
RPC Chains: Efficient Client-Server Communication
in Geodistributed Systems

Yee Jiun Song1,2 Marcos K. Aguilera1 Ramakrishna Kotla1 Dahlia Malkhi1
1 Microsoft Research Silicon Valley 2 Cornell University

Abstract
We propose RPC chains, a simple but powerful commu-
nication primitive that allows an application to lessen the
performance effects of wide-area links on enterprise and
data center applications that span multiple sites. This
primitive chains together multiple RPC invocations so
that the computation can flow from one server to the next
without involving the client every time. We demonstrate
that RPC chains can significantly reduce end-to-end la-
tency and network bandwidth in a storage application
and a web application.

1 Introduction

Distributed enterprise applications, such as web appli-
cations, are often built from more basic services, such
as storage services, database management systems, au-
thentication and configuration services, and services for
interfacing with external components (e.g., credit card
processing, banking, vendors, etc).

As systems become larger, more complex, and more
ubiquitous, there is a corresponding increase in the num-
ber, diversity, and geographical dispersion of the remote
services that they use. For instance, Hotmail and Live
Messenger share an address book service and an authen-
tication service; there are also services specialized for
each application, say, for email storage or virus scanning.
These services are heterogeneous. They are often devel-
oped by different teams are geo-distributed, running in
different parts of the world.

Geo-distribution provides many benefits: high avail-
ability, disaster tolerance, locality, and ability to scale

Research supported in part by NSF Grant No. 0424422 and U.S.
Department of Homeland Security Grant No. 2006-CS-001-000001-
02. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily
reflect the views or official policies, either expressed or implied, of the
National Science Foundation (NSF) or the U.S. Department of Home-
land Security.

beyond one data center or site. However, the thin and
slow links connecting different sites pose challenges, es-
pecially in an enterprise setting, where applications have
strict performance requirements. For instance, the sys-
tem should ideally respond correctly in 1s or less [14].

The most common primitives for inter-service com-
munication are remote procedure calls (RPC’s) or RPC-
like mechanisms. RPC’s can impose undesirable com-
munication patterns and overheads when a client needs to
interact with many servers, and servers themselves could
be clients of other servers. This is because RPC’s impose
communication of the form A−B−A (A calls B which
returns to A) even though this pattern may not be opti-
mal. For example, in Figure 1 left, a client A in site 1
uses RPC’s to consecutively call servers B, C, and D in
site 2. Server B, in turn, calls servers E and F in site 3.
The use of RPC’s forces the execution to return to A and
B multiple times, causing 10 crossings of inter-site links

We propose a simple but more general communication
primitive called a Chain of Remote Procedure Calls, or
simply RPC chain, which allows a client to call multiple
servers in succession (A−B1−B2− · · ·−A), where the
request flows from server to server without involving the
client every time. The result is a much improved commu-
nication pattern, with fewer communication hops, lower
end-to-end latency, and often lower bandwidth consump-
tion. In Figure 1 right, we see how an RPC chain re-
duces the number of inter-site crossings to 4. The ex-
ample in this figure is representative of a web mail ap-
plication, where host A is a web server that retrieves a
message from an email server B, then retrieves an as-
sociated calendar entry from a calendar service C, and
finally retrieves relevant ads from an ad server D.

The key idea of RPC chains is to embed the chaining
logic as part of the RPC call. This logic can be a generic
function, constrained by some simple isolation mecha-
nisms. RPC chains have three important features:

• (1) Server modularity. What made RPC’s so success-
ful is the clean decoupling of server code, which al-

A

B C D

E F

A

B C D

E F

site 1

site 2

site 3

site 1

site 2

site 3

Figure 1: (Left) Standard RPCs. (Right) RPC chain.

lows servers to be developed independently of each
other and the client. RPC chains preserve this at-
tribute, even allowing existing legacy RPC’s to be part
of a chain through simple wrappers.

• (2) Chain composability. If a server in the chain itself
wishes to call another server, this nested call can be
simply added to the chain in flux. In Figure 1, when
client A starts the chain, it intends to call only servers
B, C, and D. But server B wants to call servers E
and F , and so it adds them to the chain.

• (3) Chain dynamicity. The services that a host calls
need not be defined a priori; they can vary dynami-
cally during execution. In the left figure, the fact that
client A calls servers C and D need not be known
before A calls server B; it can depend on the result
returned by B. For example, an error condition may
cause a chain to end immediately instead of continu-
ing on to the next server.

We demonstrate RPC chains through a storage and a
web application. For the storage application, we show
how a storage server can be enabled to use RPC chains,
and we give a simple use in which a client can copy data
between servers without having to handle the data itself.
This speeds up the copying and saves significant band-
width. For the web application, we implement a simple
web mail service that uses chains to reduce the overheads
of an ad server.

The paper is organized as follows. We explain the set-
ting for RPC chains in Section 2. Section 3 covers the
design of RPC chains and Section 4 covers applications.
We evaluate RPC chains in Section 5, and we explain
their limitations in Section 6. A discussion follows in
Section 7. We discuss related work in Section 8 and we
conclude the paper in Section 9.

2 Setting

We consider enterprise systems that span geographically-
diverse sites, where each site is a local area network.
Sites are connected to each other through thinner and

slower wide area links. Wide-area links can be made
faster by improving the underlying network, and lots of
progress has been made here, but this progress is hin-
dered by economic barriers (e.g., legacy infrastructure),
technological obstacles (e.g., switching speeds), and fun-
damental physical limitations (e.g., speed of light). Thus,
the large discrepancy between the performance of local
and wide-area links will continue.

Unlike the Internet as a whole, enterprise systems op-
erate in a trusted environment with a single adminis-
trative domain and experience little churn. These sys-
tems may contain a wide range of services, often de-
veloped by many different teams, including general ser-
vices for storage, database management, authentication,
and directories, as well as application-specific services,
such as email spam detection, address book manage-
ment, and advertising. These services are often accessed
using RPC’s, which we broadly define as a mechanism in
which a client sends a request to a server and the server
sends back a reply. This definition includes many types
of client-server interactions, such as the interactions in
CORBA, COM, REST, SOAP, etc.

In enterprise environments, application developers are
not malicious though some level of isolation is desirable
so that a problem in one application or service does not
affect others.

3 Design

We now explain the design of RPC chains, starting with
the basic mechanism for chaining RPC’s in Section 3.1.
The code that chains successive RPC’s is stored in a
repository, explained in Section 3.2. In Section 3.3, we
cover the state that is needed during the chain execution.
We then discuss composition of chains in Section 3.4,
legacy servers in Section 3.5, isolation in Section 3.6,
debugging in Section 3.7, exceptions in Section 3.8, fail-
ures in Section 3.9, and chain splitting in Section 3.10.

