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ABSTRACT 

SCALABILITY, THROUGHPUT STABILITY AND EFFICIENT 
BUFFERING IN RELIABLE MULTICAST PROTOCOLS 

Oznur Ozkasap* 

 

This study investigates the issues of scalability, throughput stability and efficient 
buffering in reliable multicast protocols. The focus is on a new class of scalable reliable 
multicast protocol, Pbcast that is based on an epidemic loss recovery mechanism. The 
protocol offers scalability, throughput stability and a bimodal delivery guarantee as the 
key features. A theoretical analysis study for the protocol is already available. 

This thesis models Pbcast protocol, analyzes the protocol behavior and compares it 
with multicast protocols offering different reliability models, in both real and simulated 
network settings. Techniques proposed for efficient loss recovery and buffering are 
designed and implemented on the simulation platform as well. Extensive analysis studies 
are conducted for investigating protocol properties in practice and comparing it with 
other classes of reliable multicast protocols across various network characteristics and 
application scenarios. The underlying network for our experimental model is the IBM 
SP2 system of the Cornell Theory Center. In the simulation model, we used the ns-2 
network simulator as the underlying structure. Performance metrics, such as scalability, 
throughput stability, link utilization and message latency distribution, are analyzed. It is 
demonstrated that Pbcast protocol scales well, and in contrast to the other scalable 
reliable multicast protocols, it gives predictable reliability even under highly perturbed 
conditions. 

                                                             
* Current contact info: Assistant Professor, College of Engineering, Koc University, Sariyer, Istanbul, 
Turkey. E-mail: oozkasap@ku.edu.tr 
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1. Introduction 

 

 

The availability of high speed networks and the growth of the Internet have triggered the 

use of multicast communication in large scale settings. Furthermore, the widespread 

availability of IP multicast (Deering and Cheriton, 1990) and the Mbone (Kumar, 1995) 

have important consequences in terms of the use of large-scale multicast communication. 

These developments have considerably increased both the geographic extent and the size 

of communication groups. Distributed applications such as Internet media distribution, 

electronic stock exchange, computer supported collaborative work, air traffic control and 

reliable information dissemination need to distribute data among multiple participants. As 

the size and geographic extent of such applications increase, scalable reliable multicast 

protocols become an essential underlying communication structure. 

Several large-scale distributed applications exploiting multicast communication require 

reliable delivery of data to all participants. In addition, scalability, throughput stability, 

efficient loss recovery and buffer management are essential communication properties in 

large-scale settings. 

There are two primary classes of multicast protocols offering reliability guarantees. One 

class of protocols offers strong reliability guarantees such as atomicity, delivery ordering, 

virtual synchrony, real-time support, security properties and network-partitioning 

support. The other class offers support for best-effort reliability in large-scale settings. 

Although protocols providing strong reliability guarantees are useful for many 

applications, they have some limitations in terms of scalability and throughput stability. 
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The drawback is that in order to obtain strong reliability guarantees, costly protocols are 

used and the possibility of unstable or unpredictable performance under failure scenarios 

is accepted. These protocols allow limited scalability. As mentioned in (Piantoni and 

Stancescu, 1997) the maximum number of participants must not exceed about fifty to one 

hundred. Otherwise, transient performance problems can cause these protocols to exhibit 

degraded throughput. 

The second class of protocols offers support for best-effort reliability in large-scale 

settings. These protocols overcome message loss and failures, but they do not guarantee 

end-to-end reliability. For instance, group members may not have a consistent knowledge 

of group membership, or a member may leave the group without informing the others. 

This class of protocols is suitable for large-scale networks and they do scale beyond the 

limits of protocols offering strong reliability guarantees. When the message loss 

probability is very low or uncommon, they can give a very high degree of reliability. But, 

failure scenarios such as router overload and system-wide noise which are known to be 

common in Internet protocols can cause these protocols to behave pathologically 

(Labovitz et al., 1997; Paxson, 1997). 

For large-scale applications such as Internet media distribution, electronic stock exchange 

and distribution of flight telemetry data in air traffic control systems, the throughput 

stability guarantee is extremely important. This property entails the steady delivery of 

multicast data stream to correct destinations. Throughput instability problem applies to 

both classes of reliable multicast protocols that we discussed. 

Buffering scalability is another important issue for large-scale distributed applications 

that motivate our work. Very little attention has been paid to solve the buffer 

management problem in scalable reliable multicast protocols. Most existing protocols 

either ignore the problem, or provide only an ad hoc solution. 

This thesis study focuses on a new option in scalable reliable multicast protocols. We call 

this protocol bimodal multicast, or Pbcast (probabilistic multicast) in short (Birman et al., 

1999). The behavior of Pbcast can be predicted given simple information on how 

processes and the network behave most of the time. The protocol exhibits stable 
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throughput under failure scenarios that are common on real large-scale networks. In 

contrast, this kind of behavior can cause other reliable multicast protocols to exhibit 

unstable throughput. 

This study investigates the issues of scalability, throughput stability and efficient 

buffering in reliable multicast protocols. We developed experimental and simulation 

models for Pbcast protocol. The underlying network for our experimental model is the 

IBM SP2 system of the Cornell Theory Center. In the experimental model, we 

accomplished an analysis study for investigating the behavior and evaluating the 

performance of Pbcast, and comparing it with protocols offering strong reliability 

guarantees. For this purpose, we designed and constructed several group communication 

application scenarios. In the simulation model, we used the ns-2 (Bajaj et al., 1999) 

network simulator as the underlying structure. We designed and implemented basic 

Pbcast protocol on top of ns-2. In addition, for fast error recovery, we developed and 

modeled some optimizations to the protocol,  and also used the simulation model of a 

scalable reliable multicast protocol for comparison across various network characteristics 

and application scenarios. By using the simulation model, we performed extensive 

simulation studies for investigating several issues that are important for scalable reliable 

multicast protocols. We analyzed performance metrics such as scalability, throughput 

stability, link utilization and message latency distribution for both Pbcast and a reliable 

multicast protocol offering best-effort reliability. 

We demonstrate that Pbcast protocol scales well, and in contrast to the other scalable 

reliable multicast protocols it gives predictable reliability even under highly perturbed 

conditions. We include a variety of results demonstrating the throughput instability 

problem in existing multicast protocols based on different reliability models. 

We also implement some techniques for buffering scalability in reliable multicast 

protocols, and demonstrate the efficiency of them by extensive simulations. 

Contributions accomplished in this thesis study can be described as follows. This study 

models Pbcast protocol, analyzes the protocol behavior and compares it with multicast 

protocols offering different reliability models, in both real and simulated network 
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settings. First, an experimental model for Pbcast was developed, and several group 

communication applications were constructed for investigating protocol properties in real 

network settings. In addition, a comparison study with protocols offering strong 

reliability guarantees has been accomplished under the same network settings. Next, a 

simulation model for Pbcast was developed. In the simulation model, design and 

implementation of basic Pbcast have been accomplished. Furthermore, for fast error 

recovery, some optimizations to the protocol were developed. In contrast to the 

experimental model, simulation methods made possible to evaluate protocol’s 

performance on several network topologies, failure models and large scale settings. 

Furthermore, a comparison study with a well -known scalable reliable multicast protocol 

offering best-effort reliabil ity has been accomplished. In this thesis study, extensive 

analysis studies evaluating the scalability and stabili ty metrics of the protocols for both 

experimental and simulation results have been performed. This thesis study also describes 

a technique for efficient buffering in reliable multicast protocols. The idea was first 

suggested by Robbert van Renesse, and in the simulation model accomplished in this 

thesis study, the technique has been integrated to the Pbcast protocol. Then, a simulation 

and analysis study, for validating the effectiveness of the technique, has been conducted.   

The dissertation is organized as follows. Chapter 2 provides background for reliable 

multicast protocols, explains the throughput stabil ity concept, investigates the buffering 

issue in the context of reliable multicast protocols, and provides motivation and 

application classes that this thesis study focuses on. Chapter 3 starts by giving 

information on the epidemic communication and then describes the Pbcast protocol in 

detail. Chapter 4 gives details of the experimental model, results and analysis. Chapter 5 

gives detail s of the simulation model, protocol design and implementations. Chapter 6 

first describes network and application characteristics of our simulation study. Then, it 

explains simulation studies, results and analysis in detail. Chapter 7 first describes the 

technique for efficient buffering. Then, it gives the details of the simulation study, results 

and analysis of the technique. Chapter 8 is the conclusion. 
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2. Background 

 

 

Multicast is an important communication paradigm for constructing distributed 

computing applications. Basically, it is a way of transmitting a message to the members 

of a specified group of processes. The abstraction of a group is a logical name for a set of 

processes whose membership may change with time. Many different types of entities can 

be considered as group members such as processes, processors, name servers, database 

servers and sub-networks of a large-scale communication system. Groups are mainly 

used in distributed systems for distributing information and work, replicating data, 

naming and monitoring (Couloris et al., 1994; Mullender 1993). The key property of a 

process group is that when a message is sent to the group, all correct members need to 

receive that message. This is a type of one-to-many communication called multicast 

where there exists one sender and many receivers. 

The first system in the literature introducing support for group communication was the V 

system (Cheriton and Zwaenepoel, 1985). The system offered a best-effort multicast 

mechanism as an operating system primitive, but lacked guarantees for reliable or 

ordered delivery of messages. 

Several distributed applications exploiting multicast communication require reliable 

delivery of messages to all destinations. Therefore, a reliable multicast protocol is the 

basic building block of such an application. Example systems making use of reliable 

multicast protocols include electronic stock exchanges, air traffic control systems, health 

care systems, and factory automation systems. The degree of reliability guarantees 
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required by such applications differs from one setting to another. Thus, reliability 

guarantees provided by multicast communication protocols split them into two broad 

classes. One class of protocols offers strong reliability guarantees such as atomicity, 

delivery ordering, virtual synchrony, real-time support, security properties and network-

partitioning support. The other class offers support for best-effort reliability in large-scale 

settings. 

2.1 Strong Reliability Guarantees 

One of the key properties provided by a reliable multicast protocol is atomicity. 

Informally, this means that a multicast message is either received by all destinations that 

do not fail or by none of them. Atomicity, which is also called all-or-nothing delivery, is 

a useful property, because a process that delivers an atomic multicast knows that all the 

operational destinations will also deliver the same message. This guarantees consistency 

with the actions taken by group members (Cristian et al., 1985). 

Some applications also require ordering during the delivery of messages. Ordered 

multicast protocols ensure that the order of messages delivered is the same on each 

operational destination (Hadzilacos and Toueg, 1993). Different forms of ordering are 

possible such as FIFO, causal and total ordering. The strongest form among these is the 

total order guarantee that ensures that multicast messages reach all of the members in the 

same order (Lamport, 1978). 

Distributed real-time and control applications need timing support in reliable multicast 

protocols. In these systems, multicast messages must be delivered at each destination by 

their deadlines. 

The virtual synchrony model (Birman and Joseph, 1987) was introduced in the Isis 

system. In addition to message ordering, this model guarantees that membership changes 

are observed in the same order by all the members of a group. In addition, membership 

changes are totally ordered with respect to all regular messages. The model ensures that 

failures do not cause incomplete delivery of multicast messages. If two group members 

proceed from one view of membership to the next, they deliver the same set of messages 
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in the first view. The virtual synchrony model has been adopted by various group 

communication systems. Examples include Transis (Dolev and Malki, 1996), and Totem 

(Moser et al., 1996). 

In the literature, there is a great deal of work on communication tools offering reliable 

multicast protocols for distributed applications (Birman, 1997). The Isis toolkit, 

developed at Cornell University, provided reliable multicast protocols supporting various 

ordered delivery properties such as causal and total ordering. It was one of the first 

available group communication systems providing multi-threading on top of Unix. It 

introduced the virtual synchrony model and has been used by several distributed 

applications including stock exchanges and air traffic control systems (Birman and van 

Renesse, 1994; Birman, 1993). 

The Horus group communication system provides a flexible architecture where micro-

protocols are composed to build high-level protocols depending on the needs of 

applications. Compared to its parent system Isis, it performs better and offers more 

flexibility for matching application requirements (van Renesse et al., 1994, 1996; van 

Renesse and Birman, 1995). 

The Totem system offers reliable multicast communication guaranteeing totally ordered 

delivery on local area networks. It uses hardware broadcast property of such networks for 

achieving high performance. The system extends the virtual synchrony model, and is 

intended for distributed applications where fault-tolerance and real-time performance are 

critical (Moser at al., 1996).  

The Transis system is a transport level reliable group communication service that 

distinguishes itself in allowing multiple network components to exist. It extends the 

virtual synchrony model for the purpose of supporting network partitions and consistent 

merging after recovery (Dolev and Malki, 1996; Malki, 1994). This approach to 

partitionable operation has been adopted by several systems including Horus and Totem. 

Other example systems giving support for reliable multicast communication include 

Relacs (Babaoglu et al., 1995) and Rampart (Reiter, 1996). 
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The Ensemble system, developed as a successor project to the Horus, is a general-

purpose group communication system providing the flexibility and performance required 

by several distributed applications. It also achieves a number of goals. Ensemble is a 

framework for conducting research in group communication protocols, and an 

implementation built in a functional programming language. It is designed to support the 

application of formal methods for the purpose of reasoning about the correctness of the 

protocols (Hayden, 1998). 

Although protocols providing strong reliability guarantees are useful for many 

applications, they have some limitations. The drawback of protocols in this category is 

that in order to obtain strong reliability guarantees, costly protocols are used and the 

possibility of unstable or unpredictable performance under failure scenarios is accepted. 

These protocols allow limited scalability. As mentioned in (Piantoni and Stancescu, 

1997) the maximum number of participants must not exceed about fifty to one hundred. 

Otherwise, transient performance problems can cause these protocols to exhibit degraded 

throughput. 

2.2 Best-effort Reliability 

This category includes scalable reliable multicast protocols that focus on best-effort 

reliability in large-scale systems. This class of protocols overcomes message loss and 

failures, but they do not guarantee end-to-end reliability. For instance, group members 

may not have a consistent knowledge of group membership, or a member may leave the 

group without informing the others. Example systems are Internet Muse protocol for 

network news distribution (Lidl et al., 1994), the Scalable Reliable Multicast (SRM) 

protocol (Floyd et al., 1997), the Pragmatic General Multicast (PGM) protocol 

(Speakman et al., 1998), the Xpress Transfer Protocol (XTP) (XTP Forum, 1995), and the 

Reliable Message Transfer Protocol (RMTP) (Paul et al., 1997; Lin and Paul, 1996). 

SRM is a well-known reliable multicast protocol which was first developed to support 

wb, a distributed whiteboard application. The protocol is based on the principles of IP 

multicast group delivery, application level framing (ALF), adaptivity and robustness in 

the TCP/IP architecture design. Similar to TCP that adaptively sets timers or congestion 
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control windows, SRM algorithms dynamically adjust their control parameters based on 

the observed performance within a multicast session. It exploits a receiver-based 

reliability mechanism, and does not provide ordered delivery of messages. SRM protocol 

is designed according to the ALF principle that defers most of the transport level 

functionality to the application for the purpose of providing flexibility and efficiency in 

the use of the network. The protocol aims to scale well both to large networks and 

sessions. 

PGM is a reliable multicast transport protocol that offers ordered, duplicate-free multicast 

data delivery. It guarantees that a receiver delivers all data packets or is able to detect 

unrecoverable data packet loss. PGM is designed with the goal of simplicity of operation 

for scalability and network efficiency. It employs a NAK-based error recovery 

mechanism and runs over a datagram multicast protocol such as IP multicast. 

XTP is a general-purpose transport protocol designed to support a variety of applications 

ranging from real-time embedded systems to multimedia distribution over wide area 

networks. It provides all of the functionality found in TCP, UDP and TP4 plus new 

services such as multicast, multicast group management, transport layer priorities, rate 

and burst control, selectable error and flow control mechanisms, traffic descriptions for 

QoS negotiation. 

RMTP is based on a hierarchical approach in which receivers are grouped into local 

regions. In each local region, there is a special receiver called a Designated Receiver 

(DR) which is responsible for processing ACKs from receivers in its region, sending 

ACKs to the sender and retransmitting lost packets. The sender only keeps information 

on DRs and each DR keeps membership information of its region. This approach reduces 

the amount of state information kept at the sender, end-to-end retransmission latency and 

the number of ACKs gathered by the sender. Since only the DRs send their ACKs to the 

sender, a single ACK is generated per local region and this prevents the ACK implosion 

problem. 

This class of protocols is suitable for large-scale networks and they do scale beyond the 

limits of virtual synchrony protocols. When the message loss probability is very low or 
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uncommon, they can give a very high degree of reliability. But, failure scenarios such as 

router overload and system-wide noise which are known to be common in Internet 

protocols can cause these protocols to behave pathologically (Labovitz et al., 1997; 

Paxson, 1997). 

2.3 Probabilistic Reliability 

This thesis focuses on a new option in scalable reliable multicast protocols. We call this 

protocol bimodal multicast, or pbcast (probabilistic multicast) in short (Birman et al., 

1999). This study demonstrates that bimodal multicast scales well, and in contrast to the 

other scalable reliable multicast protocols it gives predictable reliability even under 

highly perturbed conditions. The behavior of bimodal multicast can be predicted given 

simple information on how processes and the network behave most of the time. The 

protocol exhibits stable throughput under failure scenarios that are common on real large-

scale networks. In contrast, this kind of behavior can cause other reliable multicast 

protocols to exhibit unstable throughput. Chapter 3 gives detailed information on bimodal 

multicast protocol. 

2.4 Throughput Stability 

For large-scale applications such as Internet media distribution, electronic stock exchange 

and distribution of flight telemetry data in air traffic control systems, the throughput 

stability guarantee is extremely important. This property entails the steady delivery of 

multicast data stream to correct destinations. 

Traditional reliable multicast protocols depend on assumptions about response delay, 

failure detection and flow control mechanisms. Low-probability events caused by these 

mechanisms, such as random delay fluctuations in the form of scheduling or paging 

delays, emerge as an obstacle to scalability in reliable multicast protocols. For example, 

in a virtual synchrony reliability model, a less responsive member exposing such events 

can impact the throughput of the other healthy members in the group. The reason is as 

follows. For the reliability purposes, such a protocol requires the sender to buffer 

messages until all members acknowledge receipt. Since the perturbed member is less 
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responsive, the flow control mechanism begins to limit the transmission bandwidth of the 

sender. This in turn affects the overall performance and throughput of the multicast 

group. In effect, these protocols suffer from a kind of interference between reliability and 

flow control mechanisms. Moreover, as the system size is scaled up, the frequency of 

these events rises, and this situation can cause unstable throughput. 

Throughput instability problem does not only apply to the traditional protocols using 

virtually synchronous reliability model. Scalable protocols based on best-effort reliability 

exhibit the same problem. As an example, recent studies (Liu, 1997; Lucas, 1998) have 

shown that, for the SRM protocol, random packet loss can trigger high rates of request 

and retransmission messages. In addition, this overhead grows with the size of the 

system. This thesis study includes a variety of results demonstrating the throughput 

instability problem in existing multicast protocols based on different reliability models. 

