated to 3000 clients
is generally below 300ms.

5.3 Impact of Inter-Region Link Failure

Inter-region link failure blocks one region from
communicating directly with another. The Proxy-
Level Protocol supports indirect routing through
other regions, and thus as long as there is transi-
tive connectivity events should continue flowing to
all clients. To evaluate this, we set up a four-region
network, with inter-region latencies as shown in
Figure 8. Latencies are chosen based on typical
numbers for cross-country datacenter deployment.
At the start of the experiment, all regions can directly communicate. After time
t = 19, the link between regions 2 and 3 is taken out, and restored at time t = 41.

Figure 7a shows throughput as a function of time. The network outage results
in the brief drop in throughput at time t = 19, caused by the interruption of
events flowing between regions 2 and 3. The throughput recovers shortly after
time t = 20, after the new advertisement messages from regions 0 and 1 arrive
and regions 2 and 3 update their subscriptions accordingly. The throughput
increases for about five seconds before returning to normal, as regions 2 and 3
catch up. Note the slight glitch after time t = 41 when the link is restored and
regions 2 and 3 resume sending their events directly to one another.



For the same experiment, Figure 7b shows the latencies over time for events
added from regions 0 and 2. Note that only the latter is directly connected to the
failed link. Before the outage, the latencies of events added from the two regions
are similar, both around 200ms. Latencies of events from region 2 significantly
increase at the time the link is taken out, because those events cannot reach the
proxy in region 3 until the subscription changes. The latencies of events from
region 2 recover after the new subscription. Latencies are slightly higher than
before because the path to region 3 has greater latency. After the link is restored,
latencies drop to the original level after a short period of adjustment.

5.4 Effectiveness of Garbage Collection

In this section, we first describe the workload we use to evaluate the efficacy of
garbage collection and show the workload is realistic. Next we show simulation
results of the effectiveness of garbage collection.

Fig. 9: Number of invalidations to keys
with varying time since their addition.
skew is the parameter for the Zeta distri-
bution, while λ is the parameter for the
Poisson distribution of inter-arrival times
of invalidation events.

Workload Description: In our
model, there are two kinds of updates:
1) keys are updated with new values,
and 2) new keys are added.

Each update event invalidates a
random key from the current set of
keys. The probability for a key to be
selected follows a Zipf distribution. We
assume that inter-arrival times of key
update events are Poisson distributed.

New keys are added to the set
at random. In our model, the initial
popularity of new keys also follows a
heavy-tailed distribution. We choose a
Zeta distribution (Zipf distribution over an infinite set) because for simulation
purposes it is easy to scale up to a large number of keys. A single parameter,
skew, determines the shape of a Zeta distribution. For simplicity, we assume that
the Zeta distribution has the same skew as the Zipfian popularity distribution
of keys. We also assume that inter-arrival times for new key events are Poisson
distributed—we fix the parameter λ at 10 for these experiments.

Figure 9 shows the aggregated number of invalidation events on keys as
a function of age. A data point at coordinates (x, y) shows that during the
experiment, y invalidations are made to any object that have been inserted x
ticks ago when such an invalidation was generated. The figure shows that new
objects tend to attract more updates than old objects, because over time new
objects come in, making old ones gradually less popular. popularity decrease also
roughly follows a Zipf-like distribution. The slope of the line is steeper with larger
skew, since the most popular objects get invalidated with higher probability. For
the same skew, the plotted line is higher for larger λ as more invalidation events
are generated.



(a) The Zeta model: infinite key set (b) The Zipf model: finite key set

Fig. 10: Number of events stored at each proxy as a function of total number of events
generated on log-log scale.

In private communication with an engineer at a popular social network based
web service provider, we confirmed that our workload, in particular the line with
skew = 1.1, λ = 200, exhibits properties similar to their real workload.

Evaluation Results: We evaluated the performance of garbage collection with
the workload described above. The metric is the amount of storage needed at
each proxy. Note that since events of the same stream arrive in FIFO order at
each proxy, there is no need to store tombstone events explicitly. A tombstone
event is always followed by a corresponding data event.

Figure 10a shows the number of events to be stored at each proxy as new
events are generated. Garbage collection saves roughly three-fourths of the space
needed to store events. The effect becomes more significant if the workload is
more heavily skewed.

In a real-world application, the number of keys are generally bounded. Fig-
ure 10b shows the same experiment on a slight variant of the above model: the
set of possible keys is finite, and a Zipf distribution over the finite set is used
to model the popularity. In this experiment, there are 100, 000 keys in the set
initially. For each chosen skew value, we study two cases: a) the set of keys is
fixed over time; and b) new keys are inserted into the system with a 1 : 10 inser-
tion/invalidation ratio. The result shows that garbage collection saves roughly
85% of the space with a skew of 1.1, and more with a higher skew. Only the
results for the case of fixed set of keys are shown in the figure, since the addition
of new keys makes little difference to the results.

