
computer 92

WEB TECHNOLOGIES

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE

Edge Mashups for
Service-Oriented
Collaboration

N etworked collabora-
tion tools may be the
key to slashing health-
care costs, improving

productivity, facilitating disaster
response, and enabling a more nimble
information-aware military. Better
applications could even make pos-
sible a world of professional dialog
and collaboration without travel.

We term such tools service-oriented
collaboration (SOC) applications. SOC
systems are more and more appeal-
ing because of the increasingly rich
body of service-hosted content, such
as electronic medical health records,
data in various kinds of databases,
image repositories, patient records,
and weather prediction systems. They
may also tap into sensors, medical
devices, video cameras, microphones,
and other real-world data sources.

Many kinds of applications are con-
structed as mashups, in which data
from various sources is combined in
a single multilayered interactive GUI,
and it may seem natural to use mash-
ups to build SOC applications as well.
The collaborating team could pull the
various data sources it is using into a
single interactive application, which
would be shared among the users.

But building SOC applications isn’t
going to be as simple as many believe.
Media streams generate high, bursty
update rates, and many require low
latencies and tight synchronization
between collaborating users. Some
also require client-to-client security
and can’t “trust” a Web services plat-
form or any other third party. For
example, in many medical scenarios,
only the collaborating physicians are
permitted to see the communication
that occurs; military applications may
involve classified information.

These requirements represent seri-
ous issues because in today’s Web
services standards, client-to-client
data must be relayed via a hosted ser-
vice—typically, an enterprise service
bus (ESB) using a publish-subscribe
model, RSS feeds, a message-queuing
(MQ) middleware product like the Java
Messaging Service (JMS), and so on.
Relaying introduces delay and scal-
ability issues. Moreover, Web services
security models focus on client-to-
server security. If a server can’t be
trusted, Web services security offers
no help.

Something new is needed: a way
to create SOC applications that seam-
lessly integrate hosted content with

the kinds of peer-to-peer (P2P) pro-
tocols capable of responding to these
needs. Cornell’s Live Distributed
Objects platform solves this prob-
lem, enabling end users to construct
mashups that live directly on client
platforms and can be operated even
without connectivity to the Inter-
net. These edge mashups enable a
powerful style of Web-services-sup-
ported collaboration (K. Ostrowski,
“Programming with Live Distributed
Objects,” Proc. 22nd European Conf.
Object-Oriented Programming, LNCS
5142, Springer-Verlag, 2008, pp. 463-
489).

Today’s Web
services approach

Let’s look more closely at the way
today’s developers build mashups to
support SOC applications. SOC sys-
tems focus on interactive scenarios,
hence the client will often be running
a browser or some other form of GUI.
In such cases, it is becoming common
for service platforms to export a
minibrowser component. This is an
interactive webpage with embedded
script, commonly developed using
JavaScript/Ajax, Flash, Silverlight, or
a similar technology, and optimized

 Ken Birman, Jared Cantwell, Daniel
 Freedman, Qi Huang, Petko Nikolov, and
 Krzysztof Ostrowski, Cornell University

The Live Distributed Objects platform makes it possible to
combine hosted content with P2P protocols in a single object-
oriented framework.

93mAY 2009

for some type of content, for example
interactive maps from Google Earth
or Virtual Earth.

The embedded script is often
tightly integrated with back-end ser-
vices in the data center—services that
may not even be directly accessible
at a programmatic level. As a result,
the only way that new content can be
“mashed” into the data available from
the service is to have the data center
itself compute the mashup.

For example, Google’s minibrows-
ers expose composite images that
draw on multiple data sources, pre-
sented to the client as selectable
layers. If the client pans or zooms the
minibrowser window, the data associ-
ated with the mashup is also zoomed
or panned. Google also offers tools
to help end users define new kinds
of mashups. When these are used,
however, the data is combined by
Google’s platform, not on the client
system. This point will turn out to be
important: A mashup built this way
won’t be functional unless a connec-
tion to Google is available, and won’t
be able to incorporate protocols
that run directly between the client
machines.

Developers could incorporate
these kinds of content and protocols
in a second way: by running multiple
minibrowser windows in a single
webpage. However, they won’t talk
to one another. Another possibil-
ity is to access the data centers at a
programmatic level. This, though, is
hard because many of the features
accessible through minibrowsers are
difficult to access, or not available at
all, via programmatic APIs.