2.5 Buffering 

For error recovery, processes in a multicast session buffer the messages that they receive. 

Many reliable multicast protocols have all receivers buffer each message until it is 

guaranteed that the message has become stable, or has been delivered to every 

destination. In this case, the amount of buffering on each member is scaled up with group 

size. The reasons behind this buffering problem are as follows. As the group size is 

scaled up, the time to accomplish stability and to detect stability increases. In addition, 

depending on the application, the rate of sending multicast messages may grow. 

Buffering scalability is an important issue for large-scale distributed applications that 

motivate our work. Very little attention has been paid to solve the buffer management 

problem in scalable reliable multicast protocols. Most existing protocols either ignore the 

problem, or provide only an ad hoc solution. 

In general, work on buffering in group communication can be classified in three 

categories: 
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(a) Multicast flow control techniques attempt to control the amount of buffering using 

rate or credit-based mechanisms. 

(b) Stability optimization techniques attempt to minimize the time to accomplish and 

detect stability of messages. This reduces the time that messages are buffered. 

(c) Memory reduction techniques attempt to minimize the required amount of buffer 

memory. 

Flow control techniques enable group members to manage their local buffers, and also 

deal with the problem of buffer overflow. A related work in this category is by (Mishra 

and Wu, 1998). They present two general-purpose flow control techniques, one 

conservative and one optimistic, and investigate the effect of these techniques on the 

performance of a group communication service. The conservative techniques prevent 

buffer overflow, but restrict the times when members can accept new multicasts. The 

optimistic techniques, on the other hand, are less restrictive. They minimize the 

possibility of buffer overflow, but do not prevent it completely. In the case of a buffer 

overflow, they offer mechanisms to tolerate overflow while ensuring correctness and 

progress of the multicast service. A simulation study is performed to compare these two 

flow control techniques in both ACK and NAK-based protocols. They conclude that an 

optimistic flow control technique is preferable to a conservative one most of the time. 

In the second category, all reliable communication protocols try to optimize the time to 

achieve stability. The work in (Mishra and Kuntur, 1999) introduces a general technique 

called Newsmonger for improving the time to detect stability. The technique consists of a 

token rotating along a logical ring of group members, and is applicable to the atomic 

multicast protocols designed for asynchronous distributed systems. It is shown that it 

significantly improves the average stability time of multicast protocols. This approach is 

important when the application requires uniform or safe delivery of messages. As a 

beneficial side effect, it also reduces the amount of time that messages need to be 

buffered. The technique, when combined with our buffering optimization, is also useful 

to improve the latency of uniform delivery.  
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Another extensive study in this category focuses on buffer management mechanisms of 

reliable multicast protocols and investigates message stability detection protocols for 

large-scale reliable multicast communication (Guo, 1998). This study also introduces a 

gossip-style protocol with improved reliability and fault tolerance properties. 

The buffer optimization techniques studied and evaluated in this thesis belong in the third 

category. The best known work in this category is a general protocol model called 

Application Level Framing (ALF) (Clark and Tennenhouse, 1990). ALF introduces the 

integration of the protocol levels from the transport level to the application level. This 

leaves many reliability decisions to the application. SRM is a well-known 

implementation of a multicast facility in the ALF model, and is used in various tele-

conferencing applications. SRM does not buffer or order messages, and instead provides 

call-backs to the application when it detects message loss. The application decides 

whether and how to retransmit the message. Rather than buffering messages, the 

application may be able to regenerate messages based on its state. 

2.6 Motivation and applications 

Probabilistic protocols like pbcast provide weaker guarantees compared to other classes 

of multicast protocols with strong reliability guarantees. A probabilistically reliable 

multicast protocol is suitable for applications that are insensitive to small inconsistencies 

among participants. On the other hand, probabilistic communication protocols offer 

quality of service properties which are essential for some distributed applications. These 

properties are: 

• Throughput stability guarantee which provides the steady delivery of multicast data 

stream to correct participants, 

• Scalability of multicast communication as the number of participants increases, 

• Minimal delivery latency of multicast messages. 

One class of applications that can benefit from the properties provided by probabilistic 

protocols includes Internet media distribution applications that transmit media such as 

TV and radio, or teleconferencing data over the Internet. Such applications need to be 
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scalable, and they must tolerate some inconsistencies that may occur among the 

participants. For instance, it may be acceptable for a participant of an Internet TV 

application to miss some frames provided that the probability of such an event is very 

low. In addition, those applications disseminate media with a steady rate. An important 

requirement is the steady delivery of media by all correct participants in spite of possible 

failures in the system. Parameters of pbcast can be adjusted to meet those application 

needs. 

Another application group is electronic stock exchange and trading environments like the 

Swiss Exchange Trading System (SWX) (Piantoni and Stancescu, 1997). In such 

systems, the trading information including orders and trades is multicast immediately to 

all members ensuring equal treatment and market transparency. A multicast 

communication protocol is used to disseminate trading information to all members at the 

same time and with minimal delay. Stock exchange and trading systems aim to serve 

large number of clients. SWX developers chose the Isis reliable group communication 

toolkit for this purpose, using it to implement fault tolerance with active repli cation. They 

observed some shortcomings that they attribute to the multicast protocols (and strong 

reliability guarantees) provided by Isis. For instance, one slow client could affect the 

entire system, especially under peak load. Also, multicast throughput was found to 

degrade linearly as the number of clients increased. This kind of shortcoming can be 

overcome using probabil istic protocols. In such systems, infrequent loss of a quote would 

not pose a problem as long as these events are rare enough and randomly distributed over 

messages generated within the system. 

Air-traffic control systems require repeated refreshing of several types of data such as 

periodic updates to radar images and flight tracks. This kind of data changes rapidly, and 

infrequent dropping of updates would not cause a safety threat. Using a probabili stic 

protocol in this setting to transmit time-critical but less safety-critical data would 

guarantee stable throughput and minimal latency. Some data types in this kind of system 

may require stronger reliabil ity guarantees, but such problems can be solved using 

virtually synchronous protocols “side-by-side” with the probabil istic ones. For example, 

France’s Phidias1 air-traffic control system replicates flight plan updates within small 

                                                             
1 http://www.stna.dgac.fr/projects/Phidias/ 
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clusters of workstations using state machine repli cation. A flight plan is a record of the 

pilot’s intentions and the instructions given by the controller. These updates need to be 

reliably multicast to the cluster participants. 

In health-care systems, patient telemetry data are refreshed frequently on monitors 

located in places such as the patient’s room, nursing station, and physician’s office. Since 

infrequent loss of data of this sort is tolerable, they can be transmitted using probabilistic 

protocols. On the other hand, some data types, like medication change order, still need 

strong end-to-end guarantees. For example, a doctor making the dosage-changing 

operation at one end of the system needs the guarantee that the systems displaying 

medication order wil l reflect the changed dosage. Hence, for this data type, they require 

the use of traditional reliable multicast protocols with strong reliability guarantees. 

The application classes described above are representative of a type of systems with 

mixed reliability requirements. They make use of two or more process groups. However, 

different uses of groups are independent. An application using a probabilistic protocol 

coexists with an application with stronger reliabili ty needs. Traditional forms of reliable 

multicast should be used where individual data items have critical significance for the 

correctness and consistency of the application. Example data of this type include security 

keys for access to a stock exchange system, replicated flight plan data in air-traffic 

control centers, and medication dosage instructions in a health-care system. Other kinds 

of data match well to the probabil istic protocol’s properties. Frequent message traffic 

such as periodic updates to radar images, refreshing patient telemetry can use 

probabilistic protocols safely. 

2.7 Summary 

This chapter provides background for reliable multicast protocols. Two classes of 

reliability guarantees, strong and best-effort, are described. Then, a new option in 

scalable reliable multicast protocols, probabil istic reliabil ity is introduced. The 

throughput stabil ity concept is explained, and buffering in the context of reliable 

multicast protocols is investigated. The chapter ends with the motivation, and application 

classes that this thesis study focuses on. 
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3. Bimodal Multicast Protocol 

 

 

Bimodal multicast protocol is a new option in scalable reliable multicast protocols. The 

important aspects of bimodal multicast are an epidemic loss recovery mechanism, stable 

throughput property and a bimodal delivery guarantee. The protocol was first introduced 

by (Hayden and Birman, 1996) within the Ensemble system. This chapter gives 

information on the basis of epidemic communication, and describes bimodal multicast 

protocol suite that is the main focus of this thesis study. 

3.1 Epidemic Communication 

There exists a substantial class of large-scale distributed applications that are insensitive 

to small inconsistencies among participants, as long as these events are temporary and not 

frequent. Epidemic communication is suitable in this case where it allows such 

inconsistencies in shared data and offers low overhead as a benefit. Information changes 

are spread throughout the participants without incurring the latency and bursty 

communication that are typical for systems achieving a strong form of consistency 

(Golding and Taylor, 1992). In fact, this is especially important for large systems, where 

failure is common, communication latency is high and applications may contain hundreds 

or thousands of participants. 

Epidemic communication mechanisms were first proposed for spreading updates in a 

replicated database. Anti-entropy is an epidemic communication strategy introduced for 

achieving and maintaining consistency among the sites of a widely replicated database. 

Compared to deterministic algorithms for replicated database consistency, this strategy 
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also reduces network traffic (Demers et al., 1987). Anti-entropy has been proposed as a 

mechanism that runs in background for recovering errors of direct mail in large network, 

as well (Birrell et al., 1982). Our protocol utilizes this mechanism for probabilistically 

reliable multicast communication. Periodically, every site chooses another site at random 

and exchanges information to see any differences and achieve consistency. This 

technique is called gossiping. For the case of database maintenance, the information 

exchanged during gossip rounds may include database contents. For epidemic multicast 

communication, the information may include some form of message history of the group 

members. 

The anti-entropy method is based on the theory of epidemics (Bailey, 1975). According 

to the terminology of epidemiology, a site holding information or an update it is will ing 

to share is called ‘ infective’. A site is called ‘susceptible’ if it has not yet received an 

update. In the anti-entropy process, non-faulty sites are always either susceptible or 

infective. One of the fundamental results of epidemic theory shows that simple epidemics 

eventually infect the entire population. If there is a single infected process at the 

beginning, full infection is achieved in expected time proportional to the logarithm of the 

population size. 

Epidemic or gossip style of communication has been used for several purposes. Examples 

include use of epidemic communication techniques for group membership tracking 

(Golding and Taylor, 1992), for support of repli cated services (Ladin et al., 1992), for 

deciding when a message can be garbage collected (Guo, 1998) and for failure detection 

(van Renesse et al., 1998). 

3.2 Prior Work 

Bimodal Multicast protocol is inspired by prior work on epidemic protocols (Demers et 

al., 1987), Muse protocol for network news distribution (Lidl et al., 1994), the SRM 

protocol (Floyd et al., 1997), the NAK-only protocols of XTP (XTP Forum, 1995), and 

the lazy transactional replication method of (Ladin et al., 1992). 
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The work of (Demers et al., 1987) looked at systems under light load, and did not 

develop the idea of probabilistic reliability as a property one might present to the 

application developer. Moreover, since the frequency of database updates was very low, 

typically a few updates per second, this study did not consider the guarantee of stable 

throughput. Unlike the bimodal multicast model, they just assumed communication 

failures; bimodal multicast considers both process and communication failures. 

The lazy replication technique of (Ladin et al., 1992) is based on the gossip approach. In 

this study, a replicated service consists of replicas running at different nodes in a 

network. The idea is executing an operation call at just one replica, while other replicas 

are updated by lazy exchange of gossip messages. The motivation is that for some 

distributed applications; a weaker causal operation order can preserve consistency while 

offering better performance. The technique is suitable for several applications such as 

distributed garbage collection and mail systems. 

Bimodal multicast can also be considered as a soft real-time multicast protocol. Similar 

works are ∆-T protocol developed by (Cristian et al., 1985), and δ-causal protocol 

(Baldoni et al., 1996). These studies did not investigate the issue of steady load and 

steady data delivery during failures. They do not scale well. For instance, the ∆-T 

protocol involves delaying messages for a period of time proportional to the worst-case 

delay in the system, to estimates of the number of messages that might be lost and 

processes that might crash in a worst-case failure pattern. But, these delays would rise 

without limit as a function of system size. Similar concerns can be expressed about the δ-

causal protocol, which guarantees causal order for messages while discarding the ones 

that are excessively delayed. 

3.3 Inverted protocol stack 

Traditional systems that suffer from throughput instability and scalability problems place 

reliability and ordering properties of protocols at bottom layers. One approach to 

overcome these problems is to construct large-scale reliable protocols using an inverted 

protocol stack. Probabilistic mechanisms are used at low layers, and reliability properties 

introduced closer to the application. Bimodal multicast protocol uses this inverted 
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protocol stack approach. The protocol is constructed using a novel gossip based transport 

layer. The transport layer employs random behavior to overcome scalability problems. 

Higher level mechanisms implementing stronger protocol properties such as message 

ordering and security can be layered over the gossip mechanisms. In this thesis, we focus 

on performance analysis of bimodal multicast and demonstrate how this approach works 

well on several network settings. 

3.4 Properties of Pbcast Protocol 

Bimodal multicast protocol, or pbcast for short, has the following properties: 

Atomicity: The atomicity property of pbcast has a slightly different meaning than the 

traditional ‘all-or-nothing’ guarantee offered by reliable multicast protocols. Atomicity is 

in the form of ‘almost all or almost none’ , which is called bimodal delivery guarantee. 

There is a high probabili ty that each multicast will be deli vered almost all participants, a 

low probability that a multicast will be deli vered just a very small set of participants, and 

a vanishingly small probability that a multicast will be delivered by some intermediate 

number of processes. 

Ordering: Each participant in the group delivers pbcast messages in FIFO order. In other 

words, multicast messages originated from a sender are deli vered by each member in the 

order of generation at the sender. As mentioned in (Birman, 1997), stronger forms of 

ordering like total order can be provided by the protocol. (Hayden and Birman, 1996) 

includes a similar protocol providing total ordering. 

Scalability: As the network and group size increase, overheads of the protocol remain 

almost constant or grow slowly compared to other reliable multicast protocols. This 

thesis study demonstrates that in both real and simulated network settings, most pbcast 

overheads are constant as a function of network and group size. In addition, throughput 

variation grows slowly with the log of the group size. 
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Throughput stability: Throughput variation observed at the participants of a group is low 

when compared to multicast rates. This leads to steady delivery of multicast messages at 

the correct processes. 

Multicast stability detection: Pbcast protocol detects the stability of multicast messages. 

This means that the bimodal delivery guarantee has been achieved. If a message is 

detected as stable, it can be safely garbage collected. If needed, the application can be 

informed as well. Although some reliable multicast protocols like SRM do not provide 

stability detection, virtual synchrony protocols like the ones offered in Ensemble 

communication toolkit include stability detection mechanisms. 

Loss detection: Because of process and link failures, there is a small probability that 

some multicast messages will not be delivered by some processes. The message loss is 

common at faulty processes. If such an event occurs, processes that do not receive a 

message are informed via an up-call. 

3.4 Assumptions 

For purposes of analysis, Pbcast assumes the following operating conditions (Birman et 

al., 1999): 

• The protocol operates in a network for which throughput and reliability can be 

characterized for about 75% of messages sent, and where network errors iid. 

• A correctly functioning process will respond to incoming messages within a known, 

bounded delay. This assumption needs to hold only for about 75% of processes in the 

network. 

• Bounds on the delays of network links are known. However, this assumption is 

subtle, because Pbcast is normally configured to communicate preferentially over 

low-latency links. 
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3.5 Failure model 

Process and communication failures in a distributed system can be classified into two 

broad types: Hard and soft failures. Hard failures include process crashes and network 

failures like partition events that persist long enough to trigger a timeout. Soft failures 

include events such as: 

• Failure to receive a message that was correctly delivered. A buffer overflow can 

cause such a situation. 

• Failure to respect time bounds for handling incoming messages. 

• Transient network conditions that cause the network to locally violate its normal 

throughput and reliability properties. 

Unlike reliable multicast protocols that only consider and tolerate hard failures, the goal 

of pbcast protocol is to overcome bounded number of soft failures as well. This is 

achieved with minimal impact on the throughput of multicasts sent by a correct process to 

other correct processes. Malicious (Byzantine) failures where a process or 

communication link can exhibit any behavior (e.g. sending or generating spurious and 

contradictory messages) are not considered in the Pbcast failure model. 

3.6 Details of the protocol 

Pbcast consists of two sub-protocols: an optimistic dissemination protocol and a two-

phase anti-entropy protocol. 

The former is a best-effort, hierarchical multicast used to efficiently deliver a multicast 

message to its destinations. This phase is unreliable and does not attempt to recover a 

possible message loss. If IP multicast is available in the underlying system, it can be used 

for this purpose. For instance, pbcast protocol implemented on top of ns-2 network 

simulator (Bajaj et al., 1999) in this thesis study uses IP multicast. Otherwise, a 

randomized dissemination protocol can play this role. For instance, the implementation of 

pbcast within Ensemble system (Hayden, 1998), which was ported to run on the SP2 

parallel computer in this study, has used a hierarchical dissemination protocol. 
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The latter is an anti-entropy protocol that operates in a series of unsynchronized rounds. 

Each round is composed of two phases. The first phase is responsible for message loss 

detection. The second phase runs only if a message loss is detected, and corrects such 

losses. 

3.6.1 Optimistic dissemination protocol 

This stage of the protocol transmits each multicast message by means of an unreliable 

multicast primitive. Either IP multicast or a randomized dissemination protocol can be 

used for this purpose. For the randomized protocol, full connectivity of group members is 

assumed, and multicast spanning trees are superimposed upon the set of participants. 

Each process has pseudo-randomly generated spanning trees for disseminating messages 

to the whole group. Spanning trees are generated deterministically by using group 

membership information. A group member multicasts a message using a randomly 

selected spanning tree. A tree identifier is attached to the multicast message and the 

message is transmitted to the neighbors of the sender in the tree. When neighbors receive 

the message, they forward it using the same tree identifier. Pbcast implementation within 

the Ensemble system exploits a tree dissemination protocol for this first stage. The 

protocol uses Ensemble’s group membership manager to track membership. But, this has 

the disadvantage of limited scalabili ty, because Ensemble’s group membership system 

can be scaled up to a few hundred members. 

3.6.2 Two-phase anti-entropy protocol 

This stage of the protocol is responsible for message loss recovery. It is based on an anti-

entropy protocol that detects and corrects inconsistencies in a system by continuous 

gossiping. As mentioned before, the anti-entropy mechanism was previously used for 

error recovery in wide area database and large-scale direct mail systems (Demers et al., 

1987; Birrell  et al., 1982). The two-phase anti-entropy protocol progresses through 

unsynchronized rounds. In each round: 
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1. Every group member randomly selects another group member and sends a digest of 

its message history. This is called a ‘gossip message’. 

2. The receiving group member compares the digest with its own message history. Then, 

if it is lacking a message, it requests the message from the gossiping process. This 

message is called ‘solicitation’, or retransmission request. 

