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Abstract 

The restructuring of the electric power grid has created new control and monitoring 
requirements for which classical technologies may be inadequate.  The most obvious 
way of building such systems, using TCP connections to link monitoring systems 
with data sources, gives poor scalability and exhibits instability precisely when 
information is most urgently required.  Astrolabe, Bimodal Multicast and 
Gravitational Gossip, technologies of our own design, seek to overcome these 
problems using what are called “epidemic” communication protocols.  This paper 
evaluates a hypothetical power monitoring scenario involving the New York State 
grid, and concludes that the technology is well-matched to the need. 

 

Introduction 
 The restructured electric power grid challenges operators, who find existing 

options for monitoring grid status increasingly inadequate.  This was highlighted in the 
August 2003 power outage.  Transcripts documenting operator interactions during the 
event made it clear that as the crisis unfolded, large-scale perturbations were creating 
increasingly confusing local conditions [Lipton03].  A critical monitoring system failed 
outright, but even outside of the region directly impacted by this event, operators were 
unable to make sense of fluctuating voltages and line frequencies observed over a period 
of several hours.  Lacking data about the state of the grid on a large scale, they were not 
able to formulate appropriate control interventions on the basis of the limited information 
available from purely local instrumentation. 

Unless new technologies are brought to bear on the problem, it seems all too 
plausible that there could be repeat events of a similar nature.  The restructuring of the 
grid has changed the monitoring problem in fundamental ways.  Fundamental 
improvements in monitoring technology are required in response. 
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Monitoring and control problems arise at many time scales.  The shortest 
deadlines are seen in relay control algorithms for equipment protection systems, which 
must react to events within fractions of a second.  Assisting a human operator who is 
trying to make sense of an evolving power shortage or some other slower contingency 
involves tracking data that evolves over periods measured in minutes.  Still other forms 
of data change over hours or days.  Our focus here is on the second case (minutes).  Our 
group has also looked at problems on shorter time scales, but the associated techniques 
are outside the scope of this paper [Coury00, Coury02].  For tracking grid state over long 
time scales, technologies such as databases, web sites and even email are adequate. 

Our effort approaches the problem at several levels.  First,  using simulation tools, 
we explored proposed communication standards for the restructured grid.  Most 
researchers anticipate that an Internet- like utilities network (dedicated to the power grid 
and isolated from the public Internet) will emerge in the coming decade.  On this, TCP 
would be the primary communication protocol.  To accurately model the behavior of TCP 
in such a setting we coupled the NS/2 protocol simulator to the PSCAD power grid 
simulator, and then looked at scenarios that might arise in a power grid during periods of 
stress [Hopkinson03].  Our study uses a realistic model of the New York State power grid 
as the target environment.   NS/2 includes especially detailed simulations of TCP.  The 
combination is therefore as close to reality as is currently possible with simulators. 

This investigation reached a pessimistic conclusion.  Our studies suggest that TCP 
is likely to exhibit problematic behavior under stressful conditions, and that this behavior 
could emerge as a serious obstacle for monitoring software systems running over it.  
Some of these issues arise primarily at very short time scales, but not all of them.  
Moreover, this comes as no surprise: TCP is the protocol used to download web pages 
and to support most Internet media players, and most readers will be familiar with the 
occasionally balky behavior of such systems. Indeed, one of the pioneers of the Internet, 
Butler Lampson, has observed that the “In a strict sense, the Web doesn’t really work.  
But of course, it doesn’t really need to work perfectly to be a great success 
[Lampson99].”  Others have pointed out that the Internet was built to deliver email and 
move files, not to perform critical control tasks, and that many of the applications now 
migrating to the network are mismatched with its properties.  Moreover, beyond these 
issues, we also identify practical difficulties in using TCP for grid monitoring problems.      

The second aspect of our research involved the development of a new monitoring 
technology that avoids these TCP-specific problems by building on a very different style 
of communication, inspired by the architecture of peer-to-peer file sharing tools of the 
sort that have gained such notoriety.  Unlike a peer-to-peer file sharing tool, our peer-to-
peer protocols share data captured by the monitoring subsystem.  They run on the 
Internet, but using UDP instead of TCP, and thus avoid the problematic behavior just 
cited.  Moreover, they employ a pattern of “gossip” communication in which data spreads 
much like an epidemic in a population, routing around disruptions.  

We used these new protocols to implement a system, Astrolabe, which offers a 
high degree of flexibility in terms of what data can be monitored.  Astrolabe can be 
reconfigured at runtime, and will adapt to new demands within seconds even in a system 
with millions of nodes.  The system is flexible with respect to the data collected and the 
manner in which that data is summarized.   It is exceptionally scalable, and remains 



stable under stresses that would cripple many alternatives.  Finally, Astrolabe is 
serverless: just as peer-to-peer file sharing systems create the illusion of a shared file 
system, Astrolabe creates the illusion of a database, updated in real- time, and yet has no 
central server.  This eliminates single-point failures. 