6 Related Work

Sprinkler provides roughly similar functionality to topic-based publish-subscribe
systems such as Information Bus [22] (TIBCO), iBus [6], JMS Queue [12], Web-
Sphere MQ [2], and so on. The main focus of such systems is to support high
throughput, but, unlike Sprinkler, slow subscribers or subscribers that join late
may not receive all updates. Topic-based pub-sub systems are closely related



to group communication systems [24], as topics can be viewed as groups [14].
Examples of group communication systems such as ISIS [8] focus on reliability,
but throughput is limited by the slowest group member.

Apache HedWig [4] is a recent publish-subscribe system that is designed to
distribute data across the Internet. Like Sprinkler, HedWig provides reliable de-
livery. However, HedWig is intended for a large number of topics with a small
number of subscribers per topic (no more than about 10). In contract, Sprinkler
can support only a small number of streams but can scale to hundreds of thou-
sands of subscribers per stream. HedWig uses a separate coordination service
(ZooKeeper [17]) to keep its metadata. To provide high throughput in the face
of slow subscribers, HedWig logs all events to disk before delivery.

LinkedIn’s Kafka [20] is another recent publish-subscribe system that pro-
vides high throughput and persistent on-disk storage of large amounts of data.
Messages are guaranteed to be delivered and in order within a so-called parti-
tion (a sharding unit within a topic). Like HedWig, Kafka relies on ZooKeeper to
maintain group membership and subscription relationships, but unlike Sprinkler
does not deal with deployments in geographically dispersed locations.

Sprinkler is strongly inspired by gossip protocols. Proxies as well as clients
gossip their state to their peers, and Sprinkler’s per-region membership protocol
is gossip-based as well. First introduced in [13], gossip has received consider-
able research. The first gossip protocols assumed all participants to gossip all
their state with all other participants, providing strong reliability properties but
limiting scalability drastically. Bimodal multicast [7] is an IP-multicast protocol
that provides reliability with high probability through such a gossip mechanism.
However, both IP multicast and uniform gossip limits its scalability. To obtain
good scalability it is necessary to gossip in a more restricted manner.

Another gossip-based option is to provide each member with a small and
dynamic view consisting of a random subset of peers, inducing a random graph
that is connected with high probability [15,16,25,5]. SelectCast [9] (based on As-
trolabe [26]) is a publish-subscribe protocol that builds a tree-structured overlay
on participants using gossip. The overlay is then used to disseminate events.
Sprinkler’s membership protocol is entirely based upon [5]. Our Region-Level
Protocol is influenced by the Chainsaw protocol [23]. While Chainsaw is in-
tended for streaming video and can afford to lose video frames, RLP provides
provides reliable delivery of (usually) small events.

Early large scale multicast protocols such as [18] build network overlays,
but only provide best effort service. Multicast protocols such as SCRIBE [10],
SplitStream [11] and Bullet [19] use Distributed Hash Tables to build tree-based
overlays. Such protocols, besides providing only best effort service, tend to suf-
fer from relatively high “stretch” as messages are forwarded pseudo-randomly
through the overlay.

7 Conclusion and Future Work

We have described the design, implementation, and initial evaluation of Sprin-
kler, a high-throughput reliable broadcast facility that scales in the number



of recipients. Prior approaches either assume a small number of recipients per
topic or drop events to slow recipients or temporarily disconnected recipients.
In order to reach our objectives, we have added a garbage collection facility
that replaces application-specified obsolete events with tombstone events. Such
tombstone events can be readily aggregated. Garbage collection is particularly
effective in the face of updates to keys that are skewed by popularity, or in the
face of keys that are used temporarily for intermediate results. Combined with a
careful design that separates inter-datacenter forwarding from intra-datacenter
forwarding and specializes each case, we have shown that Sprinkler can provide
high throughput in the face of millions of recipients.

At the time of this writing, we only have an initial implementation and
evaluation of Sprinkler. Garbage collection events currently support predicates
that remove events prior to a certain sequence number, or all previous events
for the same key. We want to support a richer language for predicates, but have
to ensure that Sprinkler proxy CPUs do not get overloaded by evaluation of
predicates. We are working on a design of a predicate evaluation language as
well as an index for events that allow fast identification of events that match a
predicate.

Proxies have the option to maintain all events in memory, or to sync events
onto disk to make them persistent. For this paper, we only implemented and
evaluated the first option. While keeping everything in memory works well if
garbage collection is sufficiently effective and replication prevents data loss, we
want to evaluate the performance of storing events on disk. Most access will
be sequential writing, and modern disks spin at an impressive 15,000rpm. As
disks are cheap, we can deploy multiple disks in parallel to further increase
bandwidth. Also SSDs are becoming increasingly cost effective. Cache controllers
with battery-backed caches mask the latency of disks—they can complete writes
even as the main CPU has crashed. We thus do not expect massive slowdown in
the face of disk logging of events.
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