3. Upon receiving the solicitation, the gossiping process retransmits the requested 

message to the process sending this request. 

Figure 3.1 illustrates the execution of pbcast protocol. A, B, C and D are group members, 

and the time advances from top to bottom. A dashed arrow in the figure denotes a 

message loss. First, multicast messages M0, M1 and M2 are transmitted unreliably by the 

dissemination protocol. Because of a process or communication failure, process C fails to 

receive message M0, and process D fails to receive M1. Then, the anti-entropy protocol 

executes. Each process selects another one randomly, and sends its message history 

digest. Upon receiving a gossip message from process B, process C discovers that it is 

missing M0 and requests a retransmission from B, and recovers this message loss. 

Because of the randomness in selecting a process to gossip, a process may not receive a 

gossip message in a given round. For example, process D does not detect its message loss 

until the next anti-entropy round. The figure simplifies the execution of pbcast by 

showing that the protocol alternates between dissemination and anti-entropy stages. But, 

in practice, these stages run concurrently. 

One of the differences of pbcast’s anti-entropy protocol from the other gossip protocols is 

that during message loss recovery, it gives priority to the recent messages. If a process 

detects that it has lost some messages, it requests retransmissions in reverse order: most 

recent first. If a message becomes old enough, the protocol gives up and marks the 

message as lost. By using this mechanism, pbcast avoids failure scenarios where 

processes suffer transient failures and are unable to catch up with the rest of the system. 

One of the drawbacks of traditional gossip protocols is that such a failure scenario can 

slow down the system by causing processes’ message buffers to fill. 
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Figure 3.1 Execution of Pbcast Protocol 
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The duration of each round in the anti-entropy protocol is set to be larger than the typical 

round-trip time for an RPC over the communication links. The experiments and 

simulations conducted in this study use a round duration of 100msec. 

Processes keep buffers for storing data messages that have been received from members 

of the group. Messages from each sender are delivered in FIFO order to the application. 

When a message is received, it is inserted in the appropriate location in receiver’s 

message buffer. After a process receives a message, it continues to gossip about the 

message for a fixed number of rounds. Then, the message is garbage collected. The 

number of rounds during which the gossip continues for a given message and the number 

of processes to which a process gossips in each round are key parameters of the pbcast 

protocol. The product of these two parameters is called the ‘ fanout’ . If a process can not 

recover a missing message, it is probable that other processes have garbage collected it. 

The process therefore marks a message as lost after a sufficiently long recovery period, 

and reports a gap to the application. 

3.7 Optimizations to the anti-entropy protocol 

When failure occurs, an anti-entropy protocol can enter a situation where failed processes 

affect correct processes by sending large number of retransmission requests. In order to 

limit such overheads, several optimizations are proposed for pbcast protocol. One of the 

contributions of this thesis is to investigate and analyze the effectiveness of these 

optimizations, using experimental and simulation methods. This section gives 

information on the optimizations we explored. 

Soft failure detection 

A retransmission message is sent in response to a solicitation message, if the solicitation 

message is received in the same gossip round for which the gossip message is sent. If a 

response takes longer than one round, this indicates the existence of a soft failure. The 

process or a link can be failed, and in this case a retransmission is likely to turn out to be 

a duplicate, because the same message will have been recovered elsewhere using healthy 

links. In such a situation, the retransmission message is not sent to the requesting process. 
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This optimization also avoids redundant retransmissions when a process, after recovering 

from a transient fault, finds many solicitations in its input buffers, and tries to respond to 

many solicitations at once. 

Round retransmission limit 

A process can limit its retransmissions to some maximum amount of data in one round. If 

more than this amount is requested, the process stops the retransmission when it reaches 

the limit. This optimization helps spreading the overhead both spatially and temporally. 

Retransmissions can be handled with different processes over several rounds. 

Cyclic retransmissions 

When a process responds to retransmission requests, it takes into account the messages it 

retransmitted in the previous rounds. If a message was retransmitted to the same 

destination in a previous round, or was retransmitted using IP multicast, it might still be 

in transit. Redundant retransmissions are avoided via this optimization. 

Most-recent-first retransmission 

If a process detects that it has missed more than one message, it requests retransmissions 

in reverse order: the most recent message is requested first. This optimization avoids 

scenarios in which a faulty process tries to catch up, but is unable to do so, and hence lags 

behind the rest of the group. 

Independent numbering of rounds 

Pbcast protocol progresses through asynchronous rounds. Each process manages its own 

round numbers. The round number is used for the decisions of garbage collection and 

message delivery. A gossip message also contains round number information. A process 

sending a solicitation message includes the round number sent by the gossiping process. 
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Optimizations that are described up to now are included in the basic pbcast protocol. The 

pseudo-code of the basic pbcast protocol is given in  figure 3.2. 

In this thesis study, we developed experimental and simulation models for Pbcast 

protocol. The experimental model uses basic Pbcast protocol implementation developed 

first (Hayden and Birman, 1996) and available in the Ensemble group communication 

system. The underlying network for our experimental model is the IBM SP2 parallel 

computer of the Cornell Theory Center. This work is described in chapter 4. In the 

simulation model, we designed and implemented basic Pbcast protocol and a number of 

optimizations on top of basic Pbcast. We used the ns-2 network simulator as the 

underlying structure. Chapter 5, 6 and 7 give details on the simulation model. 

 
P: the set of processes in the system. N=|P|. 

R: the number of rounds of gossip to run. 

β: the probability that a process gossips to each other process. We define the fanout of the protocol to be 
β*N: this is the expected number of processes to which a participant gossips. 

pbcast(msg): 

add_to_msg_buffer(msg); 

unreliably_multicast(msg); 

first_reception(msg): 

add_to_msg_buffer(msg); 

deliver messages that are now in order;  report gaps after suitable delay; 

add_to_msg_buffer(msg): 

slot := free_slot; 

msg_buffer[slot].msg := msg; 

msg_buffer[slot].gossip_count := 0; 

gossip_round: 

my_round_number := my_round_number+1; 
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gossip_msg := <my_round_number, digest(msg_buffer)>; 

for(i = 0; i < β*N/R; i := i+1) 

{ dest := randomly_selected_member;     send gossip_msg to dest;   } 

for each slot 

msg_buffer[slot].gossip_count := msg_buffer[slot].gossip_count+1; 

discard messages for which gossip_count exceeds G, the garbage-collection limit; 

rcv_gossip_msg(round_number, gmsg): 

compare with contents of local message buffer; 

foreach missing message, most recent first 

if this solicitation won’ t exceed limit on retransmissions per round 

           send solicit_retransmission(round_number, msg.id) to gmsg.sender; 

rcv_solicit_retransmission(msg): 

if I am no longer in msg.round, or if have exceeded limits for this round 

ignore 

else 

send make_copy(msg.solicited_msgid) to msg.sender;  

 

Figure 3.2 Pseudo-code for pbcast protocol 

Multicast for some retransmissions 

In the basic pbcast protocol, a process retransmits a message using unicast mode of 

communication. Some reliable multicast protocols like SRM employ multicast 

communication for retransmissions. But, this potentially increases the overhead of the 

protocol as the system size scales up. In this optimization to the pbcast protocol, each 

process keeps a counter to track the number of times a message is requested. If a message 

is requested twice, the process multicasts the corresponding retransmission to the entire 

group. The idea behind is that if at least two solicitations for the same message are 
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received, it is likely that this message loss affects more than one process in the group. 

Multicasting retransmission in this case may ease and speed up the recovery process. In 

this thesis study, we designed and implemented the optimization on ns-2 and analyzed its 

effectiveness. Information on the design and implementation is described in chapter 5, 

and results are given in chapter 6. 

Gossip retransmit bit 

When sending a gossip message, a process includes an additional bit for each message, 

which we call gossip retransmit bit, in its message digest. This bit indicates whether or 

not that message was retransmitted before. Based on this information, if a process is 

going to retransmit a message, it either uses multicast or unicast communication for 

retransmission. In this thesis study, we designed and implemented the optimization on ns-

2 and analyzed its effectiveness. Information on the design and implementation is 

described in chapter 5, and results are given in chapter 6. 

Local recovery 

This optimization attempts to perform local error recovery. It utilizes neighborhood 

information among group members. If a group member determines that it lacks a 

message, then the member informs one of its neighbor members about the missing 

message. If the neighbor lacks the same message, this may be an indication of either a 

message loss affecting more than one group participant, or a local message loss affecting 

a sub-network. In this case, for achieving fast error recovery, the message source uses 

multicast for retransmission of the missing message. In this thesis study, we designed and 

implemented the optimization on ns-2 and analyzed its effectiveness. Information on the 

design and implementation is described in chapter 5, and results are given in chapter 6. 

Efficient buffering 

Buffering scalability is an important issue for large-scale distributed applications that 

motivate our work. In this thesis study, we implement some buffering optimization 

techniques on top of bimodal multicast, and demonstrate the efficiency of them by 
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extensive simulations. The most efficient optimization is based on the approach in 

(Ozkasap et al., 1999.b). Basically, the idea is to buffer each message on a small set of 

members, spreading the load of buffering over the entire membership. This causes each 

member to buffer not every message it received but only a small subset determined by a 

hash function. Results show that the optimization makes buffering scalable. In fact, the 

amount of buffering space per member actually decreases with group size. Information 

on this study is found in chapter 7. 

Hierarchical gossip for scalability 

The basic pbcast protocol seems to have two drawbacks in terms of scalabil ity. First, each 

process needs a full membership information for the multicast group, since this 

information is required by the anti-entropy protocol. But, for large-scale groups, group 

membership information can become too large and membership updates cause high 

traffic on the network. Second, in a large network, anti-entropy protocol wil l involve 

communication over high-latency paths. Then buffering requirements and round length 

parameter of pbcast grow as a function of worst-case network latency. 

It is possible to avoid these problems. A WAN is typically structured as a collection of 

LANs interconnected by TCP tunnels or gateways. In such an architecture, a hierarchical 

gossip approach would be suitable. Typical participants would only need to know about 

other processes within the same LAN component, only processes holding TCP endpoints 

would perform WAN gossip. In this case, only membership service needs the full 

membership information. A typical member would only know the members to which it 

gossips, and would gossip mostly to neighbors. Such an optimization also bounds the 

round length parameter of pbcast protocol, and in addition the protocol would have local 

costs. 

3.8 Computational Model for Pbcast 

A formal analysis of Pbcast protocol is given in (Birman et al., 1999). The analysis yields 

a computational model for Pbcast. In this section, we include the results for Pbcast’s 

bimodal deli very distribution. The computational model assumes that the initial 



 31 

unreliable multicast failed, that is only the sender initiall y has a copy of the message. The 

probability of message loss is 5% and the probabil ity that a process will experience a 

crash failure during a run of the protocol is 0.1%. All of these assumptions are very 

conservative. Figure 3.3 il lustrates Pbcast’s bimodal delivery distribution for a range of 

group sizes. N denotes the group size. As shown in the figure, the protocol guarantees 

that the probabili ty of almost none or almost all processes have delivered a multicast is 

high, and the intermediary outcomes are very low probability. When it is considered that 

the y axis is on a logarithmic scale, it becomes clear that Pbcast is likely to deliver to 

almost all processes if the sender remains healthy and connected to the network. The 

figure also shows that the risk of a failed Pbcast drops with the system size. For instance, 

the probability that only half of the processes in the group wil l receive a Pbcast, and the 

other half wil l fail to receive it, equals 10-16 for N=25, while the same probabili ty equals 

10-37 for N=100. 

 

 

 

 

 

 

 

Figure 3.3. Pbcast’s bimodal delivery distribution 
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3.9 Summary 

This chapter starts by giving information on the epidemic communication. It then 

describes bimodal multicast protocol in detail. With this information, in the next chapters, 

we can start looking at models developed for the protocol, in this thesis study. 
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4. Experimental Model 

 

 

We developed an experimental model for Pbcast protocol and virtually synchronous 

reliable multicast protocols of Ensemble group communication system. This chapter 

starts with discussing approaches to protocol performance evaluation. Then, we focus on 

our experimental study, analysis and comparison of results. The work uses an 

experimental model together with emulation methods for performance evaluation. We 

have designed experiments using the Ensemble toolkit on SP2 system, and constructed 

several group communication applications in order to investigate properties of Pbcast in 

practice. This study can be divided into the following categories: 

a) Pbcast with soft process failures 

b) Comparison with traditional and scalable Ensemble multicast protocol 

c) Pbcast with system-wide message loss 

4.1 Protocol Performance Evaluation 

There are three primary approaches for evaluating protocol performance: 

1. Analytical evaluation 

2. Experimental model 
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3. Simulation model 

Analytical evaluation demonstrates the impacts of operating parameters on a protocol’s 

performance. Operating parameters such as number of group participants, link loss 

probability and message rate appear as variables in the formulas. However, analytical 

evaluation is only applicable and works for simpli fied models of the protocols. A formal 

analysis of the bimodal multicast protocol is found in (Hayden and Birman, 1996; Birman 

et al., 1999) 

The second approach involves using a real implementation of a protocol to run 

experiments on real network settings. Doing so leads to realistic outcomes. But, this 

method may have some deficiencies in certain cases. For instance, it does not allow 

changing network load in a controlled way. Therefore, performance measurements 

express the protocol behavior in typical cases. But, performance evaluation under 

exceptional scenarios, such as networks with various failure models and link loss 

probabilities, is hardly possible. Emulation methods can be used to realize such network 

conditions to a certain extent. However, it is stil l not possible to control some operating 

parameters. For instance, network or group size and network topology is limited by the 

underlying real network’s characteristics. That is why very little can be said about the 

protocol’s behavior in very different scenarios. In addition, for a fair comparison of 

different protocols, identical network behavior is needed while running experiments 

repeatedly. This cannot be provided in a real network where background traffic changes 

dynamically due to other applications or processes running in the system. Experiments on 

an isolated network together with emulation capabili ties modeling some network 

behavior would be suitable for comparison of different protocols. 

The third approach is based on using simulation to construct a very detailed performance 

analysis of protocols. Simulation methods allow us gain power over all parts of the 

network and leads to better understanding of the protocol than the other approaches. For 

instance, in a simulation model, link loss probabil ities can be set and maintained easil y, 

several network topologies can be constructed. Many process group applications and 

scenarios can be built on top of these settings. Furthermore, to achieve protocol 

comparison it is possible to exchange one protocol for the other and rerun the simulator 
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under the identical network settings. However, simulations also have some drawback. For 

example, if a simulator does not model a protocol to be evaluated appropriately, results 

become unrealistic. Studies based on special-purpose simulators often do not reflect the 

richness of experience derived from experimentation with a more extensive set of traffic 

sources, queuing techniques and protocol models (Bajaj et al., 1999). General-purpose 

simulation tools prevent the disadvantages caused by special-purpose ones. 

There are several network simulation tools available for protocol evaluation. Examples 

are REAL (Keshav, 1988) and ns-2 (Bajaj et al., 1999) network simulators. 

This thesis study analyzes performance of bimodal multicast protocol and compares it 

with the other protocols using both experimental and simulation models. The 

experimental work has been performed on the SP2 system of Cornell Theory Center that 

offers an isolated network behavior. We used emulation methods to model process and 

link failures. Ensemble group communication system has been ported on SP2 and a 

detailed experimental study of pbcast protocol in Ensemble system and its comparison 

with Ensemble’s virtual synchrony and scalable multicast protocols has been 

accomplished. 

Our simulation study uses ns-2 network simulator to model network and protocol 

behavior. We have implemented pbcast and several optimizations to the protocol on ns-2. 

In contrast to the experimental study, simulation methods made possible to evaluate 

protocol’s performance on several network topologies, failure models and large scale 

settings. Furthermore, we have been able to compare pbcast with a well-known scalable 

reliable multicast protocol SRM. 

4.2 Experimental Platform 

The RISC System/6000 Scalable Power Parallel System, or SP is a parallel computer 

from IBM. It consists of nodes connected by an ethernet and a switch. A node is a 

processor with associated memory and disk. Cornell Theory Center’s SP2 system has 

total 160 nodes that fall i nto two types with the properties shown in figure 4.1. These 

nodes share data via message passing over a high performance two-level cross bar switch. 
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We ported Ensemble toolkit on this system, and designed many process group 

applications utilizing pbcast and Ensemble’s traditional reliable multicast protocols. 

 Thin nodes Wide nodes 
Amount 144 16 

Speed (MHz) 120 135 

Peak performance (MFLOPS) 480  540 

Memory (Mbytes) 256 1024 or 2048 

Figure 4.1. Node properties of SP2 system 

4.3 Pbcast with soft process failures 

In the first set of the experiments on SP2, our interest was in the performance of pbcast in 

the case of soft process failures. We emulate a process failure, such as a slow or 

overloaded member, by forcing the process to sleep with varied probabili ties. We call a 

group member subject to such a failure as ‘perturbed’ , and the probabili ty of failure that 

impacts the process as ‘perturb rate’ . We have constructed process group applications on 

Ensemble toolkit for various group sizes starting from 8-member case up to 128-member 

process groups. There exists one sender process that disseminates 200 multicast messages 

per second to the group participants. During the execution of group application, some 

members were perturbed, that is forced to sleep during 100 millisecond intervals with 

varied perturb rates. First, we designed experiments so that one member is perturbed for 

various group sizes. Then, we increased the percentage of perturbed members up to 25% 

of the group size. In other words, we arranged the application so that, one or more group 

members would occasionally pause, allowing incoming buffers to fill and eventually 

overflow, but then resume computing and communication before the background failure 

detection used by the system have detected. This behavior is common in the real world, 

where multicast applications often share platforms with other applications. 

An example application for an 8-member group, where one of the members is perturbed, 

is ill ustrated in figure 4.2. 
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Figure 4.2. An 8-member process group with a perturbed process 

4.3.1 Analysis and results 

Based on the results of process group executions described above, we investigate the 

scalability and stability properties of pbcast. We mainly focus on the following analysis 

cases: 

a) Throughput as a function of perturb rate for various group sizes 

b) Throughput as a function of proportion of perturbed members 

c) Protocol overhead associated with soft failure recovery as a function of group size 

We varied a number of operating parameters. These are: 

n: size of process group (8 to 128) 

f: number of perturbed processes (1 to n/4) 

p: degree of perturbation (0.1 to 0.9) 

sender 

receivers 

perturbed 
member 
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We measure throughput at the unperturbed or correct group members. The data points in 

the analysis correspond to values measured during 500 millisecond intervals. Since the 

throughput was steady, we also computed the variance of these data points. Figure 4.3 

shows variation of throughput measured at a typical receiver as the perturb rate and group 

size increase. The group size is 8, 16, 96 and 128, respectively. These sample results are 

for the experiments where f=n/4. We can conclude that as we scale a process group, 

throughput can be maintained even if we perturb some group members. The throughput 

behavior remains stable as we scale the process group size even with high rates of 

failures. During these runs no message loss at all was observed at unperturbed members. 