To illustrate this point, consider
Figure 1a, which shows a SOC appli-
cation constructed using a standard
Web services approach, pulling
content from the Yahoo maps and
weather Web services and assem-
bling it into a webpage as a set of
tiled frames. Each frame contains a
minibrowser with its own interactive
controls and comes from a single con-
tent source. To highlight one of the
many restrictions: If the user pans or
zooms in the map frame, the associ-
ated map will shift or zoom, but the
other frames remain as they were—
the frames are not synchronized.

Implicit in the example is a second,
and perhaps even more serious, issue.
We noted that SOC applications will

need a snappy response, even with
substantial numbers of collaborat-
ing users. In today’s Web services
architecture, when one client wants
to send an event to some set of other
clients, the event needs to be relayed
through an ESB, a catch-all term that
covers everything from a JMS applica-
tion to a publish-subscribe product to
an RSS feed. The problem is perfor-
mance and scalability. Bouncing data
off a remote server can be slow. If the
server is inaccessible, clients won’t be
able to collaborate even if they have a
direct connection to one another.

Additionally, today’s ESB solutions
scale poorly as users add clients. This
is evident in Figure 2. The ESB prod-
ucts evaluated here can operate in
durable (logged) mode and nondurable
mode, but as we see here, not a single
product sustains high throughput as
the number of clients scales up.

Now consider Figure 1b. Here we
revisit our mashup application using
the Live Objects platform. Content
from different sources is overlaid
in the same window and synchro-
nized so that each reports data for
the same locations. We designed the
application to highlight the contribu-

Figure 1. Example service-oriented computing application using (a) a minibrowser-style mashup and (b) Live Distributed Objects.

(a) (b)

computer 94

WEB TECHNOLOGIES

tions of different sources, but there
are no frame boundaries: Elements
of this mashup—which can include
maps, 3D terrain features, images of
buildings or points of interest, icons
representing severe weather reports,
vehicles or individuals, and so
on—coexist as layers within which
the end user can easily navigate.

Data can come from many kinds
of data centers. Our example overlays
weather from Google, terrain maps
from Microsoft’s Virtual Earth, census
data from the US Census Bureau, and
flight information from the US Federal
Aviation Administration. Moreover,
the mashup is constructed directly on
the platform of the users who share
the SOC application: These are edge

mashups, as distinct from Google-
style of hosted mashups.

Importantly, the Live Objects plat-
form treats every kind of content as
an object. Thus, the example seen in
Figure 1b isn’t limited to hosted con-
tent: It includes components that use
direct P2P communication protocols.
Our platform can support any sort
of protocol, including client-server,
but also overlay multicast, P2P rep-
lication, or even custom protocols
designed by the content provider.
This makes it possible to achieve
extremely high levels of throughput
and latency. It also enhances security:
The data-center server can’t “see” data
exchanged directly between peers,
and applications can exploit provably

secure protocols that create and share
cryptographic keys so that only the
end-point hosts can access them.

soc requiremenTs
To be successful, SOC platforms

will need to satisfy a number of what
might be termed “client-oriented”
requirements:

SOC systems should enable a non-•	
programmer to rapidly develop a
new collaborative application by
composing and customizing pre-
existing components.
They should make it possible •	
to overlay data from multiple
sources, potentially in different
formats, obtained using differ-
ent protocols and inconsistent
interfaces.
It should be possible to dynami-•	
cally customize the application
at runtime, for example by incor-
porating new data sources or
changing the way data is pre-
sented, during a mission, and
without disrupting system
operation.
It should be possible to accommo-•	
date new types of data sources,
new formats, or protocols that we
may not have anticipated at the
time the system was released.
Individual users might publish •	
data, and it might be necessary
for the users to exchange their
data without access to a central-
ized repository.
Data may be obtained using •	
different types of network pro-
tocols, and the type of physical
network or protocols may not
be known in advance; it should
be possible to rapidly compose
the application using whatever
communication infrastructure is
currently available.
Users may be mobile or temporar-•	
ily disconnected, infrastructure
may fail, and the network’s topol-
ogy and characteristics might
change over time. The system
should be easily reconfigurable.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
Fiorano