3.1 Main mechanism

Servers provide services in the form of service functions,
which is the general term we use for remote procedures,
remote methods, or any other processing units at servers.
An RPC chain calls a sequence of service functions, pos-
sibly at different servers. Service functions are connected
together via chaining functions, which specify the next
service function to execute in a chain (see Figure 2 top).
Chaining functions are provided by the client and exe-
cuted at the server. They can be arbitrary C# methods
with the restriction that they be stand-alone code, that
is, code which does not refer to non-local variables and
functions, so that they can be compiled by themselves.

// service function
object sf(object parmlist)
// parmlist: parameter list

// chaining function
nexthop cf(object state, object result)
// state: from client or earlier parts of chain
// result: from last preceding service function
// returns next chain hop:
// (server, sf name, parmlist,
// cf name, state)

void start chain(machine t server,
string sf name, object parmlist,
string cf name, object state)

Figure 2: (Top) Signature of a service function (sf) and
chaining function (cf). (Bottom) Signature of function
that launches an RPC chain.

client-specific
code

RPCC
library

network

C
L

IE
N

T
 H

O
S

T

server-specific
code

RPCC
library

network

S
E

R
V

E
R

 H
O

S
T

1

2

3

cache

cf1 cf2 ...

sf1 sf2

4

5

6

7

cf1 cf2 ...

Figure 3: Execution of an RPC chain (see explanatory
text in Section 3.1). RPCC stands for RPC chain.

We chose this general form of chaining for two rea-
sons. First, we want to allow the chain to unfold dynam-
ically, so that the choice of next hop depends what hap-
pens earlier in the chain. This is useful because the struc-
ture of a chain is often not known a priori. Second, we
wanted to support servers modularity: services and client
applications are often developed independently. Thus, a
server may not produce output that is immediately ready
for another server, in the way intended by the client’s
application. One may need to convert formats, reorder
parameters, combine them, or even combine the outputs
from several servers in the chain. For example, an NFS
server does not output data in the format expected by a
SQL server: one needs glue that will convert the output,
choose the tables, and add the appropriate SQL wrapper,
according to application needs. Chaining functions pro-
vide this glue. We initially considered a simpler alterna-
tive to chaining functions, in which a client just provides
a static list of servers to call, but this design does not ad-
dress the issues above. We also note that it is easy to
translate a static server list into the appropriate chaining
functions (one could even write a programmer tool that
automatically does that), so our design includes static
lists as a special case.

Figure 3 shows how an RPC chain executes. (1) A
client calls our RPCC (RPC chain) library, specifying a
server, a reference to a service function sf1 at that server,
its parameters, and a chaining function cf1. (2) This in-
formation is then sent to the chosen server. (3) The server
executes service function sf1, which (4) returns a result.
(5) This result is passed to the chaining function cf1,
which then (6) returns the next server, service function,
and chaining function, and (7) the chain continues.

For example, suppose client A wants to call service
functions sfB , sfC , sfD at servers B, C, and D, in this or-
der. To do so, the client specifies a reference to sfB and
a chaining function cf1. cf1 will call sfC at server C with
a chaining function cf2, which in turn will call sfD at
server D with a chaining function cf3, which returns the
final result to client A.

3.2 Chaining function repository
Chaining functions are provided by clients but executed
at servers. To save bandwidth, in our implementation the
client does not send the actual code to the server. Rather,
the client uploads the code to a repository, and sends a
reference to the server; the server downloads the code
from the repository and caches it for subsequent use. The
repository stores chaining functions in source code for-
mat, and servers compile the code at runtime using the
reflection capabilities of .NET/C# (Java has similar ca-
pabilities).

We store source code because it introduces fewer de-
pendencies, is more robust (binary formats change more
frequently), and simplifies debugging. Because the cost
of runtime compilation can be significant (≈50 ms, see
Section 5.2.1), servers cache the compiled code, not the
source code, to avoid repeated compilations.

As an optimization, clients can transmit the full source
code of chaining functions with the RPC chain, eliminat-
ing the need to contact the repository. This is efficient
when chaining functions are small, but our present im-
plementation does not support this optimization.

3.3 Parameters and state
A chaining function is client logic that may depend on
information such as run-time variables, tables, or other
state from the client or earlier parts of the chain. This
state needs to be passed along the chain, and ideally it
should be small, otherwise its transmission cost can out-
weigh the benefits of an RPC chain (see Section 5.2.2).
We represent the state as a set of name-value pairs, which
is passed as a parameter to the chaining function (see Fig-
ure 2).

The output of each service function is also passed as
a parameter to the subsequent chaining function. For ex-

A

B C D

E F

A

B C D

E F

chain 1
I

II
sub-

chain 2

composed
chain

Figure 4: Composition of nested chains. (Left) The main
chain 1 and a sub-chain 2. (Right) Result and manner of
composing chains. (I) B starts a sub-chain, causing the
RPCC library to push the B→C chaining function and
its state parameter into a stack. (II) Chaining function
at F returns an indication that the chain ended and the
result that B is supposed to produce. This causes the
RPCC library to pop from the stack, obtaining the B→C
chaining function and its state parameter. It then calls
this chaining function with the result and state. The chain
now continues at C.

ample, in our storage copy application (Section 4.1), the
first service function reads a file, and the chaining func-
tion uses the result as input to the next service function,
which writes to a file on a different server. In our email
application, a service function reads an email message,
and the chaining function adds the message to the state of
the next chaining function, so that the message is passed
along the chain back to the chain originator (a mail web
server).

3.4 Nesting and composition
RPC chains can be nested: a service function in a chain
may itself start a sub-chain. For example, the main chain
could call a storage service, which then needs to call a
replica. We implement nesting so that a nested chain can
be adjoined to an existing chain, as shown in Figure 4.
Note the difference between starting a chain going from
B to E, and moving to the next host in a chain going from
C to D: the former occurs when the service function at
B starts a new chain, while the latter occurs when the
chaining function at C calls the next node in the chain.
This distinction is important because the service function
at B represents a native procedure at the service, while a
chaining function at C represents logic coming from A.
At E, the chaining function that calls F represents logic
coming from B.

To compose a chain with its sub-chain, the chaining
function of the parent chain needs to be invoked when
a sub-chain ends (to continue the parent chain). Ac-
cordingly, when a host starts a sub-chain, the RPCC li-

brary saves the chaining function and its state param-
eter, and passes them along the sub-chain. The sub-
chain ends when its chaining function returns null in
nexthop.server, and a result in nexthop.state
(this is the result that the host originating the sub-chain
must produce for the parent chain). When that happens,
the RPCC library calls the saved chaining function with
the saved state and nexthop.state. Note that a chain
and a sub-chain need not be aware of each other for com-
position.

To allow multiple levels of nesting, we use a chain
stack that stores the saved chaining function and its state
for each level of composition. The stack is popped as
each sub-chain ends.

3.5 Handling legacy RPC services
RPC chains support legacy services that have standard
RPC interfaces via a simple wrapper module, installed
at the legacy RPC server, which includes the RPCC li-
brary and exposes the legacy remote procedures as ser-
vice functions.