On the other hand, the variance does grow as a function of group size. Figure 4.4 shows 

throughput variance as group size increases. Although the scale of our experiments was 

insufficient to test the log-growth predictions of computational results for pbcast (Birman 

et al., 1999), the data is consistent with those predictions. As we will see in the next 

section, the same conditions provoke degraded throughput for traditional virtually 

synchronous protocols. 
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Figure 4.3. Variation of pbcast throughput 

 

 

 

 

 

 

 

 

Figure 4.4. Throughput variance of pbcast as a function of group size 

We analyzed protocol overhead associated with soft failure recovery, as well. For this 

purpose, retransmission behavior at a correct member was investigated. Figure 4.5 shows 

overhead as perturb rate increases, for 8, 16, 64 and 128-member groups, respectively. 

For these graphs f=n/4, and each region in the graphs illustrates data points measured 

during 500 msec intervals for a certain perturb rate. For instance, the first region contains 

data points for p=0.1, second one is for p=0.2, and so on. Figure 4.6.a superimposes the 
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data of four graphs in figure 4.5, and shows the percentage of messages retransmitted as p 

increases for various n.  

For these experiments, we also compute the theoretical worst-case bounds for 

retransmission behavior at a correct member (figure 4.6.b). Assume r is the number of 

multicast data messages per second disseminated to the group by the sender, and p is the 

perturb rate. In every 100 msec (which is the duration of a gossip round in the 

experiments), at most ((r/10)*p) messages are missed by a faulty member, and a correct 

member gossips to two randomly selected group members. In the worst-case, if these two 

members are faulty and they lack all ((r/10)*p) data messages, they request 

retransmissions of these messages from the correct member. Then, the correct member 

retransmits at most 2*((r/10)*p) = (r*p)/5 messages in every 100 msec. In our 

experiments, we measured data points during 500 msec intervals, and computed the 

percentage of retransmitted messages to the multicast data messages disseminated by the 

sender during each interval. If we compute theoretical values for 500 msec intervals, the 

correct member retransmits at most 5*(r*p)/5 = r*p messages, and the sender 

disseminates r/2 messages during every 500 msec interval. Then, the bound for the 

percentage of retransmitted messages would be (r*p)/(r/2) = 2*p in the worst-case. Figure 

4.6.b shows the computed theoretical worst-case bounds. Note that, our experimental 

results are below the theoretical bound, and the results confirm that overhead on the 

correct processes is bounded as the size of process group increases. But, in our 

experiments, as the group size increases, we observed an increase in the percentage of 

retransmitted messages. We believe, this is mainly due to the increase in the number of 

perturbed members with the group size. Because, in these experiments, number of 

perturbed members equals 25% of the group size (f = n/4). 
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Figure 4.5. Pbcast overhead associated with soft failure recovery 

 

 

 

 

 

 

��� � ��� � ��� � ��� � ��� ��
� �
���
���
���
���
	
�
���
��
���
� � � ���������� � ����������� � ��� � ���

��� � � ��� ��� � � �

 !"  #
$%
&'"" !
( &!
%%#
)!%
*+
,

-�. / -�. 0 -�. 1 -�. 2 -�. 3-
/ -
0�-
1�-
2�-
3�-
4
-
5�-
6�-
7�-
/ - - / 498�: 8�; :�< =�>�2�?�: < @ A�< ;�:�B

?�: < @ A�< ;�< C @ :

 !"  #
$%
&'"" !
( &!
%%#
)!%
*+
,

-�. / -�. 0 -�. 1 -�. 2 -�. 3-
/ -
0�-
1�-
2�-
3�-
4
-
5�-
6�-
7�-
/ - - 4
2�8�: 8�; :�< =�>D/ 4E? :�< @ A < ;�: B

?�: < @ A�< ;�< C @ :

 !"  #
$%
&'"" !
( &!
%%#
)!%
*+
,

-�. / -�. 0 -�. 1 -�. 2 -�. 3-
/ -
0�-
1�-
2�-
3�-
4
-
5�-
6�-
7�-
/ - - / 0 6�8�:�8�;�:�< =�>F1�0�?�:�< @ A�< ; :�B

?�: < @ A�< ;�< C @ :

 !"  #
$%
&'"" !
( &!
%%#
)!%
*+
,



 42 

 

 

 

 

 

  (a)      (b) 

Figure 4.6. Percentage of message retransmissions as a function of p. a) Experimental 

results, b) Theoretical worst-case bounds 

4.4 Comparison with traditional and scalable Ensemble multicast protocol 

In this section, we focus on the throughput behavior of Ensemble’s traditional and 

scalable multicast protocols, and compare them with pbcast. We used the same 

experimental settings described in the previous section. The group application utilized 

Ensemble’s multicast protocols based on the virtual synchrony reliabil ity model. One of 

the group members is a sender that disseminates 200 multicast messages per second. 

Message size is 7Kbytes. Up to 25% of receiver processes are perturbed. 

4.4.1 Analysis and results 

Based on the results of process group executions, we investigate and analyze the 

throughput behavior of two protocols. We varied operating parameters n, f and p. We 

measure throughput at the unperturbed or correct group members. The data points in the 

analysis correspond to values measured during 500 milli second intervals. Figure 4.7 

shows some analysis results for 32, 64 and 96-member process groups. Graphs show the 

superimposed data for cases f=1 and f=n/4. We see that even a single perturbed group 

member impacts the throughput of unperturbed members negatively.  The problem 
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becomes worse as the group size (n), percentage of perturbed members (f), and perturb 

rate (p) grow. If we focus on the data points for a single perturb rate, we see that the 

number of perturbed members affects the throughput degradation. For instance, in figure 

4.7, for a 96-member group when the perturb rate is 0.1, the throughput on non-perturbed 

members for the scalable Ensemble multicast protocol is about 90 messages/second when 

there is one perturbed member in the group. The throughput for the same protocol 

decreases to about 50 messages/second when the number of perturbed members is 

increased to 24. The same observation is valid for the traditional Ensemble multicast 

protocol. Among the two protocols, the traditional Ensemble multicast protocol shows 

the worst throughput behavior. Figure 4.8 shows the impact of an increase of group size 

on the throughput behavior clearly, when f=1. In the previous section, we showed that, 

under the same conditions, pbcast achieves the ideal output rate even with high 

percentage of perturbed members. 

We can conclude that pbcast is more stable and scalable compared to the traditional 

multicast protocols. The fragility of the traditional multicast protocols becomes evident 

very quickly, once the perturbed process begins to sleep for long enough to significantly 

impact Ensemble’s flow control and windowed acknowledgement. Furthermore, in such a 

condition, high data dissemination rates can quickly fill up message buffers of receivers, 

and hence can cause message losses due to buffer overflows. 

In the case of virtuall y synchronous protocols, a perturbed process is particularly difficult 

to manage. Since the process is sending and receiving messages, it is not considered to 

have failed. But, it is slow and may experience high message loss rates, especiall y in the 

case of buffer overflows. The sender and correct receivers keep copies of 

unacknowledged messages until all members deliver them. It causes available buffer 

spaces to fill up quickly, and activates background flow control mechanisms. Setting 

failure detection parameters more aggressively has been proposed as a solution (Piantoni 

and Stancescu, 1997). But, doing so increases the risk of erroneous failure detection 

approximately as the square of the group size in the worst-case. Because, all group 

members monitor one another and every member can mistakenly classify all the other (n-

1) members as faulty where n is the group size. Then, the whole group has n*(n-1) 

chances to make a mistake during failure detection. Since the failure detection parameters 
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are set aggressively in such an approach, it is more likely that randomized events such as 

paging and scheduling delays will be interpreted as a member’s crash. As group size 

increases, failure detection accuracy becomes a significant problem. Most success 

scenarios with virtual synchrony use fairly small groups, sometimes structured 

hierarchically. In addition, the largest systems have performance demands that are 

typically limited to short bursts of multicast. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.7. Throughput performance of Ensemble’s reliable multicast protocols 
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Figure 4.8. Throughput behavior as a function of group size 
 

4.5 Pbcast with system-wide message loss 

In this section, our interest lies in the behavior of pbcast while link noise occurs among 

members of the process group. One feature of pbcast is that, in the case of high loss and 

data rates, the protocol is capable of reporting message losses to correct processes. We 

emulate link failures or network load by randomly dropping messages with a given 

probability. We call the probability of a message loss between two participants the ‘drop 

rate’ . When we apply a given drop rate among all participants, this defines the ‘system-

wide drop rate’ . We have constructed process group applications for various group sizes. 

One of the group members is the sender that disseminates multicast data at a given rate. 

We apply various system-wide noise rates to the network. 

4.5.1 Analysis and results 

Based on the results of several process group executions, basically we focus on the 

analysis of the impact of message loss on pbcast reliabili ty as a function of group size, 

message drop rate, and multicast data rate. 

We varied the following operating parameters: 

n: size of process group (8 to 128) 
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r: multicast data rate (low bandwidth: 100 messages per second, high bandwidth: 200 

messages per second) 

d: system-wide drop rate (0.02 to 0.2) 

We measure throughput at receiver processes. The data points in the analysis correspond 

to values measured during 500 millisecond intervals. Figure 4.9 gives analysis results 

showing the impact of message loss on pbcast reliability. At low multicast dissemination 

rates, we find that even significant system-wide noise can be tolerated. No message loss 

at all observed for this case. On the other hand, at high multicast data rates, noise triggers 

message loss in large groups. The reason can be explained as follows. At high multicast 

data rates, system-wide drop rate can cause the loss of higher number of data messages 

compared to the case for low multicast data rates. This situation triggers higher control 

message traffic for loss recovery. Since the system-wide drop rate affects control 

messages as well as data messages, this can lead to failures during loss recovery and 

hence can cause message loss. In this case, pbcast reports gaps in multicast data stream to 

the members. We observe that, with a mixture of high data bandwidths and high drop 

rates, Pbcast is quite capable of reporting gaps to correct processes. This is a feature of 

the protocol. In the same situation, a virtual synchrony protocol would refuse to accept 

new multicasts. As discussed in the previous section, such a scenario would cause a 

degraded performance for virtually synchronous multicast protocols. 

 

 

 

 

 

Figure 4.9. Impact of message loss on pbcast reliability 
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4.6 Discussion 

Our experimental study yields some general conclusion about the behavior of basic 

Pbcast and virtually synchronous multicast protocols. In the first part of the study, we 

focused on the performance of Pbcast in the case of soft process failures. We showed that 

the throughput behavior of Pbcast remains stable as we scale the process group size even 

with high rates of failures. Furthermore, our results confirm that overhead on the correct 

processes is bounded as the size of process group increases. Then, we compared basic 

Pbcast with virtually synchronous Ensemble multicast protocols in the case of soft 

process failures. We showed that even a single perturbed group member impacts the 

throughput of unperturbed members negatively. On the other hand, Pbcast achieves the 

ideal throughput rate even with high percentage of perturbed members. We concluded 

that Pbcast is more stable and scalable compared to the traditional multicast protocols. 

Finally, we analyzed the impact of system-wide message loss on Pbcast reliability. We 

showed that, at low multicast dissemination rates, even significant system-wide noise can 

be tolerated. On the other hand, at high multicast data rates, noise triggers message loss in 

large groups. In this case, Pbcast reports gaps in multicast data stream to the members. 

4.7 Summary 

This chapter first studies three primary approaches for protocol performance evaluation; 

analytical evaluation, experimental model and simulation model, along with the 

advantages and disadvantages of each approach. We then describe the results and 

analysis of the experimental model developed in this thesis study. The analysis is studied 

in three categories: Pbcast with soft process failures, comparison with traditional and 

scalable Ensemble protocols, and Pbcast with system-wide message loss. The chapter 

ends with a discussion on the general results of our experimental study.  
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5. Simulation Model for Basic Pbcast, 
optimizations and SRM 

 

 

In this thesis study, a simulation model for basic Pbcast and some optimizations to the 

protocol are designed and implemented. This chapter focuses on the design and 

implementation of our model. We use ns-2 network simulator as the underlying 

environment. Ns-2 provides support for SRM (Scalable Reliable Multicast) protocol as 

well. By using our simulation model, we investigated and analyzed the behavior of 

Pbcast and SRM protocols on various network conditions. This chapter also gives 

information on the simulator and the SRM protocol. 

5.1 Simulator 

Simulation in network research has a significant role of providing an environment in 

which to develop and test new network technologies without the high cost and 

complexity of constructing test-beds (Bajaj et al., 1999). Simulation allows the evaluation 

of network protocols under various network conditions and scenarios. Investigating 

protocols and their interaction with other protocols, and comparing them with other 

approaches under a wide range of conditions is critical to explore and understand the 

behavior and characteristics of protocols. 

In this study, we choose ns-2 as the simulation environment. Ns-2 (Bajaj et al., 1999; Fall 

and Varadhan, 1999) is a discrete event simulator for networking research. It began as a 

variant of the REAL network simulator and is used widely by many network researchers. 

It is an object-oriented simulator implemented in C++, and uses OTcl as the command 
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and configuration interface. Basic elements of the simulator are nodes, links and agents. 

Agents represent endpoints where network-layer packets are constructed and consumed. 

Ns-2 provides support for various networking concepts such as routing, multicast 

protocols (e.g. IP multicast and SRM), link error models, topology and traffic generation. 

In addition, it supports development and evaluation of new protocols, repetition of 

simulations under controlled conditions which makes it especially convenient for 

comparing several protocols under the same network settings. Also, support for 

simulation needs such as abstraction, emulation, scenario generation, visualization and 

extensibility is provided. 

5.2 Basic Pbcast Design and Implementation 

We have discussed Pbcast protocol in detail in Chapter 3. Our basic Pbcast protocol 

design on ns-2 consists of three modules as shown in the block diagram of figure 5.1. The 

bottom module that performs unreliable data dissemination uses IP multicast protocol. 

The second module is the gossip based anti-entropy protocol. The third module 

accomplishes FIFO message ordering. Total number of lines for the code of the 

implementation is approximately 1500. 

 

 

 

 

 

 

 

Ns-2 network simulator on Unix 

FIFO ordering 
 
 

Anti-entropy protocol 
 
 

Unreliable data 
dissemination 
(IP multicast) 

Figure 5.1. Basic pbcast design on ns-2 
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Our design follows an event-based approach. We define four message types for data, 

gossip, request and retransmission messages. Each Pbcast message has a type field. In 

addition, messages contain the following fields, where the first entry is the type of the 

corresponding message. 

Data message:  <PT_PBCAST_DATA, sequence number, data> 

Gossip message:  <PT_PBCAST_GOSSIP, message buffer, round number> 

Request message:  <PT_PBCAST_REQUEST, sequence number of the 

requested message, round number> 

Retransmission message: <PT_PBCAST_RETRANS, sequence number of the 

message retransmitted, data> 

Every member has a message buffer for keeping data messages received, for some 

predefined number of rounds (called stability threshold) after which they are garbage 

collected. A message buffer entry for a data message consists of the message content and 

gossip count of the message. The gossip count of a message is initially 0, and 

incremented at each gossip round. 

Basic pbcast protocol agent has the following operating parameters: 

sub-gsize: number of members to gossip in each round. 

step-interval: gossip round duration. Default is 100msec. 

limit-retrans: maximum number of messages that can be retransmitted by a member in 

one round. 

limit-requests: maximum number of request messages that can be sent by a member in 

one round. 

stable-threshold: stability threshold value for garbage collection. Default value is 10. 

 

We define the following four events that trigger the protocol actions: 
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1. Receipt of Pbcast data or retransmission message 

2. Receipt of Pbcast request message 

3. Receipt of Pbcast gossip message 

4. Timer interrupt for gossip round 

When a member receives a data or a retransmission message, it updates the buffer and 

deliver messages that are now in order. Also, if some messages are declared as lost, the 

application is informed about them. 

When a member gets a request message, the member checks its round number and 

retransmission count. If it is still in the same round with the round number in the request 

message, and it has not exceed retransmission limits for current round, then it retransmits 

the requested data message to the requestor. 

When a member receives a gossip message, it first compares its message buffer with the 

message buffer digest in the gossip message. For each missing message, with the most 

recent one first, if the member has not exceeded request limits for current round, then it 

sends a request message to the sender of gossip message. 

When the timer for current gossip round of a member expires, the member increments its 

round number, resets its request and retransmission counters. Then, it sends its gossip 

message to randomly selected members defined by sub-gsize parameter, and schedules 

the timer to step-interval value for the next gossip round. 

Algorithm for basic Pbcast agent of our simulation model is given in figure 5.2. The 

Pbcast agent runs at every member of a process group application communicating via 

Pbcast protocol. In the algorithm, msg denotes a message received by a member. Figure 

5.3 gives algorithms for the functions update_msg_buffer, deliver_if_in_order, 

send_subg and garbage_collect_stable_msgs used by basic Pbcast agent. 
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Switch (event) 

{ 

Case: Receipt of PT_PBCAST_DATA or PT_PBCAST_RETRANS 

{ 

update_msg_buffer(msg.seqno) 

deliver_if_in_order()  

}  

Case: Receipt of PT_PBCAST_REQUEST 

{ 

if ((my_round_number == msg.round_number) and (retrans_count_ < limit-retrans)) { 

 send_retrans(msg.source, msg.seqno, data message) 

 retrans_count ++ } 

} 

Case: Receipt of PT_PBCAST_GOSSIP 

{ 

compare my_msg_buffer with msg.msg_buffer 

for each missing message with msg_id { // most recent message first 

request_count ++ 

if (request_count < limit-requests ) 

send_req(msg.source, msg.round_number, msg_id) 

  else break 

} 

} 

Case: Timer interrupt for gossip round 

{ 

my_round_number_ ++ 

reset request_count and retrans_count 

send_subg(PT_PBCAST_GOSSIP) 

schedule_timer(step-interval) 

} 

} 

Figure 5.2. Algorithm for basic pbcast protocol on ns-2 
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update_msg_buffer(seqno) { 

Put message with seqno in my_msg_buffer 

Set its gossip_count to 0 

} 

deliver_if_in_order() { 

 deliver messages in order to the application 

 inform application about LOST messages 

} 

send_subg(msg_type) { 

get_subgroup(sub_group, sub-gsize) 

for each member_ in the sub_group { 

allocate a packet msg 

msg.round_number = my_round_number 

msg.msg_buffer = my_msg_buffer  

msg.type=msg_type 

send(member_, msg) 

deliver_if_in_order() 

garbage_collect_stable_msgs() 

} 

 increment gossip_count of each msg in the message buffer 

} 

garbage_collect_stable_msgs() { 

for messages in my_msg_buffer 

garbage collect a message if its gossip_count > stable-threshold 

declare a message old enough as lost 

} 

Figure 5.3. Algorithms for some functions of pbcast 

5.3 Optimizations to Basic Pbcast 

Based on the results of analysis studies, in order to improve latency characteristics and 

reliability properties of basic pbcast protocol, we propose some optimizations to the 

protocol. In this section, we describe design and implementation of the optimizations. We 
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also propose some techniques for efficient buffering of reliable multicast protocols. They 

are discussed separately in chapter 7. 

5.3.1 Pbcast-ipmc protocol 

The basic pbcast protocol uses point-to-point communication when retransmitting a 

message. If a message is requested more than once, it is likely that this message loss 

affects not just one member of the group. Thus, it is more appropriate to use multicast 

communication for retransmission in such a scenario. We model this optimization that we 

call pbcast-ipmc on ns-2, and show that it leads to fast error recovery and better reliability 

than basic pbcast under the same network conditions. 