The last aspect of our work explores potential uses for Astrolabe in the kinds of 
monitoring and control scenarios that arise in the restructured grid.  We used our 
simulation to study the quality of information that would be available to a hypothetical 
New York grid operator as a severe perturbation is introduced by disrupting power 
generation in Long Island, a situation analogous to the one that arose in the hours prior to 
the August 2003 blackout.  As noted earlier, we focus on time scales of tens of seconds or 
minutes.  This preliminary study supports the belief that Astrolabe could be valuable if it 
were actually deployed in this manner2.  Astrolabe also includes a security architecture, 
and we show that with this mechanism, it might be possible to strike a balance between 
the legitimate need of power suppliers to safeguard data of high commercial value and 
the needs of grid operators to access that data in the face of a crisis. 

 The remainder of this paper addresses each of these topics in turn.  To avoid 
repeating material that has appeared in print previously, we limit ourselves to a high- level 
description of Astrolabe.  Readers interested in understanding exactly how the technology 
is implemented are referred to [VanRenesse03, Birman01]. A detailed description of our 
multi-mode simulator can be found in [Hopkinson03]. 

The Monitoring and Control Impact of Restructuring 
The restructured power grid poses new kinds of monitoring and control problems.  

In this section, we briefly survey the issues, and also point to progress within the power 
industry towards communications standards intended as a response to these needs. 

For purposes of this paper, restructuring can be understood as a process with two 
major elements.  One element is regulatory: whereas classical power grids were centrally 
controlled and operated, changes in the regulatory structure now encourage independent 
ownership of generators and favor the emergence of competitive mechanisms by which 
organizations can enter into bilateral or multilateral power generation contracts.  The 
second element is a consequence of the first involving large-scale operation of the grid.  
In the past, this was a centralized task.  In the restructured climate, a number of 
competing power producers must coordinate their actions through a set of independent 
service operators. 

Restructuring has been an incremental process.  In its earliest stages, we saw the 
breakup of large monopoly-styled utilities into smaller companies with more specialized 
roles.  At the same time, we’ve seen slow but steady growth in the numbers of long-
distance contracts.  Finally, the grid is being operated closer and closer to its capacity and 
limits.  All of these trends are only just reaching a point where grid monitoring and 
control will need to be revisited. 
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An example of how these trends complicate grid control involves load following, 
which is the problem of matching power generated to power consumed.  Classically, load 
following was implemented regionally, by monitoring line frequency.  Since line 
frequency is uniform throughout any well-connected region of the power grid, if power 
generation becomes mismatched to power consumption, operators can detect this by 
noticing that frequency was sagging or rising, and in the classical grid, could respond in a 
coordinated way (by increasing or decreasing generated power).  Since a single utility 
was responsible for each region, all of its generators share a commercial incentive in 
responding to changing loads. 

Now consider the same task in the presence of bilateral contracts.  If Acme 
Smelters contracts to purchase power from Ithaca Wind Power, Acme and IWP need to 
coordinate power production and consumption on a pairwise basis.  Other companies 
may be willing to participate in load following for the grid as a whole, but will not want 
to adjust their power production to deal with load and supply variations in the Acme-IWP 
contract – after all, they don’t make money on that contract.  To some degree, this 
challenge can be ameliorated by supporting only fixed-capacity contracts.  Yet one can 
never exclude the possibility that some unanticipated event might shut Acme down 
suddenly, or cause IWP to take a generator offline. Unless both parties react immediately 
and in a coordinated manner, such an event will impact operators throughout the region.  

Thus bilateral contracts are of global interest: the status of such a contract may 
impact the way an individual operator determines power output, may have implications 
for grid protection, and may impact pricing.  On the other hand, knowledge of other 
operators’ commitments also creates opportunities for a producer to discover and exploit 
market power.  Regulators and operators are reluctant to release such information. 

Worse still, the introduction of bilateral contracts invalidates the traditional use of 
line frequency as an implicit communications channel.  Yes, all entities monitoring the 
frequency see the same value. But in a world of bilateral or multilateral contracts line 
frequency changes alone are not enough to formulate appropriate local actions (or even to 
decide if local action is needed).  Much more information is required. 