Each service function passes requests and responses
to and from the corresponding legacy remote procedure.
Because the service function calls the legacy remote pro-
cedure locally through the RPC’s standard network inter-
face (e.g., TCP), the legacy server will see all requests as
coming from the local machine, and this can affect net-
work address-based server access control policies. This
is not a problem if access control is based on internal
RPC authenticators, such as signatures or tokens, which
can be passed on by the wrapper.

One solution is to re-implement the access con-
trol mechanism at the wrapper, but this is application-
specific. A better solution is for the wrapper to fake the
network address of its requests and capture the remote
procedure’s output before it is placed on the network.

3.6 Isolation
Chaining functions are pieces of client code running at
servers. Even though clients are trustworthy in the en-
vironment we consider, they are still prone to buffer
overruns, crashes, and other problems. Thus, chain-
ing functions are sandboxed to provide isolation, so that
client code cannot crash or otherwise adversely affect the
server on which it runs.

We need two types of isolation: (1) restricting ac-
cess to sensitive functions, such as file and network I/O
and privileged operating system calls, and (2) restricting
excessive consumption of resources, namely CPU and
memory.

We achieve (1) through direct support by .NET/C# of
access restrictions to file I/O, system and environment

variables, registry, clipboard, sockets, and other sensi-
tive functions (Java has similar capabilities). This is ac-
complished by placing descriptive annotations, called at-
tributes, in the source code of chaining functions when
they are compiled at run-time.

We achieve (2) by monitoring CPU and memory uti-
lization and checking that they are within preset val-
ues. The appropriate values are a matter of policy at
the server, but for the short-lived type of executions that
we target with RPC chains, chaining functions should
consume at most a few CPU seconds and hundreds of
megabytes of memory, even in the most extreme cases.

If a chaining function violates restrictions on access or
resource consumption, an RPC chain exception is thrown
according to the mechanism in Section 3.8.

Another way to isolate chaining functions is to use a
chaining proxy (Section 7.3).

3.7 Debugging and profiling
A very useful debugging tool for traditional applications
is “printf”, which allows an application to display mes-
sages on the console. We provide an analogous facil-
ity for RPC chain applications: a virtual console, where
nodes in the chain can log debugging information. The
contents of the virtual console are sent with the chain,
and eventually reach the client, which can then dump the
contents to a real console or file. The virtual console can
also be used to gather profiling information for each step
in the chain and aggregated at the client.

Even with “printf”, debugging RPC chains can be
hard, because it involves distributed execution over mul-
tiple machines. We can reduce this to the simpler prob-
lem of debugging RPC-based code by running RPC
chains in a special interactive mode. The key observa-
tion is that chaining functions are portable code that can
be executed at any machine. In interactive mode, chain-
ing functions always execute at the client instead of the
servers. To accomplish this, after each service function
completes, the RPCC library sends back its result to the
client, which then applies the chaining function and con-
tinues the chain from there. A chain executed in inter-
active mode looks like a series of RPC calls. Thus, by
running the client in an interactive debugger, the devel-
oper can control the execution of the chain and inspect
the outputs of both service and chaining functions at each
step.

3.8 Exceptions
An RPC chain may encounter exceptional conditions
while it is executing: (1) the next server in the chain
can be down, (2) the chaining function repository can be
down, or (3) the state passed to the chaining function can

be missing vital information due to a bug. All of these
will result in an exception, either at the RPCC library in
cases (1) and (2), or at a chaining function in case (3).
(Service functions do not throw exceptions; they simply
return an error to the caller.)

Who should handle such exceptions? One possibility
is to handle them locally, by having the client send ex-
ception handling code as part of the chain. Doing this re-
quires sending all the state that the handling code needs,
which complicates the application design. Instead, we
choose a less efficient but simpler alternative (since ex-
ceptions are the rare case). We simply propagate excep-
tions back to the client that started the chain. The client
receives the exception name and parameters, as well as
the path of hosts that the chain has traversed thus far. (If
the client crashes, the exception becomes moot and is ig-
nored.)

In the case of nested chains, the exception propagates
first to the host that started the current sub-chain. If that
host does not catch the exception, it continues propagat-
ing to the host that started the parent chain, until it gets
to the client. For example, in Figure 4 right, if E throws
an exception (say, because it could not contact F), the
exception goes to B, the node that created the sub-chain.
This is a natural choice because B understands the logic
of the sub-chain that it created, and so it may know how
to recover from the exception. If B does not catch the
exception, it is propagated to A.

3.9 Broken chains

The crash of a host while executing an RPC chain results
in a broken chain. In this section, we describe the broken
chain detection and recovery mechanisms.

Detection. We detect a broken chain using a simple
end-to-end timeout mechanism at the client called chain
heartbeats: a chain periodically sends an alive message
to the client that created it, say every 3 seconds, and the
client uses a conservative timeout of 6 seconds. If there
are sub-chains, only the top-level creator gets the heart-
beats. Heartbeats carry a unique chain identifier, a pair
consisting of the client name and a timestamp, so that the
client knows to which chain it refers.

We achieve the periodic sending through a time-to-
heartbeat timer, which is sent with the chain, and it is
decremented by each node according to its processing
time, until it reaches 0, the time to send a heartbeat. Syn-
chronized clocks are not needed to decrement the timer;
we only need clocks that run at approximately the same
speed as real time. Since we do not know link delays,
we assume a conservative value of 200 ms and decre-
ment the time-to-heartbeat timer by this amount for ev-
ery network hop. This assumption may be violated when
if there is congestion and dropped packets, resulting in

a premature timeout (false positive). However, the im-
pact of false positives is small because of our recovery
mechanism, explained next.

Recovery. To recover from a broken chain, the client
simply retransmits the request. Like standard remote
procedures, we make chains idempotent by including a
chain-id with each chain, and briefly caching the results
of service functions and routing functions at each server.
If a server sees the same chain-id, it uses the cached re-
sults for the service and routing functions. The chain
continues in this fashion up to the point where it was
previously broken, where an exception is thrown if the
“next” host is still down. Alternatively, a fail-over mech-
anism that calls a backup server can be implemented by
using logical server names which are mapped to a backup
when a fail-over is needed. This is similar to the mecha-
nisms typically used to fail-over standard RPC’s.

Upon a second timeout, a client executes the RPC
chain in interactive mode (as in Section 3.7), to deter-
mine exactly which node the chain stopped at, and re-
turns an error to the application.

3.10 Splitting chains

For performance reasons, it may be desirable to split
a chain to allow parallel execution. The decision to
split a chain should be made with consideration of the
added complexity, as concurrent computations are al-
ways harder to understand, design, debug, and maintain
compared to sequential computations. Although our ap-
plications do not use spliting chains, we now explain how
such chains can be implemented.

Split. We modify chaining functions so that they can
return more than one nexthop parameter. The RPCC li-
brary calls each nexthop concurrently, resulting in the
several split-chains. Each chain has an id comprised of
the id of the parent plus a counter. For example, if there
is a 3-way split of chain 74, the split-chains will have
ids 74.1, 74.2, and 74.3. Each of these split chains can in
turn be split again, and result in split-chains with increas-
ingly long ids. For example, if split-chain 74.1 splits
into two, the resultant split-chains will have ids 74.1.1
and 74.1.2. We note for future reference that each split-
chain knows how many siblings it has (this information
is passed on to the split-chains when the chain splits).