A request counter for every message in the message buffer is needed as an additional data 

structure. Initially, request counter for a message is set to 0. Figure 5.4 gives the 

modifications needed for pbcast-ipmc protocol. If a member receives a retransmission 

request for a message in its buffer, then its request counter is incremented. When sending 

a retransmission for message, its request counter is checked. If it exceeds a certain 

threshold, then instead of unicast, the member does multicast the retransmission message 

to the group. In our implementation, we set the threshold to two.  

At first glance, pbcast-ipmc has the following advantages. It decreases the request 

message traffic compared to basic pbcast especially when message losses affect more 

than one member in the group. Since the optimization exploits IP multicast during loss 

reovery, it increases reliability of the protocol where there exists random noise on the 

links. On the other hand, retransmission message traffic is expected to increase in certain 

conditions due to the use of multicast communication. However, our analysis study 

shows that overall bandwidth requirement of pbcast-ipmc is in fact the same as basic 

pbcast. 

Initially, request_counter for every message is set to 0. 

Case: Receipt of PT_PBCAST_REQUEST 

{ 

msg.request_counter ++ 
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// multicast retransmission to group 

if (msg.request_counter >= threshold) { 

send_retrans(groupid, msg.seqno, data message) 

 retrans_count ++ 

msg.request_counter = 0 } 

else { 

 // basic pbcast: unicast retransmission 

if ((my_round_number == msg.round_number) and (retrans_count_ < limit-retrans)) 

  send_retrans(msg.source, msg.seqno, data message) 

retrans_count ++ } 

} 

Figure 5.4. Algorithm for pbcast-ipmc protocol 

We will now describe a simple scenario to show how pbcast-ipmc performs better than 

basic pbcast in certain network conditions. We assume that there is a 5-member process 

group with members A, B, C, D and E. Member A is the sender and it multicasts data 

messages to the group. It first multicasts message M1, but assume that only B receives 

M1, and due to some temporary link failure or noise, members C, D and E fail to receive 

M1. Then, the sender continues multicasting data messages to the group. All members 

successfully receive successive multicast data messages. During gossip rounds, each 

member randomly chooses another member and conveys its gossip message. The 

parameter sub-gsize equals 1. In the first round, assume that member A gossips to 

member C, and similarly B to A, C to D, D to B, and E to C. In the second gossip round, 

assume that A, B, C, D and E gossip to E, C, A, A, and D respectively. Under these 

assumptions, figure 5.5 presents the execution of basic Pbcast protocol. Likewise, figure 

5.6 illustrates the run of pbcast-ipmc under the same conditions. Protocol executions 

proceed as follows: 

On receiving a gossip message from process A, process C finds out that it lacks data 

message M1. It then sends a request for M1 to process A. Until now, both Pbcast and 

pbcast-ipmc do the same actions. For pbcast-ipmc, A increments request counter for M1 

on receiving the request from C. We assume threshold equals 0. Since request counter 

value M1 is not greater than or equal to threshold value, process A responds this request 
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by retransmitting M1 to C in unicast mode. Similarly, for basic pbcast, process A 

retransmits M1 to C. After the first gossip round, for both protocols C recovers message 

loss, and it is able to receive M1. In the second gossip round, on receiving a gossip 

message from A, process E realizes that it lacks M1, then it immediately requests M1 

from A. For pbcast-ipmc, A increments request counter for M1 again. Now, request 

counter of M1 equals threshold, and A multicasts retransmission M1 to the group. As a 

benefit of pbcast-ipmc optimization, process E now recovers message loss, and process D 

does so, as well. Thus, all members deliver M1 at this point. For basic pbcast, on the 

other hand, A retransmits M1 to E in unicast mode. Then, process E receives M1. After 

the second gossip round, process D still lacks M1, it would be able to recover the loss in 

successive rounds of gossip. These sample runs of basic pbcast and pbcast-ipmc illustrate 

that pbcast-ipmc increases probability of rapid convergence during loss recovery. 

 

 

 

 

 

 

 

 

 

Figure 5.5. A sample run of basic pbcast protocol 
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Figure 5.6. A sample run of pbcast-ipmc protocol 

5.3.2 Pbcast-grb protocol 

grb stands for gossip retransmit bit. This optimization consists of pbcast-ipmc together 

with the idea of gossip retransmit bit. It keeps information about whether or not a 

message is retransmitted before. Based on this information, members either use multicast 

or unicast for retransmission. We model pbcast-grb on ns-2, and show that, similar to 

pbcast-ipmc it leads to fast error recovery and better reliability than basic pbcast under 

the same network conditions. We observe that pbcast-grb has almost the same behavior 

as pbcast-ipmc in terms of loss recovery and reliability. 

For this optimization, members keep a retransmit for every message in their buffer. If a 

member retransmits a message, it sets the retransmit bit of that message. When sending a 

gossip message, members include this information, that we call gossip retransmit bit, for 
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each message in their message digest. When a member receives a gossip message, it 

makes necessary updates on the retransmit bits of messages in its own buffer. If a 

member is going to retransmit a message and the retransmit bit of that message is set, 

then it sends retransmission in unicast mode. Otherwise, it sends retransmission by using 

multicast mode. After retransmission is performed, it sets the retransmission bit of the 

message. Figure 5.7 gives the modifications needed for pbcast-grb protocol. 

Similar to pbcast-ipmc, pbcast-grb has advantages over basic pbcast protocol in terms of 

fast and easy error recovery. It utilizes multicast for some retransmissions based on the 

retransmit bit information. 

Initially, my_retransmit_bit and gossip_retransmit_bit for every message is set to 0. 

When sending a retransmission message, increment my_retransmit_bit and gossip_retransmit_bit of that 

message 

 

Case: Receipt of PT_PBCAST_REQUEST 

{ 

msg.request_counter ++ 

// multicast retransmission to group 

if ((msg.request_counter >= threshold) or  

((msg.my_retransmit_bit == 1 ) and (msg.gossip_retransmit_bit >= 1))) { 

send_retrans(groupid, msg.seqno, data message) 

 retrans_count ++ 

msg.request_counter = 0  

 msg.my_retransmit_bit = 0 

msg.gossip_retransmit_bit = 0 } 

else { 

 // basic pbcast: unicast retransmission 

if ((my_round_number == msg.round_number) and (retrans_count_ < limit-retrans)) { 

  send_retrans(msg.source, msg.seqno, data message) 

  retrans_count ++ 

  msg.my_retransmit_bit = 1 } 

} 
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}  

Case: Receipt of PT_PBCAST_GOSSIP 

{  

compare my_msg_buffer with msg.msg_buffer 

for messages with msg.gossip_retransmit_bit >= 1 

 increment their local gossip_retransmit_bit 

for each missing message with msg_id { // most recent message first 

request_count ++ 

if (request_count < limit-requests ) 

send_req(msg.source, msg.round_number, msg_id) 

else break 

}  

}  

Figure 5.7. Algorithm for pbcast-grb protocol 

5.3.3 Pbcast-local protocol 

This optimization attempts to perform local error recovery. It uses neighborhood 

information among group members and works as illustrated in figure 5.8. Assume A, B 

and C are members of a process group, and B, C are neighbor processes. For instance, if 

we consider that the process group spreads in a wide area network consisting of local area 

network components, B and C are located in the same LAN component. Each step in the 

figure performs the following actions: 

1. Process B receives a gossip message from process A, and finds out that it lacks a 

message M. 

2. Process B sends a request for message M to process A. 

3. Process B picks a neighbor process C randomly, and informs C that “process A has 

message M” . 

4. If process C lacks M too, it sends process A “multicast M” . 
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5. If process A didn’t multicast message M, it uses multicast to retransmit M. 

 

 

 

Figure 5.8. An illustration of pbcast-local protocol run 

For this optimization, as additional message types, we define info and mcast messages. 

Info is the message used to inform a neighbor process about a missing message, as 

desribed in step-3 above. Mcast is the special request message sent from neighbor process 

to gossip sender, as described in step-4. These messages contain the following fields: 

Info message: 

<PT_PBCAST_INFO, process id, sequence number of the requested message> 

Mcast message: 

<PT_PBCAST_MCAST, sequence number of the requested message> 

 

Figure 5.9 gives the modifications needed for pbcast-local protocol. Two new events are 

defined that are related to receipt of info and mcast messages. 

We model pbcast-local on ns-2 and show that it improves latency distribution of pbcast 

after FIFO ordering. 

Case: Receipt of PT_PBCAST_GOSSIP 

{  

compare my_msg_buffer with msg.msg_buffer 

for messages with msg.gossip_retransmit_bit >= 1 

 increment their local gossip_retransmit_bit 

for each missing message with msg_id { // most recent message first 

request_count ++ 

2 

A B C 
3 1 

4 5 
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if (request_count < limit-requests ) 

send_req(msg.source, msg.round_number, msg_id) 

pick a neighbor process p randomly 

allocate a packet msg 

msg.type = PT_PBCAST_INFO 

msg.process_id= sender of gossip 

msg.seqno = msg_id 

send(p, msg) 

else break 

}  

}  

New events: 

Case: Receipt of PT_PBCAST_INFO 

{  

p = msg.process_id 

msg_id = msg.seqno 

check my message buffer 

if I’ m missing message msg_id {  

 // send PT_PBCAST_MCAST to process p 

 msg.type = PT_PBCAST_MCAST 

 msg.seqno = msg_id 

 send(p, msg) }  

}  

Case: Receipt of PT_PBCAST_MCAST 

{  

if msg with seqno = msg.seqno is in my_msg_buffer {  

msg.request_counter ++ 

if ((msg.request_counter >= threshold) or  

((msg.my_retransmit_bit == 1 ) and (msg.gossip_retransmit_bit >= 1))) {  

send_retrans(groupid, msg.seqno, data message) 

retrans_count ++ 

 msg.request_counter = 0  

 msg.my_retransmit_bit = 0 
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msg.gossip_retransmit_bit = 0 } 

} 

} 

Figure 5.9. Algorithm for pbcast-local protocol 

5.4 SRM  (Scalable Reliable Multicast) Protocol 

SRM (Floyd et al., 1997) is a reliable multicast protocol which is designed according to 

the models of IP multicast group delivery, application level framing (ALF) principle, and 

the adaptivity and robustness in the TCP/IP architecture design. 

IP multicast (Deering and Cheriton, 1990) allows data sources to send to a group without 

needing any knowledge of the group membership. Basically, IP multicast is a best-effort 

delivery model and provides no reliability guarantees. 

ALF (Clark and Tennenhouse, 1990) is an architectural design principle for data 

communication. It introduces the integration of the protocol levels from the transport 

level to the application level. The goal is to provide flexibility and efficiency in the use of 

the network. However, this leaves the application to include most part of the transport 

functionality.  

SRM follows the core design principles of TCP/IP: 

1. It requires only the basic IP delivery model and builts reliability on an end-to-end 

basis. No change or special support is required from the underlying IP network. 

2. In a fashion similar to TCP adaptively setting timers or congestion control windows, 

SRM algorithms dynamically adjust their control parameters based on the observed 

performance within a session. 

SRM does not provide ordered delivery of messages. The protocol aims to scale well 

both to large networks and sessions. It exploits a receiver-based reliability mechanism. 
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5.4.1 Session messages 

Session messages for reliable multicast are proposed to: 

• Enable receivers to detect the loss of the last packet in a burst, 

• Enable the sender to monitor status of receivers. 

In SRM, each group member multicasts low-rate, periodic session messages that report 

the sequence number state for active sources, or the highest sequence number received 

from every member. In addition to the reception state, the session messages contain 

timestamps that are used to estimate the distance from each member to every other. 

Members also use session messages in SRM to determine the current participants of the 

session. In addition to state exchange, receivers use the session messages to estimate the 

one-way distance between nodes. The session packet timestamps are used to estimate the 

host-to-host distances needed by loss recovery mechanisms. 

The timestamps are used in the following manner. Assume that host A sends a session 

message S1 at time t1, and host B receives S1 at time t2. Later, at time t3, host B generates 

a session message S2, marked with (t1, ∆) where ∆ = t3-t2. Upon receiving S2 at time t4, 

host A can estimate the latency from host B to host A as (t4-t1-∆)/2 = ((t4-t3)+(t2-t1))/2. 

This distance estimate does not assume synchronized clocks, it does assume that paths are 

roughly symmetric. 

SRM uses mechanisms similar to XTP, to control the sending of request and repair 

packets, with the addition that in the SRM design, the random delay before sending a 

request or repair packet is a function of that member’s distance in seconds from the node 

that triggered the request or repair. These functions are described in the next section. 

Repair requests and retransmissions are always multicast to the whole group. A lost 

packet ideally triggers only a single request from a host just downstream of the point of 

failure. 
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5.4.2 Loss recovery 

Multicast group members detect lost messages by means of gaps in the sequence number. 

In order to detect losses of the last messages that are sent, SRM uses session messages. 

When a group member A detects a message loss, it schedules a retransmission request, 

and sets a request timer to a value from the uniform distribution on  

[C1*dS,A, (C1+C2)*dS,A] seconds 

where dS,A is member A’s estimate of the one-way delay to the original source S of the 

missing data and C1, C2 are request timer parameters. If a member receives a request for 

the missing data before its own request timer for that data expires, then the member resets 

its request timer. 

When a group member B receives a request from A for a data message that B has a copy, 

B sets a repair timer to a value from the uniform distribution on 

[D1*dA,B, (D1+D2)*dA,B] seconds 

where dA,B is the B’s estimate of the one-way  delay to A, and D1, D2 are repair timer 

parameters. If B receives a repair for the missing data before its repair timer expires, then 

B cancels its repair timer. 

5.4.3 Adaptive SRM 

As discussed in (Floyd et al., 1997), there is not a single setting for the timer parameters 

that gives optimal performance for all topologies, session memberships, and loss patterns. 

For applications where it is desirable to optimize the tradeoff between delay and the 

number of duplicate requests and repairs, an adaptive algorithm can be used. Adaptive 

SRM adjusts the timer parameters C1, C2, D1, and D2 in response to the past behavior of 

the loss recovery algorithms. 
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5.5 A Comparison of Basic Pbcast and SRM in terms of Loss Recovery 

The anti-entropy protocol is the part of Pbcast that deals with loss recovery. During this 

phase, each process chooses another process in the multicast group in a random manner, 

and sends its digest of message history to that process. This happens periodically (i.e. 

through a sequence of rounds) and concurrently with the transmission of regular multicast 

messages. On receiving such a gossip message including the submitting process’ message 

history, the receiving process compares the digest with its own message buffer contents. 

If it lacks some messages that the gossiping process has, then it sends a retransmission 

request for each missing message, and causes the gossiping process to repair that message 

by retransmitting it. 

We claim that, compared to SRM’s loss recovery, Pbcast has much less overhead, and 

needs less bandwidth. We will now discuss the additional message traffic required for 

loss recovery: 

We assume that Pbcast’s round duration for gossip is 100msec, and G is the number of 

members in the process group. Then, if every process gossips to another process every 

100msec, G*10 destinations wil l receive gossip messages every second.  

Periodic session messages of SRM are transmitted every second in multicast mode. This 

means that, G*G destinations will receive session messages every second, and each 

process receives G session messages every second. 

In the basic Pbcast protocol, if a process detects a message loss, it requires a unicast 

request and repair message to recover the loss. In the case when one or both of these 

control messages get lost on a noisy link, additional control messages are required. 

In the SRM protocol, on the other hand, in order to guarantee reliable deli very, a process 

multicasts request message to the whole group when it detects a message loss. Request 

and repair timers are exploited to suppress duplicate requests and repairs for the same 

message loss. A corresponding repair message in response to a request is similarly in the 

form of multicast to the whole group. This feature of SRM’s loss recovery mechanism 
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makes its background overhead and bandwidth requirements to increase as a function of 

group size, whereas Pbcast’s background overhead is scalable and does not increase with 

the group size. 

A detailed analysis and comparison of Pbcast and SRM protocols based on our 

simulation study are discussed in the next chapter. 

5.6 Summary 

This chapter starts with describing the ns-2 network simulator used as the underlying 

environment for our simulation model. We then focus on the design and implementation 

of basic Pbcast on ns-2, followed by the design and implementation of optimizations to 

the basic Pbcast. The chapter also gives information on the SRM protocol. Finally, we 

include a comparison of Pbcast and SRM in terms of loss recovery mechanisms. 
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6. Simulation Results and Analysis 

 

 

Based on the simulation model described in chapter 5, we accomplished an extensive 

simulation study to investigate the behavior and performance of protocols. In this chapter, 

we describe our simulation study, results and analysis in detail. 

6.1 Network and Application Characteristics 

Impacts of network environment and characteristics are important when investigating 

behavior of communication protocols. Simulation models allow gaining power over all 

parts of the network, and hence lead to better understanding of protocols than the other 

approaches. Our interest in this simulation study lies in the investigation of behavior and 

performance of Pbcast protocols developed and their comparison with scalable reliable 

multicast protocols across various network characteristics and application scenarios. For 

this purpose, we designed simulations on several network topologies such as star, chain, 

tree, fully connected and clustered networks. Among these, a tree topology is a general 

one since it combines characteristics of both chains and stars (Floyd et al., 1997). 

Each network in the simulations is constructed from nodes and links. A transmission link 

can be characterized by its bandwidth and delay. Bandwidth of a link is its information 

carrying capacity. Link delay defines the time required for a packet to traverse a link. The 

amount of time required for a packet to traverse a link is defined to be 

s/b + d 
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where s is the packet size, b (bandwidth) is the speed of the link in bits per second, and d 

is the link delay in seconds. As discussed in (Guo, 1998), to simulate a wide area 

network, it is reasonable to set the delay for each link to be 5 mill iseconds. Since our aim 

is to simulate large-scale networks, in our simulations, unless stated otherwise, we set 

link delay to this value. Each link in our simulated networks is bi-directional, and each 

direction of a link has the same delay and bandwidth characteristics. 

Queues represent locations where packets may be held and dropped. In our simulations, 

drop-tail (FIFO) queueing support of ns-2 is used for buffer management. Drop-tail 

implements FIFO scheduling and drop-on-overflow buffer management that is typical to 

most of today’s Internet routers. We use error models that simulate link-level errors or 

loss of packets. In our simulations, we define packet error rates for various network noise 

behaviors. 

A multicast routing strategy is the mechanism by which the multicast distribution tree is 

computed. In the Internet, multicast routing trees are constructed using protocols such as 

Core Based Tree (CBT), Distance Vector Multicast Routing Protocol (DVMRP) and 

Protocol Independent Multicast (PIM). We use CBT multicast routing strategy support of 

ns-2 in our simulations. 

We construct process group applications on top of networks. Applications sit on top of 

protocols agents in ns-2 and utili ze protocol agents for multicast communication. We use 

Constant Bit Rate (CBR) data sources for generating data messages to be disseminated 

group participants. A CBR source generates traffic according to a deterministic rate. 