In the restructured grid, a tremendous number of problems that had been solved 
for monopoly-structured power systems will need to be revisited.  We find ourselves in a 
new world of not merely bilateral contracts, but also mutually suspicious operators, loath 
to share information about the states of their systems, their available capacities, loads on 
private lines, pricing, and equipment states.  Aging long-distance lines are being 
subjected to greatly increased loads.  Aging relays are being operated closer and closer to 
their trip points.  In a post 9-11 era, grid operators must be cognizant of terrorist threats, 
both to their equipment and to their control systems and software.   Finally, with the grid 
operating closer and closer to its limits, control requires quick reactions and an 
increasingly fine hand. 

A New Monitoring Problem 
Considerations such as the ones just cited suggest that the restructured grid will 

require a new form of monitoring system.  What should be the properties of that system? 



To first approximation, setting security considerations to the side, a power grid 
monitoring system can be imagined as a set of large, dynamic, databases collecting data 
over an Internet- like communications network.  The rows in these databases contain 
information collected at the many points where the grid can be instrumented: data such as 
voltage, line frequency, phase angle of the phasor, status of equipment, and so forth.  
There would be different databases for each major category of components, and perhaps 
also for different categories of observers: the ISO, operators, consumers, etc. 

To make sense of this sort of data, one also needs a more static kind of 
information: a “map” of the power grid, showing buses and generators and loads, and 
annotated with the points at which measurements are being taken.  In practice, of course, 
such a map is also a database.  Notice that the map is not completely static: on any given 
day, there may be hundreds of road crews at work on lines throughout a region, and their 
activities will change the layout of the grid as a whole.  Unless a widespread 
environmental disruption occurs, this type of information changes very slowly.  However, 
when a disruption does occur, we may need to propagate the information urgently. 

Today, we lack this kind of information.  As noted, operators have many reasons 
to conceal the states of their networks, and this extends to all of these forms of databases.  
An operator might be willing to disclose certain data to the ISO, but not to competitors.  
Yet more information is certainly needed in order to avoid repeats of the wide-scale 
disruptions experienced in August of 2003.   

This tension lies at the core of what follows.  It is not enough to postulate a 
monitoring methodology.  The need is for a methodology responsive to many goals: the 
purely technical goal of getting data through on the time scale in which it will be useful, 
the more pragmatic goals of protecting sensitive information unless a crisis arises, the 
security considerations associated with managing a vital component of the nationally 
critical infrastructure, and the pragmatic cost-saving goal of adhering, as much as 
possible, to widely supported commercial standards, so that off-the-shelf (so-called 
“COTS”) technologies can be employed in building the new control systems. 

System Model and Statement of Objectives 
Rigorous development methodologies reside upon explicit models of the target 

environment, rigorous definitions of the protocols used, and the use of formal tools to 
show that the protocols achieve well-defined objectives when run in the target 
environment.  While brevity precludes us from undertaking all of these tasks in the 
present paper, our research effort follows this outline.  In this subsection we give a more 
precise characterization of the target environment and the goals for our communications 
infrastructure.  Elsewhere, we’ve taken steps to close the loop, for example using an 
automated theorem proving tool called NuPrl to show that some of our protocols achieve 
the desired behavior3.  We see these as first steps in a longer-term effort to achieve 
similar rigor in all parts of our work. 
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developed to solve fault-tolerance problems of the sort seen in stock exchanges and air traffic control 



Our work models the utilities network as an asynchronous distributed system, 
consisting of a set of computing nodes, an infrastructure permitting them to exchange 
messages, and a message-passing layer.  Messages are transmitted unreliably: a given 
message may be lost in the communication system, damaged, delivered out of order, or 
even delivered more than once.  There are no time limits on message latency: a message 
can be arbitrarily delayed, even if some other message, sent almost at the same time, 
arrives with no delay at all. Although our work currently makes no use of this feature, 
nodes can be assumed to have high-quality GPS clocks; unless such a clock malfunctions, 
it provides time information accurate to hundreds of microseconds. 

We assume that computers within the network fail by crashing, and that there is 
no way to distinguish such a crash from a timeout caused by transient packet loss.  
Traditionally, one would assume that failures are uncorrelated, but this is not realistic in 
systems structured like the Internet.  Accordingly, we do assume that computer failures 
are uncorrelated, but we only assume that message failures are uncorrelated on a long 
time scale, or for messages on path-disjoint routes.  Thus, for short periods of time, it 
may be impossible for computer A to communicate with computer B, even if both 
computers are operational. However, even if this occurs, A will probably be able to 
communicate with some node C, that can communicate to B.  Moreover, if A and B 
remain operational, they will eventually be able to communicate. The time constants are, 
however, unknown within the system.   

We note that this non-transitive view of communication is a common element of 
models of the Internet.  For example, the same approach underlies MIT’s work on 
Resilient Overlay Networks [Anderson01].  Indeed, MIT’s RON system would be of 
possible value in a power systems network, although we have not explored this option. 