MQ
2008

Tibco
EMS

v4.4.0

Sonic
MQ
7.0

Active
MQ

4.1.0

Jboss
Messaging

1.4

Sun Java
MQ
4.1

 1 Subscriber
 10 Subscribers
 25 Subscribers
 50 Subscribers

Th
ro

ug
hp

ut
 (k

 m
sg

s/s
)

(a)

30

25

20

15

10

5

0
Fiorano

MQ
2008

Tibco
EMS

v4.4.0

Sonic
MQ
7.0

Active
MQ

4.1.0

Jboss
Messaging

1.4

Sun Java
MQ
4.1

 1 Subscriber
 10 Subscribers
 25 Subscribers
 50 Subscribers

Th
ro

ug
hp

ut
 (k

 m
sg

s/s
)

(b)

Figure 2. Throughput scalability of enterprise server bus solutions, as a function
of the number of subscribers, in (a) durable mode and (b) nondurable mode. Data
adapted from Fiorano Software Technologies, “JMS Performance Comparison:
Performance for Publish Subscribe Messaging,” white paper, Feb. 2008 (www.
capitalware.biz/dl/docs/fiorano_jms_performance_comparison.pdf).

95mAY 2009

When working with an application
constructed using the Live Objects
platform, the same functionality
would be represented as a mashup
of a component that fetches maps and
similar content with a second compo-
nent that provides the visualization
interface. The lower-level component
uses event-oriented interfaces. The
advantage is that it can also talk to
other components, not just the GUI.

Moreover, the Live Objects plat-
form can easily support applications
that would remain operational even
when connectivity to the Internet is
disrupted. For example, a SOC appli-
cation might include P2P protocols
with which rescue workers searching
a disaster site could coordinate their

actions. Such protocols are remark-
ably robust and can make progress
even if they have intermittent connec-
tivity and no access to Internet data
centers. In contrast, a solution con-
structed using a minibrowser would
only be useable so long as a connec-
tion back to the host site that provided
the minibrowser is available.

Live Objects applications can
dynamically recalculate the set of
“visible” objects, as a function of
location and orientation. Thus an
emergency responder could be shown
the avatars of others who are already
working at that site and participate
in conference-style or point-to-point
dialog with them.

It should be evident that the model
can support a variety of collabora-
tion and coordination paradigms,
including many that the traditional
Web services style of client can’t
offer. The ability to combine hosted
content with P2P content in a single
shared object-oriented paradigm

as files, over HTTP, or through other
means.

An end user creates a new SOC
application by selecting components
and combining them into a new
mashup, using drag-and-drop. Our
tools automatically combine refer-
ences for individual objects into an
XML mashup of references describing
a graph of objects and type-check the
graph to verify that the components
compose correctly. For example, a
3D visualization of an airplane may
need to be connected to a source
of GPS and other orientation data,
which in turn can only be used over
a data replication protocol with spe-
cific reliability, ordering, or security
properties.

When activated on a user’s
machine, an XML mashup yields a
graph of interconnected proxies. If
needed, an object proxy can initialize
itself by copying the state from some
active proxy (our platform assists with
this sort of state transfer). The object
proxies then become active (“live”),
for example, by relaying events from
sensors into a replication channel or
receiving events and reacting to them
(such as redisplaying an aircraft).

The Live Objects approach shares
certain similarities with the existing
Web development model, in the sense
that it uses hierarchical XML docu-
ments to define the content. On the
other hand, it departs from some of
the de facto stylistic standards that
have emerged. For example, earlier
we noted that if a developer pulls
a minibrowser from Google Earth,
that minibrowser will expect to
interact directly with the end user,
and includes embedded JavaScript
that handles such interactions.

Today’s Web services standards
are overly focused on the data-center
side of the story. Not only are per-
formance, scalability, and security
all serious concerns, but the trend
toward prebuilt minibrowsers with
sophisticated but black-box behavior
is making it increasingly more dif-
ficult to combine information from
multiple sources. SOC applications
aren’t at odds with Web services, but
they do need something new.

using Live objecTs
For soc

As Figure 1b shows, the Live
Objects platform solves these prob-
lems. Even a nonprogrammer can
build a new SOC application, share
it (perhaps via e-mail), and begin to
collaborate instantly. Moreover, per-
formance, scalability, and security
can all be addressed. The main steps
are as follows:

The developer starts by creating
or gaining access to a collection of
components. Each component is an
object that supports live functionality
and exposes event-based interfaces
by which it interacts with other com-
ponents. Examples include

components representing hosted •	
content,
sensors and actuators,•	
renderers that graphically depict •	
events,
replication protocols,•	
synchronization protocols,•	
folders containing sets of objects, •	
and
display interfaces that visualize •	
folders.