As defined in (Floyd et al., 1997), the density of a multicast session is the ratio of nodes 

that are members of the multicast group. If many of the nodes in the network are 

members of the multicast group, this is called a dense session. On the other hand, if the 

multicast group size is small relative to the network size, this is called a sparse session. 

We simulate both dense and sparse mode process group applications for the purpose of 

analyzing its impact. In our simulated process group applications, for simplicity we 

assume that group membership remains unchanged. 
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6.2 Performance Metrics 

Our analysis work employs performance metrics that we believe are important when 

investigating the behavior of scalable reliable multicast protocols. We performed 

simulations of basic Pbcast, pbcast-ipmc, pbcast-grb, pbcast-local, SRM and adaptive 

SRM protocols. In the simulations of protocols on several network topologies and 

scenarios, we varied operating parameters such as network size, group size, link error 

rates and multicast data rates. We analyzed performance metrics such as protocol 

overhead, throughput, link utilization, inter-arrival distribution, latency distribution and 

multicast message congestion. The details on how we accomplished analysis of a given 

metric are given in the corresponding sections of the chapter. 

6.3 Simulations of Dense Groups 

6.3.1 Tree topology simulations 

For this set of simulations, we constructed tree-topology networks with sizes ranging 

from 20 to 80 nodes. All of the trees have depth 4, and all nodes have a Pbcast or SRM 

protocol agent attached. The size of the process group in these simulations equals the 

network size. There’s one sender in the group, it’s located at the root node of the tree, and 

a CBR source is attached to the sender, which generates 100 messages/second, and the 

message size is 210 bytes. We configure network links to have bandwidth of 1.5Mbits 

each. A low-level system-wide constant noise rate is imposed on the network: each link 

drops 0.1% of packets passing over it. This loss rate applies to all messages, whether data 

or control. If a message passes through more than one link to reach its destination, this 

drop probabil ity accumulates accordingly, since the same noise rate is set on all links. 

For the SRM protocol, loss recovery timer parameters are set as follows: Request timers 

C1=C2=2, and repair timers D1=D2=log10G where G is the group size. 

For each group size and protocol, five distinct simulations were performed with different 

random seeds. Each simulation lasts 100 seconds during which 10000 messages are 

multicast to the group by sender. 
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6.3.1.1 Analysis of overhead and throughput 

Background overhead analysis includes measurements for retransmission request 

messages and repair (or retransmission) messages received by each group member. 

Duplicate request and repair messages are taken into account in these measurements. 

Then, mean values are calculated for each simulation. These are not the only forms of 

overhead on the protocols. For SRM, we omit session messages from this measurement; 

while for Pbcast, gossip messages are not included. We include such costs in measuring 

link utilization. 

Figure 6.1 shows result graphs where x-axis is the group size and y-axis is the 

background overhead measurements in the form of request and repair messages received 

per second, respectively. The results show that, as the network and process group size 

scale up, the number of control messages received by group members during loss 

recovery increases linearly for SRM protocols, an effect previously reported in (Liu, 

1997; Lucas, 1998; Hanle and Hofmann, 1998; Li and Cheriton, 1998). These costs 

remain almost constant for Pbcast and Pbcast-ipmc. For the tree topology network 

simulations, adaptive SRM has a higher overhead compared to SRM with fixed timers. 

But, later we will see that this is not always the case, and it depends on the topology. 

Compared to the basic Pbcast protocol, Pbcast-ipmc has a slightly lower overhead in the 

form of request messages. Since Pbcast-ipmc multicasts repair messages for loss recovery 

in certain conditions, the repair message overhead increases relative to Pbcast. This is 

because some group members, that did not actually request a retransmission, will receive 

a repair, or even duplicate repair messages. However, if a message was missed by 

multiple receivers, Pbcast-ipmc increases probability of rapid convergence during loss 

recovery. 

In addition, we measured throughput values, that is number of data messages received by 

each group member. For this set of simulations where system-wide noise rate is low 

(0.1%), all protocols, namely, Pbcast, Pbcast-ipmc, SRM, and adaptive SRM, guaranteed 

full reliability. The reliability mechanisms of the protocols overcame data losses, and all 

receivers delivered 10000 data messages multicast to the group.  
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6.3.1.2 Analysis of link utilization 

We now consider the link utilization of protocols close to the sender. To compute the 

utilization, we measured the number of bytes on the link outgoing from the sender and 

incoming to the sender, for messages of all types. Gossip messages for Pbcast and session 

messages for SRM are included. Thus, this analysis gives an idea on overall bandwidth 

usage of protocols. We used monitoring facili ty of the simulator for observing all byte 

departures on a link. 

Figure 6.2 illustrates link utilization of protocols on an outgoing link from sender and on 

an incoming link to sender versus group size. The units of the y-axis are percentage of 

link bandwidth used by the protocol messages. For example, since these simulations 

involve sending 100 210 byte messages per second, or 168kbits/sec, on the outgoing link 

from the sender, the link utilization required just to send the data would be about 10%. 

Additional overhead results from request, retransmission and gossip messages in the case 

of Pbcast. We see that both SRM and adaptive SRM have higher bandwidth consumption 

compared to Pbcast protocols in both directions of the link being monitored. Link 

utilization rises rapidly as a function of group size for SRM, while the utilization is lower 

for Pbcast and also grows more slowly as a function of system size. Note that, at a group 

size of about 100 members, the sender’s link will be saturated and this will t rigger packet 

loss. Pbcast would apparently continue to function in much larger groups. 
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Figure 6.1. Overhead in the form of requests and repairs per second for Pbcast and SRM, 

tree topology with 0.1% system-wide noise 

 

 

 

 

 

 

Figure 6.2. Link utilization of Pbcast and SRM on an outgoing link from sender and on 

an incoming link to sender versus group size 
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6.3.2 Star topology simulations 

This set of simulations investigates the performance of protocols on star topology 

networks with sizes ranging from 21 to 81 nodes. All nodes, except the center node, have 

a protocol agent attached. We organize the processes as a star with a single routing node 

at the center, and the sender and receivers around the periphery. Process group size 

equals the (network size – 1). Figure 6.3 illustrates a star topology where S denotes the 

sender, and Ri denotes the receiver i of the process group. In our simulations, there is one 

sender in the group, a CBR source is attached to the sender that generates 100 messages 

per second, and the message size is 210 bytes. A system-wide constant noise of rate 0.1% 

is imposed on the networks. The fixed timer parameters of SRM protocol are set as 

follows: Request timers C1=0, C2=√G, and repair timers D1=0, D2=√G where G is the 

group size.  

 

 

 

 

Figure 6.3. A 9-node star topology with a routing node at the center 

6.3.2.1 Analysis 

Figure 6.4 gives background overhead analysis results for star topology simulations. A 

star topology in this sense models a local area network where communication latencies 

are constant and small. The analysis shows that background overhead on group members 

for both Pbcast protocols is independent of the group size and stays constant with an 

increase in group size. On the other hand, an increase in background overhead of SRM 

protocols with group size is observed. Different than the simulations of tree topologies, 
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for star topology networks adaptive SRM requires less number of repair messages 

compared to SRM. 

 

 

 

 

 

Figure 6.4. Overhead in the form of requests and repairs per second for Pbcast and SRM, 

star topology with 0.1% system-wide noise 

 

6.4 Simulations of Sparse Groups 

6.4.1 Large-Scale Tree Topology Simulations 

We explored the impact of scaling the network to a very large size, while keeping the 

group itself at constant size. In this set of simulations, we constructed large-scale tree 

topologies consisting of 1000 nodes with tree depth set to 6 and a branching factor of 3. 

Up to hundred of the 1000 nodes were randomly chosen to be group members in each 

simulation and that constitutes a sparse session. We set the message loss rate to 0.1% on 

each link, and ran five simulations with the sender located at the root node injecting 100 

210-byte multicast messages per second. 

The fixed timer parameters of SRM are set as follows: Request timers C1=C2=2, and 

repair timers D1=D2=log10G where G is the group size. 
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6.4.1.1 Analysis 

We analyzed the background overhead of each protocol, and the results obtained are 

shown in Figure 6.5. To give a sense of the variability of these results, we included error 

bars showing minimum and maximum values recorded over a set of five runs, using 

different seeds for the random number generator.  

The data is consistent with our findings for the dense tree topologies used in figure 6.1, 

although the SRM overhead values are somewhat higher. For example, in the 80-member 

case, the normal SRM request and repair rates rise to about 12 and 18 per second, 

respectively. This is the double what we saw in a dense session with the same number of 

group members. Similarly, the adaptive SRM protocol now has overheads of about 20 

request and 20 repairs per second, compared to 12 and 10, respectively, in the 80-member 

dense case. The higher rates are presumably triggered by the higher overall loss 

experienced as messages flow through the network, since each link has an independent 

loss behavior. Both pbcast and pbcast-ipmc continue to have low costs. As in the dense 

case, the impact of multicast retransmissions is evident in a slightly higher rate of repairs. 

 

 

 

 

 

 

Figure 6.5. Overhead in the form of requests and repairs per second for Pbcast and SRM, 

1000-node tree topologies with 0.1% system-wide noise 
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6.5 Simulations of Larger System-wide Noise Rate 

Until now, the network noise rate on our simulations was 0.1%. Now, we increase 

system-wide noise rate to 1%, which is also a realistic amount that can be observed in 

real networks. Figure 6.6 shows one of the analysis results giving information on link 

utilization versus group size on tree topology simulations. Simulation settings are the 

same as previous tree topology simulations except that system-wide noise rate is 

increased from 0.1% to 1%. An increase in link utilization of SRM with the group size is 

observed. 

 

 

 

 

 

Figure 6.6. Link utilization versus group size for pbcast and SRM protocols 

6.6 Inter-arrival distributions 

We investigated the inter-arrival distributions of data messages for Pbcast and SRM, and 

also the effect of an increase in the group size on the distribution. The actual message 

dissemination rate of the sender in these simulations is 100 messages per second. 

Therefore, if no message loss occurs, we expect that the inter-arrival time between 

messages is 0.01 second. When we introduce some noise to the network, there will be 

some message drops, and loss recovery mechanisms of protocols will generate some data 

retransmissions to achieve communication reliability. During our simulations, we 

measured data message arrival times at a typical group member, calculated inter-arrivals 
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between consecutive messages, and then analyzed individual inter-arrival time values to 

generate the distribution. 

Our simulations use dense tree topologies where every node is a group member, and we 

define 1% noise on each link. Sender injects data messages at the rate of 100 210-byte 

messages per second. Figure 6.7(a) shows inter-arrival distributions at a typical receiver 

for Pbcast-grb on 20, 40 and 60-node tree topologies. As it can be seen, inter-arrival 

times of data messages are stable with an increase in the group size. Similarly, Figure 

6.7(b) shows inter-arrival distributions of SRM on 20, 40 and 60-node tree topologies. 

Inter-arrival distribution of SRM changes with the group size. In other words, it’s not 

stable. This is mainly due to the higher number of repair messages received by group 

members during loss recovery and its dependence on group size. 

Inter-arrival distribution of a protocol is related to its throughput stability. Previously, 

stable throughput is not normally considered to be a critical requirement in reliable 

multicast protocols, but as discussed in chapter 2, we believe that there are a substantial 

number of applications for which such a guarantee is important. 

 

 

 

 

 

 

Figure 6.7. Histograms of inter-arrival times of pbcast-grb and SRM with 1% system-

wide noise in densely populated tree networks 
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6.7 Message latency distributions 

The latency of a data message at a process is defined as the delay between the time that a 

message is initially multicast to the group by data source and the time the message is first 

delivered by the process. There are basicall y two cases: 

1) The message is not exposed to a failure and delivered at the end of best-effort 

transmission, 

2) The message drops because of a failure in the network, and error recovery mechanism 

takes part to recover the message and makes sure it reaches to the intended destination 

processes. 

In any case, a process can receive duplicate copies of a message, but in our analysis, we 

do not consider duplicate receipts, and just use first receipt time of a message to calculate 

its latency. 

Our analysis works as follows: We record the times when a message is sent and received 

by group members. Then based on these data, message latencies for each data message 

transmitted through the lifetime of the process group are calculated. After that, by using 

all message latency values, latency distributions are generated. Since Pbcast protocol 

provides FIFO ordered delivery, we analyze its latency distribution in two forms: Latency 

distribution at node level, and latency distribution after FIFO ordering. In contrast, since 

SRM doesn’t guarantee ordered delivery, we just analyze its latency distribution at node 

level. 

We accomplished a detailed study of message latency behavior of Pbcast and SRM 

protocols. In general, results show that on large-scale networks, node-level message 

latencies of Pbcast protocol is smaller compared to SRM’s message latencies. Figure 6.8 

shows one of such results where x-axis is latency in seconds and y-axis is percentage of 

occurrences. Figure 6.8(a) and (c) are the node level latency distribution of Pbcast, and 

SRM respectively. These simulations were performed on a 500-node tree topology where 

randomly selected 300 nodes are group members. The sender that is located at the root 
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node sends with rate 0.01 that is 100 messages per second, and there is a system-wide 

noise with rate 1%. As it is shown in the figures, a typical receiver delivers messages 

with lower latencies when Pbcast protocol is used for group communication. As pointed 

in figure 6.8(c), SRM has a large tail with a maximum observed latency of nearly 500ms, 

and a group of packets delivered at around 400ms. Overall, SRM has a significant 

number of packets delivered during the first 100ms and a second broad distribution 

containing almost 5% of packets, which arrive with latencies between 300ms and 500ms. 

Notice that the basic SRM distribution is not as tight as the unordered pbcast distribution, 

which has more than 90% of its packets arriving at the lowest possible latencies. In the 

case of pbcast, around 2% of packets are delayed and arrive in the period between 200ms 

and 300ms, with no larger latencies observed. 

We also investigated message latencies of Pbcast after FIFO ordering is accomplished. In 

that case, depending on the message loss rate experienced by the receiver, some 

percentage of messages are delivered with higher latencies since messages not in order 

are buffered prior to delivery in order to guarantee FIFO ordering property (Figure 

6.8(b)). These higher latencies reflect the cost of waiting for messages to be retransmitted 

and placing them into the correct delivery member. 

We believe these results to be important, at least in settings where steady delivery of data 

is required by the application. We observe that as SRM is scaled to larger groups, 

steadiness of throughput can be expected to degrade. We experimented with a variety of 

noise levels, and obtained similar results, although the actual number of delayed packets 

obviously depends on the level of noise in the system. 
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Figure 6.8. Histograms of latencies for pbcast and SRM. a) Latencies for pbcast-grb at 

node level, b) Latencies for Pbcast-grb after FIFO ordering, c) Latencies for SRM 

In our simulations, Pbcast’s application level, or after FIFO ordering, latency 

distributions of different receivers were analyzed to see if the distribution changes 

depending on the receiver’s distance from the source node. In other words, our interest is 

in the impact of distance from the sender on latency. The results show that application 

level latency distribution of Pbcast is independent of the receiver’s distance. 

Figure 6.9 shows one set of graphs illustrating this outcome. The simulation settings are 

as follows: The network consists of 20 nodes with linear (chain) topology where first 
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node is the sender spreading 100 messages per second to the process group, and there is 

1% noise on the outgoing link from the sender. Remaining members are receivers. Each 

link has a transmission delay of 5msec. We analyzed application level latency 

distributions of all receivers and observed that the distribution is basically the same for 

the receivers. Naturally, beginning of latency interval changes depending on the total link 

delay of the receiver from the sender. The figure shows latency distributions of four such 

receivers that are with distance 2, 8, 14, and 18 hops from the sender. 

Theoretical analysis of pbcast (Birman et al., 1999) suggests that the distribution should 

not change, and this is confirmed by our simulation model. The only effect is to introduce 

a small offset to the distribution, corresponding closely to the network delay itself. We 

obtain the same results in other network topologies. 

 

 

 

 

 

 

 

Figure 6.9. Latency distributions of pbcast-grb for receivers at various distances from the 

data source 
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6.8 Simulation of Clustered Network Topologies 

Until now, our simulations have focused on the impact of randomized message loss on 

the performance of Pbcast and SRM protocols. Other scenarios might be local area 

networks connected by long distance links and networks where routers with limited 

bandwidth connect group members. Such configurations are common in today’s 

networks. 

6.8.1 Clusters Connected by a Noisy Link 

In this scenario, we simulate a clustered network with 80 nodes as sketched in Figure 

6.10. The network consists of two 40-node fully connected clusters, and a single link 

connects those clusters. All nodes have Pbcast-grb, SRM or adaptive SRM agent attached 

that forms an 80-member process group. Sender is located on the first cluster, and it 

generates 100 multicast messages per second. There is 1% intracluster noise formed in 

both clusters, and a high noise with rate 50% is injected on the link connecting the 

clusters. This intercluster noise behavior leads to a condition where with 50% probability 

every message transmitted between clusters will drop. We then explored the latency 

characteristics of a receiver on the second cluster. 

Figure 6.11 shows latency distribution of Pbcast-grb at node level, or without FIFO 

ordering and after FIFO ordering. Figure 6.12 shows latency distribution of SRM and 

adaptive SRM at node level. The latency distribution of Pbcast-grb remains relatively 

tight, in the range between 0 and 1000 mil lisecond. Unlike the distributions analyzed in 

the tree topology networks, most messages are now affected by a delay. This is probably 

due to the high loss rate we imposed on the link connecting two clusters. Latency 

distributions of SRM exhibit long delays, particularly for the adaptive SRM, which has a 

significant number of long delayed packets. Note that, the ‘spike’ seen in the adaptive 

SRM distribution at latency equal to 5 seconds occurs because all packets with latencies 

greater than or equal to 5 seconds are counted in this single ‘bin’ . Thus, in this 

configuration, both SRM and adaptive SRM deliver some messages with very long 

delays of many seconds. Particularly, in the adaptive case about 5% of all data messages 

are delayed by 5 seconds or more before delivery. On the other hand, Pbcast-grb delivers 
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all data messages within 1 second and hence can be seen as offering relatively steady data 

throughput in networks with this configuration. 

The results suggest that, for Pbcast protocol, message latencies of receivers suffering 

from high message drop rates are better even after FIFO ordering relative to SRM and 

adaptive SRM protocols. 

 

 

 

 

 

Figure 6.10. Two clusters connected by a noisy link 

 

 

 

 

 

 

Figure 6.11. Delivery latencies of Pbcast-grb before and after FIFO ordering in a two-

cluster network 
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Figure 6.12. Delivery latencies of SRM and adaptive SRM in a two-cluster network 

 

6.8.2 Limited Bandwidth on Router 

In order to see the effect of limited bandwidth on a router, we constructed tree topology 

simulations running on 20, 40, 60, 80 and 100-node networks. Figure 6.13 illustrates such 

a network. The root node behaves as a router, and links to the router have limited 

bandwidth of 1500Kbits compared to the other links of the network that all have 

bandwidth of 10Mbits. System-wide constant noise rate is set to 1%. As shown in the 

figure, one of the nodes on the left sub-tree is sender which sends 100 multicast messages 

per second, and the message size is 1000 bytes. Therefore, the sender disseminates 

800Kbits per second to the network that is around the half of the capacity of the limited 

bandwidth. All the other nodes are receivers. In these simulations, we analyzed the 

background overhead and latency distribution of the particular receiver on the right sub-

tree that is illustrated in the figure. 