Broken split chains. Recall that we use an end-to-
end mechanism to handle broken chains (Section 3.9) via
a chain heartbeat. When a chain splits, we also split the
heartbeats: each split-chain sends its own heartbeat (with
the split-chain id) and the client will be content only if it
periodically sees the heartbeat from all the split-chains.
The heartbeat messages indicate the number of sibling
split-chains, so that the client knows how many to expect.

Merge. To merge split-chains, a merge host collects
the results of each split-chain and invokes a merge func-
tion to continue the chain. The merge host and function
are chosen when the chain splits (they are returned by the
chaining function causing the split). The merge host can
be any host; a good choice is the next host in the chain.
The merge host awaits outcomes from all split-chains be-
fore calling the merge function, which takes the vector of
results and returns nexthop, specifiying the next service
function and chaining function to call.

After split-chains complete (i.e., reach the merge
host), the parent chain will continue and resume its heart-
beats. However, split-chains do not necessarily complete
at the same time, so there may be a period from when the
first split-chain completes until the parent chain resumes.
During this period the merge host sends heartbeats on be-
half of the completed split-chains, so that the client does
not time out.

Crash garbage. When there are crashes in the sys-
tem, the merge host may end up with the outcome of
stale split-chains. This garbage can be discarded after
a timeout: as we mentioned, RPC chains are intended
for short-lived computations, so we propose a timeout of
a minute. Note that if a slow system causes a running
chain to be garbage collected, the client will recover af-
ter it times out.

4 Applications

To demonstrate RPC chains, we apply and evaluate them
in two important enterprise applications: a storage appli-
cation (Section 4.1) and a web application (Section 4.2).

4.1 Storage applications
Storage services generally provide two basic functions,
namely the storage and the retrieval of data based on
keys, file names, object id’s, or other identifiers. While
this generic interface is suitable for many applications,
its low-level nature sometimes forces bad data access
patterns on applications. For instance, suppose that a
client wishes to copy a large object from one storage
server to another. Typically, the client would need to read
the object from one server before writing it to the other,
causing all the data to go through the client. If the client
is separated from the storage servers by a high latency
or low bandwidth connection, this copying could be very
slow.

One solution is to modify the storage service on a case-
by-case basis for different operations and different set-
tings. For example, the Amazon S3 storage service re-
cently added a new copy operation to its interface [2],
so that an end user can efficiently copy her data be-
tween data centers in the US and Europe, without hav-

copy
chain

client storage 1

storage 2
backup of
storage 2

replication
chain

composed
chain

client storage 1

storage 2
backup of
storage 2

client storage 1

storage 2
backup of
storage 2

(a) (b) (c)

Figure 5: (a) Copying data from storage server 1 to a replicated storage server 2 without RPC chains. The client reads
from storage 1 and writes to storage 2; when this happens, storage 2 writes to a backup server. (b) Using a chain to
copy data and a chain to replicate data (composition disabled). (c) Composing the chains. The chains are not aware of
each other but the RPCC library can combine them.

ing to transfer data through her machine. Although such
application-specific interfaces can be beneficial, they are
specific to particular operations and do not mitigate ad-
verse communication patterns in other settings.

RPC chains provide a more general solution: they not
only enables the direct copying of data from one server
to another (through a simple chain that reads and then
writes), but also enables much broader uses. To demon-
strate this idea, we layered RPC chains over a legacy
NFS v3 storage server, as explained in Section 3.5. (We
could have used other types of storage, such as an object
store.) We then implemented the simple chain to copy
data without passing through the client.

We also show a more sophisticated application of
chains by implementing a primary-backup replication of
the storage server: when the primary receives a write re-
quest, it creates a chain to apply the request on a backup
server. Because replication is done through chains, it can
be composed with other chains. This is illustrated in Fig-
ure 5(b), which shows a setup with two storage servers,
the second of which is replicated, and a user who wants
to copy data from the first to the second server. Two
chains are created as a result of this request: a chain that
the client launches for copying, and another that the sec-
ond storage server launches for replication. The RPCC
library allows these two chains to be composed together,
as shown in Figure 5(c). We report on quantitative bene-
fits of our approach in Section 5.3.

4.2 Web mail application
Web applications are generally composed of multiple
tiers or services: there are front-end web servers, au-
thentication servers, application servers, and storage and
database servers. Some of these tiers, namely the web
servers and application servers, play the role of orches-
trating other tiers, and they tend to keep very little user
state of their own, other than soft session state. This is a
propitious setting for RPC chains, because performance
gains can be realized by optimizing the communication

client

front-end
web server

auth
server

mail
server

storage
server

ad
server

1

2 3

4 5

6

7a 7b

8

7

9

RPC
chain

web mail
application

user's
system

Figure 6: A simplified web mail server that uses RPC
chains. The solid line shows the login sequence followed
by retrieval of email and ads. The dashed line shows
how a system based on standard RPC’s would differ. The
chain is not used for the web client, since it is outside the
system. It is used in the communication between mail,
storage, and ad servers.

patterns of the various services. We demonstrate this
point with a sample application.

We consider a typical web mail application. There
are web servers that handle HTTP requests, authenti-
cation servers and address-book servers that are shared
with other applications, email storage servers that store
the users’ mail, and ad servers that are responsible for
displaying relevant ads. These services can be located
in multiple data centers, for several reasons: (1) no sin-
gle data center can host them all; (2) a service may have
been developed in a particular location and so it is hosted
close by; (3) for performance reasons, it may be desir-
able for some services to be located close to their users
(e.g., users created in Asia may have their mailbox stored
in Asia), though this is not always achievable (e.g., an
Asian user travels to the U.S. and his mailbox is still in
Asia); and (4) a service may need high availability or the
ability to withstand disasters.

We implemented a simple web mail service as shown
in Figure 6, to study the benefits of RPC chains in such
a setting. Our web mail system consists of a front-
end server that authenticates users by verifying their lo-
gins and passwords. Upon successful authentication, the
front-end server returns a cookie to the client along with
the name of an email server. The client then uses the
cookie to communicate with the email server to send and
receive email messages. Upon receiving a client request,
the email server first verifies the cookie, then calls the
back-end storage server to fetch the appropriate emails
for the user. Finally, the mail server sends the message
to an ad server so that relevant ads can be added to the
messages before they are returned to the client.

Note that the adding of ads to emails imposes a sig-
nificant overhead on performance. This is of particular
concern because one of the primary performance goals
of a webmail service is to minimize the response time
observed by clients. In addition, emails and ads cannot
be fetched in parallel, since relevant ads cannot be se-
lected without knowing the contents of the emails. It is
also difficult to pre-compute the relevant ads because the
relevance of ads may change over time.