Individua l components and
mashups of components have two
representations. When inactive, a
component or a mashup is repre-
sented as an XML page, describing a
“recipe” for obtaining and parameter-
izing components that will serve as
layers of the composed mashup. We
call such an XML page a live object ref-
erence. References can be distributed

The Live Objects model can support a variety
of collaboration and coordination paradigms,
including many that the traditional Web services
style of client can’t offer.

computer 96

WEB TECHNOLOGIES

editor: Simon S.Y. Shim, Dept. of computer
engineering, San Jose State univ., San Jose, cA;
simon.shim@sjsu.edu

possible to combine hosted content
with P2P protocols in a single object-
oriented framework. This opens the
door to a wide range of exciting SOC
opportunities in settings that range
from healthcare to finance to disas-
ter response.

The Live Objects platform can
be downloaded, for free, at http://
liveobjects.cs.cornell.edu.

Ken Birman is the N. Rama Rao Pro-
fessor of Computer Science at Cornell
University and heads the Live Distrib-
uted Objects project. Contact him at
ken@cs.cornell.edu.

Jared Cantwell is an MEng degree can-
didate in the Department of Computer
Science at Cornell University. Contact
him at jared.cantwell@gmail.com.

Daniel Freedman is a postdoctoral
researcher in the Department of Com-
puter Science at Cornell University.
Contact him at dfreedman@cs.cornell.
edu.

Qi Huang is a visiting scientist at
Cornell University from the School
of Computer Science and Technology
at Huazhong University of Science
and Technology, China. Contact him
atqhuang@cs.cornell.edu.

Petko Nikolov is an MEng degree can-
didate in the Department of Computer
Science at Cornell University. Contact
him at pn42@cornell.edu.

Krzysztof Ostrowski is a postdoctoral
researcher in the Department of Com-
puter Science at Cornell University.
Contact him at krzys@cs.cornell.edu.

The authors thank Danny Dolev for
his many comments and suggestions.
This work was supported, in part,
by the NSF, the AFRL, the AFOSR,
Intel, and Cisco. Qi Huang is sup-
ported by the Chinese NSFC, grant
60731160630.

Also needed are standard ways to
express the properties of protocols.
Lacking standards, each protocol is
just a black box, and the platform
can’t determine when one can safely
be substituted for another. Given
standard ways of talking about the
guarantees and requirements of a
protocol, in a setting with good con-
nectivity, it might be possible to use
fast Internet multicast protocols; the
same application, running in a setting
with poor connectivity, could switch
to a slower but more robust option,
such as a gossip-based protocol. A
solution that exchanges sensitive data
could be constrained to only commu-
nicate using a secure protocol with an
approved end-to-end cryptographic
key-management mechanism.

Work on the Live Distributed
Objects platform reveals
that it can be unexpect-

edly hard to build high-performance
SOC systems using today’s Web ser-
vices standards. These problems are
particularly acute when combining
data from multiple sources into a
new client-side mashup. The core
limitations stem from a mixture of
issues: scalability and performance
problems with ESB components,
but also de facto ways of presenting
mashups to end users (through pro-
prietary minibrowsers). Live objects
solve these problems, making it

overcomes all the limitations we cited
earlier. High-speed, low-latency P2P
protocols can carry event and media
streams from client system to client
system, seamlessly blending with
hosted content drawn from Web-
service-based data centers.

need For neW sTandards
Live objects leverage Web services,

but the examples we’ve given make it
clear that the existing Web services
standards don’t go far enough. The
main issue arises when components
coexist in a single application. Just as
services within a data center need to
agree on their common “language”
for interaction, and do so using Web
services standards, components living
within a SOC application running on
a client platform will need to agree on
the events and representation that the
“dialog” between them will employ.

The decoupling of functionality
into layers also suggests a need for a
standardized layering: The examples
above identify at least four: the visu-
alization layer, the linkage layer that
talks to the underlying data source,
the update generating and interpret-
ing layer, and the transport protocol.
We propose using event-based inter-
faces to perform this decoupling—a
natural way of thinking about com-
ponents that dates back to Smalltalk
and is common in modern platforms
too, notably Jini.