Figure 6.14 shows background overhead analysis of Pbcast and SRM for this scenario. A 

dramatic increase in especially request message traffic of SRM is observed for large 

group size at which limited bandwidth capacity starts to show its effect on SRM’s control 

traffic requirements. The reason is that the router becomes saturated and consequently the 

loss rate near the router rises. The rate of requests for Pbcast-grb remains nearly constant, 
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and the growth in repairs is consistent with the size of the group and the high noise rate 

used in this scenario. 

For 20 and 40-node network simulations, message latency distributions of Pbcast-grb and 

SRM receiver resemble each other. But, as network and group size increases, we note 

that communication requirements of SRM start to exceed capacity of the limited 

bandwidth, and this dramatically affects latencies of messages received by group 

members on the right sub-tree. We include analysis results for 100-node topology in 

Figure 6.15 where the effect of limited bandwidth on a router for SRM protocol can be 

seen clearly. Figure 6.15(a) and (b) show latency distribution of Pbcast-grb at node level 

and after FIFO ordering for the particular receiver. As it can be seen in Figure 6.15(c), for 

the SRM case, a large percentage of messages are delivered with high latency values 

going up to 15 seconds. 

 

 

 

 

 

 

Figure 6.13. A tree topology with a router with limited bandwidth at root 
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Figure 6.14. Request and repairs in tree topologies with limited bandwidth on root links 

 

 

 

 

 

 

 

 

 

Figure 6.15. Delivery latencies for pbcast and SRM in 100-node tree topologies with 

limited bandwidth on root links. a) Latencies for pbcast-grb at node level, b) Latencies 

for Pbcast-grb after FIFO ordering, c) Latencies for SRM 
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6.9 Impact of Pbcast-local on Application Level Latencies 

In this set of simulations, we constructed a 60-node tree topology network, and injected 

10% constant noise on one outgoing link from sender, where the sender is located at the 

root node. The other nodes are receivers. Then, we picked a receiver that is exposed to 

some message losses because of the noise on the network link. On this simulation setting, 

we run both Pbcast-grb and Pbcast-local under the same conditions. Then, we analyzed 

the latency distributions of the receiver for both protocols after FIFO ordering. 

Figure 6.16 shows latency distributions where Pbcast-local has a notable improvement on 

the latency characteristics of Pbcast protocol. As described in chapter 5, Pbcast-local uses 

neighborhood information among group members and attempt to accomplish local 

recovery. As our analysis results indicate, this optimization improves latency of data 

messages. 

 

 

 

 

 

 

 

 

 

Figure 6.16. Application level latency distributions of a) Pbcast-grb, b) Pbcast-local 
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6.10 Conditions Causing Multicast Message Congestion 

We investigate the conditions that cause multicast messages to begin congest when using 

SRM and pbcast-grb. The network topology in this simulation study is a 2-cluster, 80-

node network. Each cluster consists of fully connected 40 nodes. There is a single link 

connecting two clusters that has higher noise and link delay characteristics, behaving like 

a long distance link. The delay of links inside clusters is set to 5ms, while the link delay 

between clusters is 30ms. There is 1% low noise injected on the links inside clusters. We 

formed an 80-member process group on this topology where there is a group member on 

each node. The sender is located on the first cluster. During this study, we varied two 

operating parameters, namely multicast message rate of the sender and inter-cluster noise 

probability. The multicast message rate is set to 25, 50 and 100 messages per second, and 

the inter-cluster noise probability is set to 10, 20, 30, 40 and 50% for different 

simulations. 

We analyzed the behavior of a receiver process on the second cluster. We observed the 

change in degree of interference while load and error rate increase. Degree of 

interference is defined to be the percentage of data messages with latencies greater than 

normal message delay. Normal message delay (nd) for a particular receiver is defined to 

be 

1 /msgrate + ld 

where msgrate is the message rate of the sender, and ld is the total link delay from sender 

to the receiver. For example, if the message rate of the sender is 25 msgs/sec and the total 

link delay from the sender to a particular receiver in the group is 40ms, then nd = (1/25) + 

0.04 = 0.08sec. We assume that messages received with latencies greater than 0.08sec are 

delayed because of the interference, and analyzed the percentage of data messages 

experiencing this delay. 

Figure 6.17 illustrates the change in the degree of interference as the link error rate 

between the sender and the receiver increases. The x-axis shows the inter-cluster noise 

rate and the y-axis shows the degree of interference measured for both pbcast-grb and 
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SRM. Message rate of the sender is 25, 50 and 100 messages per second for figure 

6.17(a), (b) and (c) respectively. 

Figure 6.18 shows the change in the degree of interference as the load rate increases. The 

x-axis is the multicast message rate of the sender, and the y-axis is the degree of 

interference. Inter-cluster noise rate is 10% for figure 6.18(a), and 20% for figure 6.18(b).  

We observed that for most of the simulation results, the number of data messages 

experiencing this interference is greater for SRM protocol compared to pbcast-grb. Error 

rate and load increase in the network affect the interference parameter. As the load 

increases, the difference between both protocols becomes more apparent. Another 

observation about the reliability of the protocols not shown in the figures is that when 

inter-cluster error rate exceeds 40%, the SRM receiver starts to fail in its recovery phase 

and lose some data messages, while no message loss was observed for pbcast. 
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Figure 6.17. Inter-cluster noise rate vs. degree of interference for Pbcast-grb and SRM. a) 

Multicast message rate equals 25msgs/sec, b) Multicast message rate equals 50msgs/sec, 

c) Multicast message rate equals 100msgs/sec 

 

 

 

 

 

 

 

Figure 6.18. Multicast message rate vs. degree of interference for Pbcast-grb and SRM. a) 

Inter-cluster noise rate is 10%, b) Inter-cluster noise rate is 20% 
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6.11 Discussion 

Our simulation study yields some general conclusions about the behavior of scalable 

reliable multicast protocols in large systems, some specific conclusions about the relative 

advantages and disadvantages of SRM and Pbcast, and also the limitations associated 

with each protocol. 

Our work points to a number of limitations of the SRM protocol. We observe that SRM 

can generate high rates of overhead on a network with lossy links, even if the loss rate is 

low. Some prior work points this effect as well (Liu, 1997; Lucas, 1998; Hanle and 

Hofmann, 1998; Li and Cheriton, 1998). SRM protocol overhead is in the form of 

requests and retransmissions sent using multicast and hence seen by significant numbers 

of processes. As the network size scales up, overhead rate increases. As a result, overall 

bandwidth requirement of the protocol grows as well. 

As it is shown in the analysis of clustered network topologies, high overhead rate can 

cause routers in a wide area network to become saturated easily. Another problem is 

evident in the latency distributions of SRM in clustered networks with a noisy connecting 

link, or limited bandwidth behavior near the connecting router. We believe, these are not 

unlikely situations, in fact they are common in typical LAN configurations with a WAN 

link between two LANs. Under such conditions, we analyze that delivery latency for 

SRM goes very high values relative to the actual source-to-destination network latency. 

As shown in figure 6.15(c), worst-case latency value of 15 seconds or more is measured 

where the actual source-to-destination network latency is 35ms. A significant percentage 

of SRM packets experience long delays, and this may cause many applications to be 

forced to buffer very large amounts of data. For applications in which data freshness is 

important, this would seem to be a real drawback for the protocol. Furthermore, under the 

conditions analyzed in section 6.10, increases in the application data rate can cause high 

rates of multicast messages to begin congest. 

Analysis results for Pbcast protocol are more positive under the same network conditions. 

But, we observe some limitations as well. In general, where SRM shows severe overhead 

growth, Pbcast sometimes shows moderate overhead growth. Consequently, one can 
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criticize that Pbcast also faces some scalabili ty limits, but our analysis shows that 

overheads seem unlikely to emerge until a network grows quite large. This is evident in 

the results of large-scale topologies with thousand nodes (figure 6.5). 

Another issue about Pbcast is the gossip load on centralized links in multi-clustered 

networks. If the capacity of a central link is exceeded, this will trigger a high rate of loss 

on the corresponding link. This would impact other applications sharing the network. As 

a remedy for this issue, hierarchical gossip mechanisms are explored in the Spinglass 

project implementation of Pbcast and this is an area for further study. Initial results for 

hierarchical gossip strategy are discussed in (Ozkasap et al., 1999.a). 

Our studies show that Pbcast is a better behaving reliable multicast protocol than SRM in 

the network settings that are considered. Our findings are based on the following facts. 

The issue is about the impact of random low-probability events on the behavior of 

scalable reliable multicast protocols. SRM protocol uses timers and suppression 

mechanisms that are parameterized according to the network characteristics. These can be 

viewed as probabil istic mechanisms for overcoming data loss. Introducing system-wide 

link loss rates, even at low levels like 0.1%, apparently defeats SRM’s assumptions as the 

network grows large. The basic hypothesis of SRM is that most multicast data messages 

will be successfull y delivered by IP multicast and basic forms of data loss would be 

entirely local or regional. For instance, a sub-tree in a tree topology network drops a 

message, but no other sub-tree does so. Then, the loss recovery would be overcome 

locally by utili zing timer-based recovery mechanisms. But, in real network settings, 

processes in both sides of a large spanning tree could experience data loss. Timer 

mechanisms for SRM are supposed to inhibit duplicate retransmission requests. As the 

network scales up, processes experiencing loss in both sides of the network would be 

further away from each other and there would be more processes experiencing the loss in 

between. SRM mechanisms make no provision for this effect. It would be more li kely for 

both processes to request a retransmission at the same time. Likewise, it becomes likely 

for multiple processes to respond to a single request. This is particularly evident when all 

participants are equidistant. Our analysis results for the star topology simulations show 

this effect (figure 6.4). 
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We observe a fundamental advantage of Pbcast relative to SRM. Unlike SRM, Pbcast is 

based on weak assumptions. Gossip mechanisms are highly randomized, and random data 

loss is attacked by randomized gossip repair. The exponential convergence of gossip 

towards full diffusion of information in the network is the benefit for loss recovery, and 

leads low protocol overhead. When IP multicast is used occasionally for retransmission 

as Pbcast-ipmc and Pbcast-grb do so, multicast data reaches most participants. 

6.12 Comparison with Prior Work 

We believe that our study is the first investigating the stability of latency distributions in 

scalable reliable multicast settings. We investigated the behavior of Pbcast protocol 

together with a well-known scalable reliable multicast protocol SRM, under a variety of 

network settings. However, there are certainly some prior work that criticized SRM, and 

some studies have also proposed similar protocols with better local repair strategies 

giving faster convergence with less overhead. First among these was a study by one of 

the SRM developers who also proposes some extensions to improve the behavior of the 

protocol (Liu, 1997). Another study is by (Lucas, 1998), that identifies similar issues with 

SRM. 

Li and Cheriton (1998) have introduced a reliable multicast protocol called OTERS that 

provides low recovery latency and low recovery traffic levels while requiring some 

additional network support. Their work uses ns-2 to compare OTERS with SRM and 

TMPT. They simulate transit-stub network topologies with sizes 100 and 600, with group 

sizes 10 and 60 respectively, and link error rates of 0.5%. The simulation study focuses 

on the analysis of recovery latency and traffic load for loss recovery. Among their 

findings, the authors note that SRM can perform poorly. However, they did not encounter 

anything as extreme as what we saw in our clustered network simulations. 

Another study (Hanle and Hofmann, 1998) uses ns-2 to evaluate performances of SRM, 

MFTP (Multicast File Transfer Protocol) and MFTP/EC (MFTP with Error Correction). 

They performed analysis for two different test networks, one with light and the other with 

intensive background traffic feature. Network sizes for two set of simulations were 726 

nodes and 680 nodes where 50 of the nodes are receivers. The results are similar to our 
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findings for SRM's link utilization. As stated in the paper, the behavior of SRM is due to 

the fact that, it can easily run into a situation in which multiple repair packets are 

multicast in response to a single retransmission request. In general, there is a trade-off in 

SRM between duplicate packet flow and loss recovery speed.  

Our simulation study differs from the prior work in the following ways: 

• We introduced system-wide constant link loss rate to the networks. 

• Link noise affects both data and control messages. For example, in the simulations of 

the SRM paper (Floyd et al., 1997), it is assumed that only data packets drop during 

the simulation, but this is not reali stic. 

• Multicast data is generated in steady rates during the simulations. 

• Several realistic scenarios such as routers with limited bandwidth, clusters connected 

with high noise links, and also various network topologies are considered. 

• In addition to background traffic and link utilization analysis, message latency, inter-

arrival distributions, throughput characteristics of protocols, conditions causing 

multicast message congestion are analyzed as well . 

• Large-scale networks consisting of thousand nodes are simulated. 

6.13 Summary 

This chapter first describes network and application characteristics of our simulation 

study. In the simulations, we analyzed performance metrics such as protocol overhead, 

throughput, link utilization, inter-arrival distribution, latency distribution and multicast 

message congestion on several network topologies and  group application scenarios. The 

chapter explains each of these simulations, results and analysis in detail. A discussion on 

the general results of the simulation study developed in this thesis is included in the 

chapter, followed by a comparison of the study with prior work.  
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7. Efficient Buffering 

 

 

Traditionally, reliable multicast protocols suffer from large buffering requirements. 

Group participants have to buffer messages and buffer sizes grow with the number of 

participants. We describe a technique that allows such protocols to reduce the amount of 

buffering significantly. The idea was first suggested by Robbert van Renesse, and in this 

thesis we conducted a simulation and analysis study to validate the effectiveness of the 

optimization (Ozkasap et al., 1999.b). This chapter gives details of this study. 

7.1 Model 

We assume a group of processes or members communicating with an epidemic reliable 

multicast protocol such as used in the Clearinghouse domain name service (Demers et al., 

1987), refdbms (Golding et al., 1994), Bayou (Petersen et al., 1997) and Bimodal 

Multicast. In our simulation study, we use bimodal multicast as the underlying multicast 

communication structure. Each member of the process group is uniquely identified by its 

address. We consider that each member has an approximation of the entire membership 

of the group. It is not required that the members agree on the membership. A scalable 

membership protocol such as the one proposed by (van Renesse et al., 1998) is sufficient 

to provide membership information. We consider a fail-stop model of processes. 

Malicious failures are not considered in this model. Recovery of a failed process is 

modeled as a new process joining the membership. 
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Related to link failures, we assume two kinds of message loss, namely, send omissions 

and receive omissions. Initially, we assume that receive omissions are independent from 

receiver to receiver and message to message, and occur with a small probability Ploss, and 

there are no send omissions. 

As mentioned before, members communicate via a reliable multicast protocol that aims 

to provide all-or-none delivery of multicast messages. In general, such protocols run in 

three phases: 

1) An initial unreliable multicast dissemination attempts to reach as many members as 

possible. 

2) An error recovery phase detects message losses and recovers lost message via 

retransmissions. 

3) A garbage collection phase detects message stability and releases buffer space. 

Most reliable multicast protocols use a combination of positive and negative 

acknowledgement messages for the last two phases. Epidemic multicast protocols 

achieve the all-or-none guarantee with high probability by means of gossiping. Garbage 

collection is accomplished by having members keep messages in their buffer for a limited 

time. Members garbage collect a message after a time at which they can be sure, with a 

specific high probability, that the gossiping has disseminated all messages that were lost 

during the initial multicast dissemination. This time grows as O(logn) where n is the size 

of the membership as the corresponding member observes it (Birman et al., 1999). 

7.2 Basic optimization 

The proposed technique optimizes buffering by only buffering messages on a small 

subset of group participants, while spreading the load of buffering over the entire 

membership. The subset has a desired constant size C. Failures and other randomized 

effects, such as randomness in the outcomes of the hash function and inconsistencies due 

to the approximation of the group membership information, cause messages to be 
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buffered on more or fewer than C participants. The subset is not fixed but randomized 

from message to message in order to spread the load of buffering evenly over the 

membership. We assume that each message is uniquely identified. For example, the tuple 

(source address, sequence number) identifies a message. We use hash function H: 

bitstring → [0..1] to map tuples of the form <message identifier, member address> to 

numbers between 0 and 1. This hash function has a certain fairness property. For a set of 

different inputs, the outputs should be unrelated. There are a number of choices for this 

purpose. Cryptographic hashes are ideal, but too CPU intensive. CRCs (Cyclic 

Redundancy Checks) are cheap, but the output is too predictable. When given 32-bit 

numbers 0,1,2,... as input, the output of CRC-16 is 0,256,512,etc. We propose a hash 

function that is cheap and appears fair. The function and its properties are described in 

section 7.3.  

A multicast message sent to the process group is buffered on a small set of members. 

Suppose that a member with address A has a view of the membership of size n. Upon 

receiving a message with identifier M, member A buffers the message if and only if 

H(<M,A>)*n < C. We call a member that buffers M, the bufferer of M. If the function H 

is fair, n is correct and there is no message loss, the expected number of bufferers for 

message M is C. For a set of messages M1, M2, ....., the messages are buffered evenly 

over the membership. 

Figure 7.1 illustrates the buffering technique on a simple scenario. Suppose, there is a 

four-member process group, n=4 and C=1. A1, A2, A3 and A4 are group members, and 

the time advances from left to right in the figure. The scenario proceeds as follows: 

1. Member A1 multicasts message with identifier M1, and all group members deliver 

M1. Upon receiving M1, each member Ai calculates H(<M1,Ai>) and buffers M1 if 

and only if H(<M1,Ai>)*n < C. We assume that H(<M1,A1>)=0.2, 

H(<M1,A2>)=0.8, H(<M1,A3>)=0.3 and H(<M1,A4>)=0.9. Therefore, since only 

H(<M1,A1>)*n < C, member A1 is the bufferer of the message M1. 

2. Member A3 multicasts message with identifier M2. Due to a transient communication 

or process failure, member A1 fails to receive M2. The other group members deliver 
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M2. We assume that H(<M2,A1>)=0.5, H(<M2,A2>)=0.4, H(<M2,A3>)=0.6 and 

H(<M2,A4>)=0.1. Therefore, since only H(<M2,A4>)*n < C, member A4 is the 

bufferer of the message M2. 

3. Member A1 multicasts message with identifier M3, and all group members deliver 

M3. We assume that H(<M3,A1>)=0.8, H(<M3,A2>)=0.2, H(<M3,A3>)=0.4 and 

H(<M3,A4>)=0.7. Therefore, since only H(<M3,A2>)*n < C, member A2 is the 

bufferer of the message M3. By means of the loss detection and recovery mechanism 

of the underlying reliable multicast protocol, member A1 detects that it lacks message 

M2. Then, A1 computes H(<M2,Ai>) for each group member Ai. If 

H(<M2,Ai>)*n<C for a given member Ai, then Ai is the bufferer of message M2. By 

means of this technique, A1 determines that A4 is the bufferer of M2, and sends A4 a 

request for retransmission of M2. Upon receiving the request, member A4 retransmits 

M2 from its message buffer. 