Obviously, the situation in any real network is not quite as bleak as this model 
might permit.  A trivial instance of the above model would be a system in which all the 
nodes have crashed, or one in which the network never delivers any messages at all.  A 
utilities network, on the other hand, would presumably work fairly well. 

Accordingly, we introduce a probabilistic element.  We assume that there are 
constants pc governing the probability that a computer c is operational, pclock giving the 
probability that its clock operates within a bounded error and skew relative to true GPS 
time, and pm giving the probability that a given message m will be delivered in a timely 
fashion.  There is a mean communications delay δ (for messages not impacted by a 
failure).  Moreover, within a given network, we may have good estimates for each of 
these constants.   

Our abstract problem can now be refined as follows.  Not only do we wish to 
support a database of sensor information, but we would like to do so in a manner that can 
be shown to guarantee timely delivery of information to monitoring agents throughout the 
network, with high probability, provided that the network behaves consistently with the 
model.  Additionally, we will want solutions to “scale well”, meaning that the overheads 

                                                                                                                                                 
systems.  We have yet to apply NuPrl to Astrolabe or to a power scenario, and doing so would involve 
surmounting a number of technical challenges.  However, we are optimistic that they can be overcome.  



imposed on the network are either constant, or grow slowly, as the size of the system 
increases, and that delays in reporting data remain low.  

In the remainder of this paper, constraints of brevity preclude formalization of the 
mechanisms we discuss.  However, interested readers are referred to [VanRenesse03] for 
examples of the form of analysis made possible by this model.  In particular, the 
Astrolabe technology we’ll describe below satisfies the goals just enumerated in the 
model we’ve outlined.  A second protocol, called Bimodal Multicast, could be used for 
scalable notifications when important events occur and large numbers of nodes must be 
notified rapidly [Birman99, Jenkins01]; it too can be proved to have the desired behavior 
in the target system model.  In contrast, there has been little analysis of commercial 
Internet technologies using formal models or methods, and (as will now be discussed 
further), they apparently lack the desired properties. 

The Power Internet 
The power industry became aware of the trends we’ve summarized long ago, and 

has invested almost a decade in study to the matter.  This work has yielded a number of 
proposals for new ways to protect the grid, and also a number of proposed standards for a 
future utility Internet, isolated from the public Internet but based on the same off- the-
shelf technologies and running the standard protocols.  TCP has been designated as the 
standard communications protocol for the utility internet, and proposals for standardizing 
the format of data that would be transmitted over these TCP connections are now being 
debated. 

As mentioned earlier, TCP is the same protocol used when downloading web 
pages, transferring files and emails, supporting chat, and even transmitting video or audio 
data.   Perhaps less widely appreciated is the degree to which TCP is tightly integrated 
with the routers used within the network itself.   Routers drop packets as they become 
congested and this is viewed as a signal to the TCP endpoints that they should throttle 
back.  Indeed, one router policy, called Random Early Drop, or RED, attempts to 
anticipate overload and starts to discard packets even before the router becomes 
completely overloaded, by randomly picking packets and discarding them4.  TCP, for its 
part, varies the sending rate continuously, ratcheting the rate up steadily (linearly) from 
some low initial value, then scaling back (exponentially) if loss is detected.  A TCP 
channel thus has a sawtooth behavior: throughput rises slowly, then falls quickly, then 
rises again.  If a TCP connection is idle for a period of time, it resets to a low data rate – 
this is called the TCP “slow start” mechanism. 

The effect of this sawtooth behavior is to ramp the TCP data rate to the maximum 
level that the network will bear, and then to test the threshold periodically, trying to push 
its rate up, then backing off just a bit below the limit.  One could not casually disable 

                                                 
4 It may be counter-intuitive that the network should warn of future congestion by discarding 

perfectly good data before the problem has actually occurred.  The intuition is that because round-trip 
latencies are often a substantial fraction of a second, TCP may need a second or two to detect and react to 
packet loss.   



these mechanisms.  They are central to the scalability of the modern network.  Without 
them, it is generally believed, the network would melt down when load surges occur.   

The behavior just described is mismatched to the needs of power systems and 
other real-time applications.  In [Coury02, Coury00] we used a simulator to evaluate a 
protection mechanism over an idealized “instant” communications channel, and then over 
a TCP connection that accurately models the behaviors outlined above.  We found that in 
an idle network, the protection mechanism works in both cases.  But in a network shared 
with other sources of traffic – even minor traffic, like web page downloads that happen to 
pass through the same routers, TCP ratchets loads up until packet loss occurs, and then 
begins to exhibit significant  fluctuations in throughput and latency.  These problems  
degrade the functioning of the protection protocol.  Of course that study focused on a 
smaller time-scale than interests us here, but in fact the same issue is also seen (albeit less 
often) at a scale of seconds or even minutes.  Any user of a web browser has experienced 
this issue.  Clearly, such behavior is problematic for software monitoring the grid. 