Using RPC chains, we can mitigate some of the ad-
related overheads. Even though we can only fetch ads
after fetching the emails, we can eliminate one latency
hop from the communication path of the web mail appli-
cation, by creating a chain that causes emails to be sent
directly from the storage server to the ad server, without
having to go through to email server (as shown in step
7 of Figure 6). Once the ad server has appended the ap-
propriate ads to the emails, the emails can be sent to the
email server which then returns it to the client. In Sec-
tion 5.4, we evaluate the benefit of using RPC chains to
improve the communication pattern in this fashion.

5 Evaluation

We now evaluate RPC chains. We start with some mi-
crobenchmarks, in which we measure the overhead of
chaining functions and we compare RPC chains versus
standard RPC’s. We then evaluate the storage and web
applications to demonstrate the performance improve-
ments provided by RPC chains. The general question we
address is when are RPC chains advantageous and what
are the exact benefits.

5.1 Setup
In this section, we present the evaluation of our storage
and multi-tier web application. Our experimental set up
consists of ten machines in four geodistributed sites in
a corporate network that spans the globe. We had ma-
chines in 4 sites: (1) Mountain View, California, USA,

Source size Compile time Compiled size
(KB) (ms) (KB)
0.6 45.7 ± 0.3 0.4
5 47.1 ± 0.4 4.6
50 76.0 ± 0.3 15.9

Figure 7: Overhead for compiling chaining functions and
storing compiled code.

(2) Redmond, Washington, USA, (3) Cambridge, United
Kingdom, and (4) Beijing, China.

The ping round-trip times between these sites are as
follows, in ms:

Redmond Beijing Cambridge
Mt.View 32 180 240
Redmond 146 210
Beijing 354

The bandwidths of a TCP connection between pairs of
these sites are as follows, in MB/s:

Redmond Beijing Cambridge
Mt. View 6.3 2.1 1.4
Redmond 8.5 8.6
Beijing 2.4

5.2 Microbenchmarks
5.2.1 Overhead of chaining functions

In our first experiment, we evaluate the overhead im-
posed by chaining functions (pieces of client code) at
servers. We considered chaining functions of three sizes,
621 bytes, 5 KB, and 50 KB, corresponding to small,
medium, and large functions.

We first measured the time it takes to compile a func-
tion at run-time. The results are shown in the first two
columns of Figure 7, averaged over 10 runs (± refers to
standard error). We used a 3 Ghz Intel Core 2 Duo pro-
cessor running Windows Vista Enterprise SP1. The func-
tions were written in C# and compiled using Microsoft
Visual Studio 2008.

We also ran a linear regression with a much larger set
of points (17 sizes, with 10 runs each) and found that the
cost of compilation is 44.8 ms plus 1 ms for each 5000
bytes of source code. We see that there is a large initial
compilation cost of tens of milliseconds. That is not a
cost we want to pay every time we call the server in a
chain.

We also measured the size of the compiled code,
shown in the third column of Figure 7. We see that it is
very small (we initially thought it would be large, but this
is not the case). This allows the server to cache even tens

client

server 2server 1
rp

c1

rpc2
RPC Chain

Standard RPC

Figure 8: Executions used in the experiment of Sec-
tion 5.2.2.

of thousands of chaining functions in less than 50 MB,
which justifies our choice of doing so.

5.2.2 RPC chain versus standard RPC

In our next experiment, we compare the latency of an
RPC chain versus standard RPC. We used the smallest
non-trivial chain, which goes through two servers1, and
we compare it against a pair of consecutive RPC’s go-
ing to the two servers, as shown in Figure 8. To isolate
concerns, the service executed at each server is a no-op.

The figure makes it clear that the RPC chain incurs one
fewer hop than the pair of RPC calls. What is not shown
is that the RPC chain has potentially two overheads that
the pair of RPC calls do not: (1) if the client needs the
response from server 1 but server 2 does not, then the
data still needs to be relayed through server 2, and (2)
the client needs to send state for the chaining function to
execute at server 1. The first overhead can be avoided
through a simple extension to RPC chains to allow each
server in the chain to send some data to the client (Sec-
tion 7.1). (Our applications did not need this extension
because the entire response of a server is needed later in
the chain, so we did not implement it.)

We now consider the second overhead, and examine
the question of how much state the client can send while
still allowing the RPC chain to be faster than the pair
of RPC calls. We assume that the chaining function is
already cached at server 1, which is the common case for
frequent chains.

Back-of-the-envelope calculation. We start with a
simple calculation. Let S be the size of the state sent
by the client for the chaining function at server 1. Then,
in terms of total latency, the RPC chain saves one net-
work latency but incurs S/link bandwidth to send the
state. Thus, the RPC chain fares better as long as
link latency > S/link bandwidth, or

S < link latency× link bandwidth

For wide area links, the latency-bandwidth product
can easily be in the tens to hundreds of kilobytes or more.

Experiment. We executed the RPC chain and the pair
of RPC’s. The client was located in Redmond while the

1A chain that goes through only one server is the same as an RPC.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450

tim
e

(m
s)

state size (KB)

RPC Chain
Standard RPC

Figure 9: Execution time using an RPC chain versus
standard RPC to call 2 servers.

servers were in Mountain View. (Because both servers
were in the same site, this setup favors the RPC chain by
an additional network latency; we later explain the case
when the servers are far apart.)

Figure 9 shows the client end-to-end latency as a func-
tion of the state size (error bars show standard error). For
the standard RPC execution, state size does not affect to-
tal latency, since this state simply stays at the client. The
total latency was 75±1 ms. For the RPC chain, the la-
tency naturally increases with the state size. The point
at which both lines cross is at ≈150 KB. This is a fair
amount of state to send in many cases—definitely much
more than we needed in either of our applications.

If servers 1 and 2 were far apart, this would shift the
RPC chain line up by the corresponding extra latency.
For example, if the latency from server 1 to server 2 were
15 ms, the lines would cross at ≈100 KB (assuming the
distance from client to server 2 remains the same), which
is still a reasonable state size (and much more than we
needed in our applications).

5.3 Storage application
We now evaluate the use of RPC chains for the storage
application described in Section 4.1.

5.3.1 Copy performance

In our experiments, we copy data from one storage server
to another using two utilities: one that uses RPC chains,
called Chain copy, and another that uses standard RPC’s,
called RPC copy. Both utilities use pipelining, so that
the client has multiple outstanding requests on either
server. We also tried using the operating-system pro-
vided “copy” program, but it performed much worse than
either Chain copy or RPC copy, because it it reads and
writes one chunk of data at a time (no pipelining).

Figure 10: Comparison of RPC copy and Chain copy under various settings. (Left) Client and servers are in the same
site in Mt. View. (Center) Client is in Redmond and servers are in Mt. View. (Right) Client is in Beijing and servers
are in Mt. View.

In our first experiment, a single client copies a file of
variable size (25 KB, 100 KB, 250 KB, and 500 KB)
between two servers, and we measure the time it takes.
We vary the location of the client (Mt. View, Redmond,
Beijing) and fix the location of the servers in Mt. View.
In the setting where both the client and the servers were
in Mt. View, we placed them in two separate subnets,
where the link latency between the two was 2 ms and
TCP bandwidth was 10 MBytes/s.