 

 

 

 

 

 

 

Figure 7.1. Illustration of the buffering technique 
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can calculate for any message which members are the bufferers. If members have 

approximate membership information slightly different from each other, it is possible that 

they disagree on the set of bufferers for a message. However, keep in mind that this is 

completely independent of the decision to buffer a received message, which is 

deterministic once the message reaches a given process. In particular, the sets of bufferers 

calculated by different members mostly overlap. If C is chosen large enough, the 

probability that all computed bufferers wil l turn out to have failed to receive a message 

due to link or process failures is small . When calculating this probability, we assume that 

every member agrees on the membership and the number of members is n. We consider 

an initial multicast as successful if it is received by all members, or if it is received by at 

least one bufferer. If at least one bufferer of an initial multicast receives the multicast, the 

bufferer would keep a copy of the multicast message in its message buffer, and (by using 

this copy) loss recovery mechanism of the reliable multicast protocol would be able to 

disseminate the message to the members that lack the message. Thus, the probability of 

success of an initial multicast is the sum of the following two independent probabili ties. 

P1: no members are bufferers, but all members received the initial multicast 

P2: there is at least one member that is a bufferer and that received the initial multicast 

We can calculate P1 as follows. Since we assume the function H is fair, ‘being a bufferer’ 

is an independent event with probability C/n. Also, the message loss due to receive 

omissions are assumed to be independent with probabili ty Ploss. 

P1 = ((1 - C/n)(1 - Ploss))
n 

We can calculate P2 as follows. 

P2 = P(∃ a bufferer that receives M) 

 = 1 - P(all processes are not bufferers or lose M) 

 = 1 - P(a process is not a bufferer or loses M)n 
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 = 1 - (1 - P(a process is bufferer and receives M))n 

 = 1 - (1 - C/n(1 - Ploss))
n 

Then, the probability of failure (all bufferers fail to receive a message) Pfail is calculated 

as follows. 

Pfail = 1 – Psuccess = 1 – P1 – P2 

 = (1 – C/n(1 - Ploss))
n – ((1 – C/n)(1 - Ploss))

n 

Assuming Ploss is constant, that is independent of n, as n grows, Pfail tends to e–C(1 - Ploss). 

Thus, given the probabil ity of receive omission, the probability of failure can be adjusted 

by setting C, independent of the size of the membership. Pfail gets exponentially smaller 

as we increase C. However, in many cases Ploss is a function of group size. It depends on 

the size and topology of the underlying network. For example, in a tree-shaped topology, 

messages have to go through O(logn) links. If we assume that Pll is the individual l ink 

loss, then 

Ploss = 1 - (1 - Pll)
t 

where t is the average number of links that a message has to go through. In this case, t 

grows with O(logn). 

Receive omissions are no longer independent from each other. Setting C, in this case, 

does depend on n. 

7.3 Implementation 

In this section, we discuss the design of the hash function H, how we integrate our 

optimization with an epidemic multicast protocol, and how this impacts the buffering 

requirements of the protocol. 
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The hash function H has to be both fair and cheap. It has to be fair to provide that the 

expected number of bufferers for a message is C and also the messages are buffered 

evenly over the membership. It has to be cheap, since it is calculated each time a message 

is received. As mentioned before, cryptographic hashes are typically fair, but not cheap. 

CRC checks are cheap, but not fair. Therefore, we need to design a new function. Our 

hash function H uses a table of 256 randomly chosen integers, called the shuffle table. 

The input to H is a string of bytes, and the output is a number between 0 and 1. The 

algorithm for the hash function is given in figure 7.2. 

Unsigned integer Hash = 0 

For each byte b do 

 Hash = Hash XOR shuffle [b XOR least_signif_byte(hash)] 

Return Hash/MAX_INTEGER 

Figure 7.2. Algorithm of the Hash Function 

We have integrated our buffering optimization technique to the pbcast protocol. In 

general, the technique is applicable to any epidemic multicast protocol. In order to do 

that, we need to modify the protocol. For this optimization, algorithm of modifications to 

the Pbcast protocol is given in figure 7.3. We call the new protocol as Pbcast-hash. 

Previously, each member buffers messages that it received until it is known that the 

message has become stable. If a member receives a retransmission request for a message, 

it services the retransmission out of its own buffer. With the optimization, a member that 

receives a request for a message may not have that particular message buffered locally. If 

so, by utilizing the hash function the member calculates the set of bufferers for the 

message, and picks one of the bufferers at random. Then, the member sends a 

retransmission request directly to the bufferer, specifying the message identifier and the 

destination address. A bufferer, upon receipt of such a request, determines if it has 

buffered the message. If so, it services the request. If not, it ignores the request. 
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Case: Receipt of PT_PBCAST_REQUEST 

{ 

if msg is in buffer { 

msg.request_counter ++ 

// multicast retransmission to group 

if (msg.request_counter >= threshold) {  

send_retrans(groupid, msg.seqno, data message) 

 retrans_count ++ 

msg.request_counter = 0 } 

else { 

  // basic pbcast: unicast retransmission 

if ((my_round_number == msg.round_number) and (retrans_count_ < limit-retrans)) 

   send_retrans(msg.source, msg.seqno, data message) 

retrans_count ++ } 

} 

else { // if the requested message is not in buffer 

 compute Hash for msg 

 send_special_request(randomly selected bufferer, msg.id) } 

} 

New Event: 

Case: Receipt of PT_PBCAST_SPECIAL_REQUEST 

{ 

if msg is in buffer { 

msg.request_counter ++ 

// multicast retransmission to group 

if (msg.request_counter >= threshold) {  

send_retrans(groupid, msg.seqno, data message) 

 retrans_count ++ 

msg.request_counter = 0 } 

else { 

if (retrans_count_ < limit-retrans) { 

   send_retrans(actual requestor, msg.seqno, data message) 

retrans_count ++ }} 

} 

else ignore 

} 

Figure 7.3. Algorithms for Pbcast-hash 
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Note that, although members do not buffer all messages they receive, they still have to 

maintain some information about the messages. In the original protocol, members had to 

buffer all messages until they are believed to be stable. In the optimized protocol, 

members only need to keep the identifiers of messages they have received. This can be 

done in sorted lists of records, one list per sender. Each record describes, using two 

sequence numbers, a range of consecutively received messages. Since there are typically 

not many senders, and each list will have a small size consisting of one or a few entries, 

the amount of storage is negligible. 

Our optimization improves the buffering requirements of the epidemic protocol as 

follows. In the original protocol, the memory requirement for buffering on each member 

grows O(ρ*logn) where ρ is the total message rate and n is the number of participants. 

We assume fixed sized messages and fixed message loss rate (Birman et al., 1999). The 

number of rounds of gossip required to spread information fully with a certain probability 

grows O(logn). In the optimized protocol, the buffering requirement on each member 

shrinks by O(ρ*logn/n) since C is constant. 

7.4 Improvement 

Until now we have assumed that message loss was due to rare and independent receive 

omissions. In this section, we will suggest an improved strategy in order to deal with 

more catastrophic message loss, without sacrificing the advantageous scaling properties. 

The improvement consists of two parts. 

1. Maintaining two message buffers 

2. Multicast retransmissions 

In the first part, we assume two message buffers, namely long-term and short-term. The 

long-term buffer is the one in which messages are kept by the corresponding bufferers. 

The short-term buffer keeps all messages in FIFO order as they are received, for some 

fixed amount of time. Since messages are kept for a fixed amount of time, the size of 
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short-term buffer is linearly dependent on the message rate ρ, but independent of group 

size n. Both buffers can be used for retransmissions during message loss recovery. 

The second part includes an enhancement to the loss recovery phase of the multicast 

protocol. We have already proposed and implemented similar strategies for Pbcast. We 

call these optimized protocols pbcast-ipmc and pbcast-grb. Details of the protocols are 

found in chapter 5. The idea is to detect send omissions and large correlated receive 

omission problems, and use multicast rather than unicast for retransmissions. 

To support this improvement, a typical epidemic protocol can be modified as follows. 

Members detect gaps in the multicast message stream by inspecting sequence numbers. 

They include information about gaps in gossip messages. When a member receives a 

gossip with information about a gap that it has detected as well, it sends a multicast 

retransmission request request to the sender. The probability of such an event is low in 

case of a few receive omissions, but high in case of a catastrophic omission. The sender 

should still have the message in its short-term buffer to meet the retransmission request. 

Since these retransmission requests are only triggered by randomized gossip messages, 

this will not lead to implosion problems seen in ack or nak based protocols. 

These improvements, together, lead to two significant benefits. First, they make 

catastrophic loss unlikely, so that the assumptions of the basic optimization are mostly 

satisfied. Secondly, since most message loss is detected quickly, retransmissions will be 

satisfied out of the short-term buffer without the need for retransmission of requests to 

the bufferers. Then, the long-term buffer is only necessary for all-or-none semantics in 

rare failure scenarios. 

7.5 Simulation study 

To validate the buffering mechanisms, we have conducted a simulation study of pbcast 

with and without our optimization. We have used pbcast-ipmc protocol supporting a 

multicast retransmission scheme. As the underlying environment, we used the ns-2 

network simulator. 
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7.5.1 Topologies and process groups 

In our simulation study, we constructed two different topologies with sizes ranging from 

20 to 128 nodes. One of them is a pure tree topology with the sender located at the root 

node and receivers located at each node that forms a dense session. A sample tree 

topology containing 100 nodes is illustrated in figure 7.4. The other one is a transit-stub 

topology with the sender located on a central node and receivers located at each node. We 

used gt-itm topology generator for producing transit-stub topologies. A sample transit-

stub topology with 128 nodes is shown in figure 7.5. 

A certain link noise rate is set on every link forming a system-wide noise. We varied 

three operating parameters, namely group size, multicast message rate of the sender, and 

system-wide noise rate. We conducted extensive simulations to analyze buffering 

behavior of protocols and the impact of our optimization on the buffering behavior of an 

epidemic protocol. Our analysis study mainly focuses on the following cases for each 

topology and protocol. 

• Mean buffer requirement of group members as a function of group size 

• Mean buffer requirement of group members as a function of multicast message rate 

• Mean buffer requirement of group members as a function of link loss rate 

• Buffer requirements of individual group members 

For our optimization, we also analyzed the number of bufferers for multicast messages, 

and the impact of link loss probability on this value 
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Figure 7.4. A tree topology 
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Figure 7.5. A transit-stub topology 

7.5.2 Results and Analysis 

In our first analysis, our interest lies in the required amount of buffer space of a typical 

participant, as a function of group size. We measured the maximum number of messages 

that needed to be buffered at a typical participant. In our simulations, the individual link 
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loss probability, Pll, in the network is 0.1%. In these cases, C is approximately 6. We 

varied the operating parameters of multicast data rate of the sender and group size. Figure 

7.6(a) and (b) show results for tree and transit-stub topologies respectively, where the 

multicast data rate is 25 messages per second. Figure 7.7 shows results for the case where 

multicast data rate is 100 messages per second. Our findings are as follows. Buffering 

optimization greatly reduces the memory requirements of group members. Furthermore, 

the buffering behavior is more predictable for pbcast-hash protocol. In fact, we observed 

that as the group size scales up, buffering requirement of typical participant decreases. 

We also analyzed the effect of multicast message rate and link noise rate on the buffering 

requirements of pbcast-ipmc and pbcast-hash. Figure 7.8 gives results for multicast 

message rate versus mean buffer requirement of participants. For these simulations, the 

message rate is varied from 25 to 100 messages per second. Link loss probability is fixed 

at 0.1%. We used a tree topology with 100 members. For pbcast-ipmc protocol, we 

observe a linear relationship between application message rate and mean buffer 

requirement. Pbcast-hash, on the other hand, reduces the buffer requirement of 

participants, and shows a very small increase relative to pbcast-ipmc as the application 

message rate increases. 

Figure 7.9 illustrates the impact of link loss probability. For these set of simulations, we 

fixed the message rate at 100 messages per second and varied link loss probability from 

0.1% to 1.5%. Pbcast-ipmc protocol shows an increase in the buffer requirement as the 

system-wide noise rate increases, whereas pbcast-hash has almost constant buffering 

needs. 

Now, we focus on the buffer requirements of individual group members for both 

protocols. Figure 7.10 shows analysis results for a tree topology simulation with 100 

members. For figure 7.10(a) and (b) the message rate of the sender is 25 and 100 

messages per second, respectively. Our results validate that the optimization significantly 

reduces the memory requirements on each individual member, and also that the buffering 

responsibility is spread evenly over all members. 
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Additionally, for pbcast-hash protocol, we analyzed the number of bufferers for 

individual data messages and the impact of the link loss probability on these numbers. In 

figure 7.11, for 500 consecutive multicast messages starting from message with sequence 

number 1000, we show on how many locations each of the messages was buffered for 

two different link loss probabilities: a) 0.1% and b) 1.5%. With large loss rates, in order 

to get the same Pfail probability, it is necessary to buffer messages in more locations. For 

this reason, the probability that nobody buffers a message (1-P2) is actually smaller for 

situations with larger loss. Our results demonstrate this effect clearly. Note that, in figure 

7.11(a) three messages were not buffered anywhere. This does not imply that the 

messages were not delivered to every member. In fact, in these simulations, all messages 

were correctly delivered. 
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(a) 

 

 

 

 

 

 

(b) 

Figure 7.6. The required amount of buffer space for a typical member as a function of 

group size. Multicast message rate is 25msgs/sec. a) Tree topology, b) Transit-stub 

topology 
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(a) 

 

 

 

 

 

 

(b) 

Figure 7.7. The required amount of buffer space for a typical member as a function of 

group size. Multicast message rate is 100msgs/sec. a) Tree topology, b) Transit-stub 

topology 
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Figure 7.8. Average amount of buffer space per member as a function of message rate 

 

 

 

 

 

 

 

Figure 7.9. Average amount of buffer space per member as a function of link loss 

probability 
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(a) 

 

 

 

 

 

 

(b) 

Figure 7.10. Buffer requirements of individual group members. a) message rate is 

25msgs/sec, b) message rate is 100msgs/sec 
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(a) 

 

 

 

 

 

 

(b) 

Figure 7.11. Number of locations that individual messages are buffered. a) Link loss 

probability is 0.1%, b) link loss probability is 1.5% 
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7.6 Summary 

This chapter starts with describing a technique for efficient buffering in reliable multicast 

protocols. In this study, we conducted a simulation study to validate how the technique 

significantly optimizes buffer requirements of group participants. The chapter explains 

the simulation study, results and analysis. We described how the optimization can be 

incorporated into an epidemic multicast protocol. Based on our simulation model for 

Pbcast protocol (described in chapter 5), we implemented Pbcast-hash protocol on ns-2 

network simulator. Analysis results demonstrate that the technique is highly effective. 

The buffer requirements on a group member are reduced by a factor of n/C, where n is 

the size of the group, and C is a small constant containing the number of sites where a 

message should be buffered. 
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8. Conclusion 

 

 

This thesis study investigated the issues of scalability, throughput stability and efficient 

buffering in reliable multicast protocols. The focus is on the analysis of a new class of 

scalable reliable multicast protocol, Pbcast, that is based on an epidemic loss recovery 

mechanism. The protocol offers scalability, throughput stability and a bimodal delivery 

guarantee. A theoretical analysis study for the protocol is already available (Birman et al., 

1999). In this study, we developed experimental and simulation models for the protocol, 

and conducted extensive analysis studies for investigating protocol properties in practice 

and comparing it with other classes of reliable multicast protocols across various network 

characteristics and application scenarios. 

General results of our study can be described as follows. In the experimental model, we 

showed that the throughput behavior of Pbcast remains stable as the process group size is 

scaled, and the protocol is more stable and scalable compared to the virtually 

synchronous reliable multicast protocols in several network and application scenarios. 

The scenarios investigated include soft process failures and system-wide message loss. 

Our analysis study focuses on the overhead and throughput of the protocols. In contrast to 

the experimental model, our simulation model enabled us to evaluate protocol 

performance on several network topologies, failure models, group application scenarios 

and large scale settings up to thousand nodes. Furthermore, we compared Pbcast with a 

scalable reliable multicast protocol, SRM, offering best-effort reliability, and developed 

some optimizations to Pbcast. We showed that, as the network and process group size 

scale up, the number of control messages received by group members during loss 
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recovery increases linearly for SRM protocols. In effect, SRM protocols have higher 

bandwidth consumption compared to Pbcast protocols. We investigated the inter-arrival 

distributions of data messages for the protocols. We showed that, inter-arrival times of 

data messages are stable with an increase in the group size for Pbcast, and the distribution 

changes with the group size, hence it is not stable for SRM. This is mainly due to the 

higher number of repair messages received by group members during loss recovery and 

its dependence on group size. Previously, stable throughput is not normally considered to 

be a critical requirement in reliable multicast protocols, but as discussed in chapter 2, we 

believe that there are a substantial number of applications for which such a guarantee is 

important. We also accomplished a detailed study of message latency behavior of Pbcast 

and SRM protocols. Results show that on large-scale networks, node-level message 

latencies of Pbcast protocol is smaller compared to SRM’s message latencies. We 

observed that as SRM is scaled to larger groups, steadiness of throughput can be expected 

to degrade. We analyzed configurations, such as local area networks connected by long 

distance links and networks where routers with limited bandwidth connect group 

members,  that are common in today’s networks. We showed that, high overhead rate can 

cause routers in a wide area network to become saturated easily. We discussed additional 

results in detail in Section 6.11. In addition, we presented a technique for buffer 

optimization in reliable multicast protocols, and conducted a simulation study to validate 

how the technique significantly optimizes buffer requirements of group participants. 

Analysis results demonstrate that the technique is highly effective. The buffer 

requirements on a group member are reduced by a factor of n/C, where n is the size of the 

group, and C is a small constant containing the number of sites where a message should 

be buffered. 

Inverted protocol stack is a new approach for overcoming throughput instabili ty and 

scalability problems of traditional reliable multicast protocols. In this thesis study, we 

demonstrated how this approach works well on several network settings. Under the light 

of these results, a future work in this area of research would be developing and analyzing 

effectiveness of the approach in real large-scale networks. In fact, such an attempt is 

currently under development within the Spinglass2 project of Cornell University, 

Department of Computer Science. The project is based on this new approach in which the 

                                                             
2 http://www.cs.cornell.edu/Info/Projects/Spinglass/index.html 
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core protocols supporting multicast data transmission give probabilistic reliability 

guarantees. The project seeks to implement a system around this class of protocols, 

embedding them into the major software architectures and network operating systems, 

and to show how applications can be constructed on the resulting probabilistic 

infrastructure. 

An additional area for further study within our simulation model would be a detailed 

exploration of hierarchical gossip mechanisms for the protocol. The hierarchical gossip 

approach, which is discussed in Section 3.7, would help to overcome the following two 

drawbacks of the protocol in terms of scalability. First, each process needs a full 

membership information for the multicast group, since this information is required by the 

anti-entropy protocol. But, for large-scale groups, group membership information can 

become too large and membership updates cause high traffic on the network. Second, in a 

large network, anti-entropy protocol will involve communication over high-latency paths. 

Then buffering requirements and round length parameter of the protocol grow as a 

function of worst-case network latency. 
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