The use of TCP as the core transport protocol for data within the power grid also 
raises a great number of pragmatic problems.  Suppose that normally, operator A is 
unwilling to disclose the structure of her network to operator B, but agrees to do so 
during an emergency.  One day, a confusing situation arises and operator B tries to access 
the information in question.  Should we now presume that some application running on 
site B opens (for the first time) a lockbox listing the contact points at which A’s network 
can be instrumented, establishes secure connections to those points (A will want to know 
who obtained this sensitive data), and monitoring then ensues?  We seem to be imagining 
a rather time-consuming process, particularly since A may have dozens or even hundreds 
of monitoring points.  How would A authenticate the request?  If B lies, is the auditing 
capability of the protocol adequate to “prove” what happened to a skeptical judge?  How 
would B interpret the data without a detailed map of A’s system?  

Scale intrudes as a further concern.  In a crisis, there may be dozens of B’s that 
suddenly all need access to A’s data.  Thousands of connections will need to be made 
into A’s network.  Indeed, it is likely that everyone will want to connect to everyone else.  
Thus, just as the network starts to exhibit troubling behavior, we may be faced with 
creating and starting to use literally hundreds of thousands or millions of TCP 
connections.  And all of them will start in the “slow start” mode. 

The reader has no doubt experienced an analogous  situation.  It occurs when fast-
breaking news events turn our attention to some little-frequented web site; not the CNN 
or MSNBC site, which invests heavily to be able to handle “flash loads”, but a minor site.  
The web site goes down, not by crashing, but by responding so slowly that it might as 
well have crashed.  The same problem will arise in power grids if TCP is used this way. 

Without belaboring the point, we believe that TCP is poorly matched to the 
monitoring problem.  To summarize: 

1. TCP is a balky and unpredictable protocol ill- suited for the proposed uses.  Unless a 
non-standard TCP implementation is selected (unlikely), the power industry will need 
to live with TCP slow-start and congestion control.  



2. It is known that Internet-based systems may exhibit periods of non-transitive 
connectivity.  TCP is unable to “route around” disruptions and would disconnect or 
run very slowly in such situations. 

3. The TCP load on the center of the network may grow as s*m, where s is the number 
of sensors and m is the number of systems monitoring them.  If the network grows 
large enough, this could become a significant cost. 

4. Establishing the necessary connections poses deep practical problems, particularly 
with respect to authentication.  It will be costly to keep lists of who should connect to 
whom up-to-date as the system evolves over time.  It may not be practical to 
reconfigure monitoring systems rapidly when a problem arises. 

5. The utilities Internet will support many applications, some having lower priority, and 
many shipping very large files.  TCP lacks any notion of priority, hence low-priority 
file transfers compete for the same resources as do high-priority urgent notifications.  
The greedy bandwidth consumption approach underlying TCP ensures that when this 
happens, routers will become overloaded – bandwidth escalation that overloads 
routers is a design feature of TCP and the modern Internet. 

6. The TCP security model, SSL, permits a client of a server to authenticate a server, 
and then encrypt sensitive data such as a credit card number.  But that pattern is 
remote from the security issues that arise between mutually suspicious operators.   

7. The lightening-fast spread of viruses and worms, and the constant threat of disruptive 
denial of service attacks, are a fact of life in the Internet.  TCP is easily disrupted. A 
utility network will face similar threats.  Thus, intentional disruption may be an issue.   

Taken as a whole, it is our conclusion that the power systems community will 
inevitably come to see standardization around TCP as premature.  TCP is a good tool, 
and the marriage of TCP to the Internet made ubiquitous email and web browsing 
possible.  Nonetheless, it is not apparent that TCP is a suitable protocol for monitoring 
and control on a large scale, under probable stress, in a setting where the consequences of 
failure entail massive economic disruption and the significant risk of lose of life. 

Alternatives to TCP 
When we speak of TCP in this paper, or of the power systems community using 

TCP as a proposed standard, the TCP protocol in question is just one of a family of TCP 
protocols.  One can identify at least twenty TCP-like protocols, all of which share the 
basic TCP interface, but using implementations that differ in significant ways. As used up 
to this point, “TCP” refers to the most common TCP implementations, found in desktop 
and PC and server systems worldwide. However, there are many variant forms of TCP, 
and one could ask whether our findings would hold for these other TCP implementations.  
In particular, there are two or three real- time protocols, designed to use a TCP-like 
interface, in which reliability is relaxed to support deadlines, or where retransmission is 
done more aggressively.  A real-time protocol might overcome several of our concerns.  
For want of resources and time, our group has not explored these options.   