Figure 10 shows the results. Each bar represents the
median of 40 repetitions of the experiment. As we can
see, Chain copy provide considerable benefits in every
case, compared to RPC copy. The benefits are greater
for larger files and longer distances between client and
servers. In a local setting, the copying time is reduced
by up to factor of 2, while in the longest-distance setting
(Beijing-Mt. View), the reduction is up to a factor of 5.

Another benefit of using Chain copy (not shown) is a
reduction by a factor of two in (a) the aggregate network
bandwidth consumption, and (b) the client bandwidth
consumption. This reduction is important because links
connecting data centers have limited bandwidth and/or
are priced based on the bandwidth used.

In our next experiment, we vary the number of clients
simultaneously copying files from one server to another,
and measure the resultant throughput and latency of the
system. This allows us to observe the behavior of the
system under varying load as well as measure the peak
throughput of the system. As before, the client machine
was located in Redmond and the servers were located in
Mt. View. We ran multiple client instances in parallel on
the client machine, each client copying 1000 files in suc-
cession, each file measuring 256 KB in size. We measure
the time that each client takes to complete copying 1000
files, and compute conservative throughput and latency
numbers based on the slowest client.

Figure 11: Throughput-latency of RPC copy and Chain
copy. Latency is the time to copy a 128 KB file, and
throughput is the rate at which files are copied.

Figure 11 shows the results of the experiment. For
both RPC copy and Chain copy, the average latency de-
creases as the amount of workload placed on the sys-
tem increases. Initially, the increase in workload also
results in an increase in the aggregate throughput of the
system, but once the system becomes saturated, any in-
crease in workload only increases latency without any
gain in throughput. Our results show that RPC copy
is able to sustain a peak throughput of 4.5 MB/s. This
peak throughput occurs when the network link between
the client and the servers, which had a bandwidth of as
6.3 MB/s, becomes saturated. Since Chain copy does not
require that the data blocks of the files being copied ac-
tually flow through the client, it was not subject to this
limitation and was thus able to achieve a higher peak
throughput of 10.4 MB/s. Rather than a network band-
width limitation, Chain copy’s throughput is limited by
the servers’ ability to keep up with requests.

Figure 12: Benefit of chain composition.

5.3.2 Benefit of chain composition

In this experiment, we measure the benefit of compos-
ing RPC chains. We use two chains: one for copying
from one server to another (as above) and the other for
primary-backup replication of the second server (as in
Figure 5). We compare two systems that use RPC chains;
one system uses chain composition to combine the two
chains, while the other has composition disabled. In the
experiment, one client copies one file of variable size
from the non-replicated server to the replicated server.
The client is in Cambridge, the source server is in Mt.
View, the primary of the destination server is in Mt.
View, and the backup of the destination server is in Red-
mond.

Figure 12 shows the result. As we can see, composing
the chain reduces the duration of the copy by 12%-20%,
with larger files having a greater reduction. Without
composition, the destination server has to handle both re-
quests from the source server as well as the replies from
the backup server. Composition reduces the load on the
destination server by allowing the backup server to send
replies directly to the client. In addition, composition
eliminates the unnecessary messages from the backup
server to the destination server, reducing the amount of
bandwidth consumption. A combination of these factors
allow composition to improve the overall performance of
the system. As file size increases, the setup cost becomes
relatively small compared to the actual cost of executing
the chains. This makes the impact of the more efficient
chain that resulted from composition more apparent.

5.4 Web mail application

We now describe the evaluation of the web mail applica-
tion presented in Section 4.2. In our experimental setup,
we placed the client in Mountain View, the mail server
and the authentication server in Redmond, and all other

Figure 13: RPC chain in web mail application.

servers in Beijing. This setup emulates the case where
a user from Asia travels to the US and wants to access
web mail services that are hosted in Asia. Since the web
mail provider may have servers deployed worldwide, the
user can be directed to a mail server and an authentica-
tion server (Redmond) that is close to his current location
(Mountain View). However, user-specific data is stored
on servers close to the user’s normal location (Beijing),
so the mail server has to fetch data from those machines.

Specifically, after receiving a cookie from the client
and verifying the client’s identity, the mail server must
fetch the client’s email from the storage server followed
by appropriate ads from the ad server, both of which are
located in Beijing. A traditional system implemented us-
ing RPC’s would have the mail server contact the storage
server, fetch the user’s emails, then contact the ad server
to retrieve relevant ads. However, in our setting, where
the mail server is located close to the client but far away
from the storage server and ad server, traversing the long
links between Redmond and Beijing four times would
be less than ideal. As described in Section 4.2, RPC
chains allow us to eliminate unnecessary network traver-
sals. In this case, our RPC chain-enabled mail server
sends emails directly from the storage server to the ad
server before returning the result to the mail server, halv-
ing the number of long link traversals.

We measure the client perceived latency of opening an
inbox and retrieving one email: the client first contacts
the front end authentication server to authenticate her-
self, then she sends a read request to the mail server to
retrieve a single email. We measure the time it takes for
the client to receive the email, which is appended with
an ad whose size is small relative to the size of the email.
We vary the size of the email that is fetched, and for each
size, we repeated the experiment 20 times.

As shown in Figure 13, RPC chains consistently re-
duces the client perceived latency of the web mail appli-
cation. As the size of the email increases, the latency
improvement from using RPC changes also increases.
Overall, we found that the use of RPC chains reduced
the latency of the web mail application by 40% to 58%
when compared to standard RPC’s.

We note that the significant performance gains of us-
ing RPC chains comes at a very low cost of implementa-
tion. For the webmail application, the effort involved in
enabling RPC chains was mainly in terms of implement-
ing chaining functions which totalled a mere 48 lines of
C# code. In general, a simple way for existing applica-
tions to benefit from RPC chains is to identify the critical
causal path of RPC requests, and replace that path with
an RPC chain. The effort is that of writing a single RPC
chain; in the worst case, one can do it from scratch. The
harder problem is finding the critical causal path, which
has been an active area of research (e.g., [1]).

6 Limitations

We now describe some limitations of RPC chains.
Chaining state cannot always be sent. RPC chains

are not appropriate if the chaining state is large or if it
cannot be determined when the client starts the chain.
For example, suppose that (1) A calls B using an RPC,
(2) A gets a reply, and (3) depending on the state of a
sensor or some immediate measurement at A, A then
calls C or D. It is not possible to use an RPC chain
A→B→(C or D), because the choice of going to C ver-
sus D must be made at A where the sensor is.

Programming with continuations. To use RPC
chains, developers need to make use of continuation-
style programming. This can be much harder than pro-
gramming using sequential code, because continuations
must explicitly keep track of all their state. Continuations
are notoriously hard to debug, because there is no simple
way to track the execution that led to a given state.

We note, however, that programming with continua-
tions is already tolerated in code that uses asynchronous
RPC’s and callbacks. Moreover, one could perhaps write
a tool that automatically produces continuations from se-
quential code, using techniques from the compiler litera-
ture (e.g., [3]).