Astrolabe 
Our group at Cornell University developed the Astrolabe system in response to 

scalability and stability challenges encountered in large-scale monitoring, data mining 
and control applications.  Believing that Astrolabe might be well-matched to the power 
systems requirement, we set out to systematically evaluate the potential.  In this section, 
we describe Astrolabe and the way it might be used in power settings.  The subsequent 
section presents our evaluation of Astrolabe in a simulation of such a setting. 

 The Astrolabe system builds a distributed database by monitoring an underlying 
network and populating the tuples (rows) of the database with data extracted from the 
instrumented system components.  In the utility Internet, these components would be the 
sensors associated with relays, generators, major load points, and so forth.   

Not all components are identical.  Astrolabe offers two ways to deal with 
heterogeneous component sets.  The first is to run Astrolabe more than once, with each 
instance focused on a relatively homogeneous subset of the sensors.  Not only might 
separate instances of Astrolabe be used for different categories of data, but this is also a 
means of dealing with systems that have different categories of users, who are permitted 
to access different classes of data.  For example, less sensitive data might be placed in an 
Astrolabe accessible to all operators, while more sensitive data is collected in a different 
Astrolabe database accessible only to ISO employees5.  We should note that the ability to 
report data into Astrolabe does not imply the ability to read that data back out.  Both to 
provide data to Astrolabe, and to read data from the system, an application must present 
credentials “strong enough” to authorize the desired form of access.   

We see this as a partial response to the security concerns outlined earlier.  The 
Astrolabe security architecture is based on a public-key cryptographic system, similar to 
the one used in SSL, and thus adheres to a popular standard.   In the remainder of this 
paper, we’ll focus on a single Astrolabe system.   

 Returning to the issue of heterogeneity, notice that even within a relatively 
uniform set, there may be sensors that measure values that other sensors don’t report.  For 
such situations, we include a vector of Boolean flags in the sensor data.  If a sensor 
reports value x, it also raises the associated flagx.  An application can check the flag to 
distinguish a non-reported value from a reported value of zero.   

Astrolabe can represent a variety of data types.  The system “knows” about the 
usual basic data types: integers, character strings, floating point numbers, URLs, etc.  But 
it can also handle XML encodings of other data types.  The main constraint imposed is 
that the total size of a tuple should be limited to a few k-bytes.  If the instrumentation 
output for some node involves larger amounts of data, we normally place just a summary 
into Astrolabe; applications  needing access to more detailed data can use Astrolabe to 

                                                 
5 In such a configuration, it would be important to run Astrolabe in a separate address space, not 

linked directly to the user’s program, and also to encrypt communication between these Astrolabe agents.  
The system already supports such a separate agent, and by running it over a virtual private network (VPN) 
the latter property is readily achieved.  A VPN does, however, require some means to authenticate a 
machine when it boots – for example, an operator may need to type in a password, or swipe a smart-card. 



identify sensor nodes of interest, then drill down using, for example, tools built with the 
widely standard Web Services architecture. 

Astrolabe is flexible about just what data it will monitor.  Suppose that a utility 
monitoring architecture is defined.  One might imagine that a tremendous number of 
parameters could be of interest in one situation or another.  Astrolabe encourages the user 
community to define that full set of “monitorable” data.  The system then uses 
configuration certificates to identify the subset of the monitorable information that will 
actually be tracked in real-time.  As the needs change, these configuration certificates can 
be changed, and the new value will take effect within a few seconds, even in a system 
with hundreds of thousands of monitored nodes.  Indeed, Astrolabe’s data collection 
mechanisms are powerful enough to extract data from databases on the monitored nodes, 
or to extract data from files or spreadsheets, if permissions are set up to authorize such 
actions.  Thus, subject to security policies controlled by the owners of the computing 
nodes, Astrolabe can be reconfigured on the fly as requirements evolve over time. 

Astrolabe supports online “data mining”.  One can ask participating systems to 
check for information of interest, and they will do this on the fly, in a massively parallel 
search.  Each node does a small amount of local work, and the Astrolabe database soon 
reports the collective responses.  The computational power of such a data mining 
capability can be seen to grow in proportion to the size of the network.  In contrast, 
consider the many issues posed by shipping data to a central node and analyzing it there: 
the latter approach would require that all data be shipped to that central node, imposing 
enormous loads on it and on the network, and the central node would then become a 
single point of failure and a system-wide security problem.   