Terminating chains. When an application terminates,
it is usually desirable to release its resources and halt all
its activities. However, if the application has outstanding
RPC chains, it is not easy to terminate them. This prob-
lem exists with traditional RPC’s as well (there is no easy
way to terminate a remote procedure), but it is worse with
RPC chains because the remote servers involved may not
be known.

RPC chains are designed for relatively short-lived ex-
ecutions, and for these uses, this problem is less of a con-
cern, because a chain soon terminates anyways. The only
exception is a buggy chain that runs forever. For such
chains, the RPCC library can impose a maximum chain
length, say 2000 hops, and throw an exception after that.

7 Extensions

We now discuss some extensions of RPC chains.

7.1 Intermediate chain results
If a client wants to receive some results from inter-
mediate servers of the chain, these results need to be
relayed through the chain. If the amount of data is
large, it can impose a significant overhead. We can
extend RPC chains to address this issue, by allowing
each server in the chain to directly return some data
to the client. This data is application-specific and is
returned by the chaining function. Thus, we add a
new field, client-response, to the nexthop re-
sult of a chaining function. The RPCC library sends
client-response to the client concurrently with
continuing the chain.

What happens under chain composition? In this case,
the “client” that gets client-response is the server
that created the sub-chain. The name of these creators, at
each level of composed chain, are kept in the chain stack
(Section 3.4).

7.2 Dealing with large chaining states
The chaining state is the state that the client sends along
the chain to execute the chaining functions. If this state
is large, this can incur a significant state overhead. Two
optimizations are possible to mitigate this cost.

Fall-back to standard RPC. As explained in Sec-
tion 3.7, we can execute a chain in interactive mode,
which causes the chain to go back to the client at ev-
ery step. This is effectively a fall-back to standard RPC,
causing all chaining functions to execute at the client,
which eliminates the overhead of sending the chaining
state, at the cost of extra network delays. We explored
this trade-off in Section 5.2.2. It is possible to have the
RPCC library gauge the size of the chaining state before
starting the chain, and if the state is larger than some
threshold, execute the chain in interactive mode. The
threshold can be chosen dynamically based on previous
executions of the same chain, in an adaptive manner. By
doing so, an RPC chain will always perform at least as
well as standard RPC’s, modulo the small computational
overhead of executing chaining functions and the time it
takes to adapt. However, in the applications we examined
in this paper, we did not need this adaptation because the
chaining state was always small.

Hiding latency. In our implementation, servers wait
to receive the chaining state before executing the next
service function in the chain. This waiting is not nec-
essary, because the service function depends only on its
parameters, not on the chaining state (the chaining state

is only needed for the chaining function, which executes
later). Therefore, a natural optimization is to start the ser-
vice function even as the chaining state is being received.
If the service function takes significant time to complete,
(e.g., it involves disk I/O or some lengthy computation),
this will mask part or all of the latency of transmitting
the chaining state.

7.3 Chaining proxy
As we said, chaining functions are portable code that do
not have to execute at the server. They can execute at a
designated chaining proxy machine, to avoid any over-
head at the server. Doing so incurs extra communication,
but if the chaining proxy is geographically close to the
server, this cost is small relative to that of a wide-area
hop. To choose the chaining proxy, we can use a simple
mapping from servers to nearby proxies configured by an
administrator.

8 Related work

Mobile agents. Mobile agents have been extensively
studied in the literature and many systems have been
built, including Telescript/Odyssey [20], Aglets [4],
D’Agents [9], and others (see e.g., [21, 10]). A mobile
agent is a process that can autonomously migrate itself
from host to host as it executes; migration involves mov-
ing the process’s current state to the new host and resum-
ing execution. The motivation for mobile agents include
(a) bringing processes closer to the resources they need in
a given stage of the computation, and (b) allowing clients
to disconnect from the network while an agent executes
on their behalf. RPC chains can be seen as a type of
streamlined mobile agent, whose purpose is just to exe-
cute a sequence of RPCs at various servers. Compared
to RPC chains, mobile agents are far more general and
ambitious (which possibly contributed to their eventual
demise): they have social abilities, being able to adjust
their behavior according to the host in which they are
currently executing; they can learn about execution envi-
ronments never envisioned by their creators; and they can
persist if the clients that created them disappear. Much
of the literature regarding mobile agents is about security
(how agents can survive malicious hosts, and how hosts
can protect themselves against malicious agents) and lan-
guage support for code mobility (how to write programs
that can transparently move to other machines). For RPC
chains, security is a smaller concern in the trusted data
center and enterprise environments that we consider, and
we are not concerned about transparent mobility.

Active Networks. Extensive work has been done on
Active Networks (see [19] for a survey), in which net-
work packets called capsules carry code that network

switches execute to route the packet. This provides a
general scheme for extending network protocols beyond
the existing deployed base, and allows for more dynamic
routing schemes. In contrast, RPC chains are targeted
at higher-level applications, and their main purpose is
to eliminate communication hops when a client needs to
call many services in succession.

Parallel computations. Systems and models for par-
allel computations include Cilk [6], MapReduce [7],
and Dryad [24]. Cilk is a C-like language for multi-
threaded programming in shared-memory multiproces-
sor systems. In Cilk, function calls can be spawned
as new threads, which can then be executed in par-
allel by other processors. Typical Cilk applications
are high-performance computing applications. In con-
trast, RPC chains are designed for loosely-coupled dis-
tributed systems, where nodes do not have a shared
memory and communication latency can be relatively
high. MapReduce and Dryad are programming mod-
els for data-parallel jobs, such as a data mining calcu-
lations, which process large amounts of data in batches.
A user chooses the specification of the job, and a central
job manager/scheduler maps the job onto physical nodes
for execution. In contrast, RPC chains are intended for
short-lived remote executions in an environment with
many heterogeneous services. Chains are created inde-
pendently by clients and there is no central scheduler.

Function shipping. Function shipping is the general
technique of sending computation to the data rather than
bringing the data to the computation. It is used in some
systems where the cost of moving data is large compared
to the cost of moving computation. For example, Dia-
mond [11] is a storage architecture in which applications
download searchlet code to disk to perform efficient fil-
tering of large data sets locally, thereby improving effi-
ciency. Database stored procedures are also an instance
of function shipping. RPC chains use function shipping
to send chaining logic.

Distributed continuations. RPC chains utilizes a
programming capability that has been named continua-
tions [18], the shifting of program control and transfer
of current state from one part of a program to another.
Extending this to distributed continuations is a natural
step, allowing a continuation to shift program control
from one processor to another. Several works in the par-
allel programming world give high level programming
continuation constructs and specify their behavior for-
mally, e.g., [13, 12]. By comparison, RPC chains lever-
age the well understood semantics of RPC calls to pro-
vide a generic language independent tool that can support
any RPC server.