Data mining out at the edges leaves administrators with the power to configure a 
security policy appropriate to their installation; deciding what data to share with others, 
and what forms of authorization will be required before access is permitted.  For 
example, a policy might dictate that normally, node A limits itself to reporting voltage 
data and the phase-angle of the power phasor, measured locally, but when the ISO 
announces a “contingency”, A may be willing to report far more detailed data.  Node A 
would require a configuration certificate authorizing contingency-mode reporting, and 
could log this information for subsequent audit.   

As mentioned in the introduction, Astrolabe uses a peer-to-peer protocol to track 
the evolution of this data.  This protocol operates as follows.  Each node is given a list of 
peers within the utility internet – for our purposes here, one can assume that this list 
tracks the full set of nodes in the system (but with a relaxed consistency requirement – 
the list may lag reality).  These lists of peers are updated continuously as nodes come and 
go [VanRenesse98]. 

In an unsynchronized manner, each node periodically selects a peer at random and 
sends it a gossip message.  The period is determined by a parameter; for the present 
paper, we used a 1-second period (a fast rate for Astrolabe; in other settings, we’ve used 
periods of 10 to 30 seconds). 

Gossip can be transmitted over TCP, but we don’t require the form of reliability 
TCP provides, and Astrolabe can equally well run over a less reliable protocol such as 
UDP.   Astrolabe doesn’t require that these gossip messages get through – the system 



operates probabilistically, and even if a fairly large percentage of messages are lost 
(we’ve experimented with loss rates of as much as 50%), Astrolabe will continue to give 
correct behavior.  Accordingly, gossip messages are fired off as timers expire, but no 
effort is made to ensure that they get through, or to resend a message that is damaged or 
severely delayed in the network. 

The contents of a gossip message consist of a list of information available at the 
sender node.  This includes timestamps for rows of the monitoring database, versions of 
configuration certificates, and so forth.   

We limit the size of gossip messages and other messages, hence there may 
sometimes be more information available than will fit in a message. For this paper, we 
assumed that the maximum size of an Astrolabe packet is 64KB. Astrolabe biases itself to 
report “fresh” data and, if this would still overflow our limit, drops some random subset 
of the items to stay below the threshold.   

Now, suppose that node B receives a gossip message sent by node A.  B reacts in 
two ways.  First, it identifies information that A possesses but B lacks.  Second, it 
identifies information  that B holds but that A lacks.  Now B prepares a response 
message, soliciting data it needs and including data that it believes A is lacking.  Again, 
the size of the message is limited and, if the message prepared according to this logic 
would be excessively large, Astrolabe biases itself to focus on data having the highest 
likely value to the destination node.    If the resulting message is non-empty, B sends it 
(without worrying about reliability) to A.  Assuming that A receives that gossip reply, it 
can now update its tuple set with the more current versions from B (if any, and if they are 
still more current), and send B a message containing the requested objects.  Yet again, the 
message is size- limited and sent without special concern for reliability. 

Networks are usually reliable, even when we don’t use TCP as a transport.  Thus, 
most messages get through.  Although correlated failures can be a problem in most 
networks, they typically reflect overload on certain routers or certain routes.  Thus the 
type of randomized peer-to-peer communication just described is likely to experience 
only a low rate of uncorrelated packet loss.  It then follows that the theory of epidemic 
spread will describe the mathematics of how Astrolabe behaves. 

Suppose that node A reports some event.  After one time unit, the odds are good 
that node B will know about A’s event, and hence the information will now spread from 
2 nodes.  After an additional time unit passes, 4 nodes will be involved.  Although 
“reinfection” and packet loss will slightly slow the protocol, within expected time 
logarithmic in the size of the system, all nodes should know about A’s event.  Log being 
a small number even in a fairly large network, one sees that within a few seconds, A’s 
status is known throughout the network.  For example, log(128) is 7, and log (16,384) is 
14. Thus, squaring the size of the network only doubles the expected delay, from a little 
more than 7 seconds to a little more than 15 with our current gossip rate. 

Now, we’ve already outlined the basic behavior of Astrolabe.  Each participant is 
able to track the state of the overall system, keeping an accurate copy of its own tuple and 
replicas of the tuples for other nodes in the system.  This fully replicated database won’t 
be perfectly consistent, of course, but it will track changes in real- time, and it does 
support all the usual database query and computational tools (other than “transactions”, a 



consistency model that isn’t available within Astrolabe).  Thus one can access this 
database in control software in a natural manner, “drag and drop” the monitoring data 
into other databases or spreadsheets, which will be updated as conditions change, etc.  
One can even build web pages that will be automatically updated as data evolves. 