Distributed enactment of continuations was exploited
in several areas prior to our work. In the web, the use of
continuations emerged to cope with the stateless nature

of HTTP. Many commercial web servers use continua-
tions to store conversational state with users. Distributed
continuations have also been used for dynamic load bal-
ancing within a cluster of web servers. In these systems,
“distribution” is limited to clients and a specific set of
servers, and continuation chains are limited to a single
continuation. In comparison, RPC chains support more
complex chaining structures.

Distributed workflows, e.g., [5, 23] also make use of
distributed continuations. These works take as input a
distributed workflow description, and enact each work-
flow component at the appropriate destination site in a
decentralized fashion so that control does not return to
the invoking origin. RPC chains use a similar mechanism
in a different context. We are concerned with stream-
lined execution of short-lived chains rather than lengthy
workflows, and so study performance issues and propose
important optimizations for deployment in real-life net-
worked services.

DHT’s. Distributed Hash Tables (e.g., Chord [17],
CAN [15], Pastry [16], Tapestry [25]) have a lookup pro-
tocol, for finding the host responsible for a given key.
Such protocols generally need to contact several hosts
successively, and this can be done in two ways. In an
interactive lookup protocol, the host that initiates the
lookup operation issues RPC’s to each host in succes-
sion. A recursive lookup protocol [8] works like a rout-
ing protocol: the host that initiates the operation contacts
the first host in the sequence, which in turn contacts the
next one, and so forth; when a host finds the key, it con-
tacts the request initiator directly. This is a special type of
chain, tailored for a specific system in which all servers
implement the same DHT service and the chaining logic
is built into servers. In contrast, RPC chains are more
general, being designed to chain together heterogeneous
services that may not be aware of each other.

RPC’s. SOAP [22] is a protocol that supports RPC’s
using XML over HTTP. It has the notion of intermedi-
aries that can process a SOAP message (RPC) before it
reaches the final recipient. However, there is no client
logic that routes and transform messages, and the notion
of a pre-specified distinguished final recipient is inher-
ent to SOAP. Typical uses for intermediary nodes include
blocking messages (firewall), buffering and batching of
messages, tracing, and encrypting/decrypting messages
as it passes through an untrusted domain.

9 Conclusion

We proposed RPC chain, a simple but powerful primitive
that combines multiple RPC invocations into a chain, in
order to optimize the communication pattern of applica-
tions that use many composite services, possibly devel-
oped independently of each other. With RPC chains, ap-

plications can eliminate network hops, which in a geodis-
tributed setting translates to considerably smaller end-to-
end latencies. In addition, clients can save bandwidth be-
cause they are not forced to receive data they do not need.
We demonstrated the use of RPC chains for a storage and
a web application, and we think RPC chains could have
many more applications beyond those.

Acknowledgements. We thank Rama Subramanian
and the anonymous reviewers for helpful comments.

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J., REYNOLDS,

P., AND MUTHITACHAROEN, A. Performance debugging for
distributed systems of black boxes. In ACM Symposium on Op-
erating Systems Principles (Oct. 2003), pp. 74–89.

[2] AMAZON.COM, INC. Amazon simple storage service: Copy pro-
posal. http://doc.s3.amazonaws.com/proposals/
copy.html.

[3] APPEL, A. W. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[4] ARIDOR, Y., AND OSHIMA, M. Infrastructure for mobile agents:
Requirements and design. In Workshop on Mobile Agents (Sept.
1998), pp. 38–49.

[5] BARBARÁ, D., MEHROTRA, S., AND RUSINKIEWICZ, M.
INCAs: Managing dynamic workflows in distributed environ-
ments. Journal of Database Management, Special Issues on Mul-
tidatabases 7, 1 (Winter 1996), 5–15.

[6] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEIS-
ERSON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: An
efficient multithreaded runtime system. Journal of Parallel and
Distributed Computing 37, 1 (Aug. 1996), 55–69.

[7] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In Symposium on Operating System
Design and Implementation (Dec. 2004), pp. 137–150.

[8] FREEDMAN, M. J., LAKSHMINARAYANAN, K., RHEA, S., AND
STOICA, I. Non-transitive connectivity and DHTs. In Conference
on Real, Large Distributed Systems (Dec. 2005), pp. 55–60.

[9] GRAY, R., KOTZ, D., NOG, S., RUS, D., AND CYBENKO, G.
Mobile agents: The next generation in distributed computing. In
Aizu International Symposium on Parallel Algorithms and Archi-
tectures Synthesis (Mar. 1997), pp. 8–24.

[10] HARRISON, C. G., CHESS, D. M., AND KERSHENBAUM, A.
Mobile Agents: Are they a good idea? In International Workshop
on Mobile Object Systems (July 1996), pp. 25–47.

[11] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R.,
SATYANARAYANAN, M., GANGER, G. R., RIEDEL, E., AND
AILAMAKI, A. Diamond: A Storage Architecture for Early Dis-
card in Interactive Search. In USENIX Conference on File and
Storage Technologies (Mar. 2004), pp. 73–86.

[12] JAGANNATHAN, S. Continuation-based transformations for co-
ordination languages. Theoretical Computer Science 240, 1 (June
2000), 117–146.

[13] MOREAU, L. The PCKS-machine: An abstract machine for
sound evaluation of parallel functional programs with first-class
continuations. In European Symposium on Programming (Apr.
1994), pp. 424–438.

[14] NIELSEN, J. Designing Web Usability: The Practice of Simplic-
ity. New Riders Publishing, Indianapolis, 1999.

[15] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R. M.,
AND SHENKER, S. A scalable content-addressable network.
In Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (Aug. 2001), pp. 161–
172.

[16] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. In International Conference on Distributed Systems
Platforms (Nov. 2001), pp. 329–350.

[17] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for internet applications. In Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication (Aug. 2001), pp. 149–160.

[18] STRACHEY, C., AND WADSWORTH, C. P. Continuations: A
mathematical semantics for handling full jumps. Higher-Order
and Symbolic Computation 13, 1-2 (Apr. 2000), 135–152.

[19] TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W. D.,
WETHERALL, D. J., AND MINDEN, G. J. A survey of active
network research. IEEE Communications Magazine 35, 1 (Jan.
1997), 80–86.

[20] WHITE, J. Telescript technology: The foundation for the elec-
tronic marketplace, 1994. Unpublished manuscript. White paper,
General Magic, Inc.

[21] WHITE, J. Mobile agents white paper, 1996. Unpublished
manuscript. Available at http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.55.7931.

[22] WORLD WIDE WEB CONSORTIUM. SOAP version 1.2. http:
//www.w3.org.

[23] YU, W., AND YANG, J. Continuation-passing enactment of dis-
tributed recoverable workflows. In ACM Symposium on Applied
Computing (Mar. 2007), pp. 475–481.

[24] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
Ú., GUNDA, P. K., AND CURREY, J. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a high-
level language. In Symposium on Operating System Design and
Implementation (Dec. 2008), pp. 1–14.

[25] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C.,
JOSEPH, A. D., AND KUBIATOWICZ, J. D. Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications 22, 1 (2004), 41–53.