A problem with the flat database we’ve described is that as the network grows 
large, the amount of data in the typical gossip message will rise linearly in system size.  
Clearly this leads to a non-scalable architecture.  In the case of the utility network, and 
indeed in most systems where Astrolabe might be used, we believe that there is also 
limited value to having every node see the current state of every other node.  For both of 
these reasons, as a system grows in size, Astrolabe moves from a flat database to one in 
which the system is broken into regions of roughly equal size (for practical reasons, we 
aim for a size of about 100 tuples per region).  The nodes that comprise a region should 
be related in a logical sense – they benefit from tracking one-another’s states.  They 
might also be located physically close to one-another, but this is not required by our 
system.  Astrolabe can form regions automatically, but more often, a human 
administrator does this by assigning nodes to regions when they are first connected with 
the system. 

Thus, in a large system, Astrolabe will look like a stack of databases or a sheaf of 
spreadsheets.  Each node “sees” the data associated with the peers in its own region.  
Nonetheless, Astrolabe provides an indirect way for a node in one region, say Long 
Island, to track the status of the remainder of the network.  This is done using what we 
call aggregation queries.   

The basic idea is simple.  In addition to the objects previously mentioned, the 
administrator of an Astrolabe system can define some set of queries that summarize the 
contents of a region in the form of a single row.  For example, if the data in a region 
includes line frequency measurements, the aggregate could calculate the mean, variance, 
and highest and lowest values within the region, thus summarizing as many as 100 values 
in a small tuple of 4 numbers.  The tuples resulting from aggregation are now glued 
together to create a new kind of virtual database, in which each tuple – each row – 
summarizes the state of an entire region.  A node in Long Island has accurate values for 
its own region, as well as summary data for the remainder of New York State, and both 
are updated as underlying data changes.  This process can continue: We could define a 
higher level of the hierarchy in which each state is summarized as a row in some sort of 
national status database. Such a row would compress the state of perhaps tens of 
thousands of sensors into a single set of numbers, hence one loses a great deal of detail.  
Yet it will be updated in real-time, just like the local data. 

Without delving into excessive detail, wide-area gossip, used to maintain these 
aggregated levels of the hierarchy, works much as local area gossip does, and is 
performed by representatives elected from each local region.  The overall consistency and 
convergence properties of the system are very similar – any event that occurs will be 
globally visible within time logarithmic in the size of the network as a whole.   

Just as one can change the configuration of Astrolabe while it is running, the 
aggregation queries can be modified as conditions change.  A system administrator does 
this by introducing new aggregation queries that override existing ones or extend the 



basic set.  Each administrator is associated with some level of the Astrolabe database 
hierarchy, and has authority over the nodes “below” that point in the hierarchy. Thus, an 
operator in Long Island can perform a kind of online data mining and, in real-time, 
change the behavior of Astrolabe in Long Island.  A New York State ISO operator can 
change the behavior of the system for the state as a whole.  A national operator (if any 
such entity is ever defined) could change the behavior of the entire national monitoring 
grid. 

Earlier, we mentioned that a node posting information into Astrolabe must first 
present appropriate authorization keys, and that a node wishing to read data out of the 
system must similarly present a key authoring such access.  In fact, Astrolabe makes 
extensive use of security keys to control all aspects of the protocol just described, and can 
even protect itself against many kinds of malfunctions in its own agents.  Only the holder 
of a valid key can perform a given action, and each tuple is always signed by the node 
that generated it.  Thus, damaged or falsified data can be identified and rejected.  Keys 
also allow local operators to determine who is making a request, authorize (or refuse) that 
request according to data control policies, and audit events after the fact. 

The combination of epidemic gossip with a security architecture makes Astrolabe 
unusually robust against disruption.  Because information travels along so many possible 
paths, a network overload or failure is unlikely so slow things down by more than a round 
or two of gossip – a worst case outage, then, may delay data by a second or so, but not 
more.  Even the loss of as many as 25% to 50% of packets, network-wide, will only slow 
Astrolabe down by a round or two of gossip– a few seconds.  The system is also unusual 
in having a strictly bounded communication load that doesn’t increase even when things 
go wrong.  Obviously, when a network is very passive, gossip packets will be empty, and 
load is minimized in this case.  But at worst, every maximum-sized gossip packet triggers 
exactly two other maximum-sized packets.  Thus, if the limits are picked intelligently, 
Astrolabe simply cannot produce load surges that might melt down the network.   

In the configuration we tested, the worst-case load on a participating node is three 
maximum-sized packets sent, and three received, per second.  With parameters set as 
described above (1 second gossip rate, 64KB maximum packet size) the worst-case I/O 
load is about 1/50th of the maximum for typical desktop computers on a high-speed local 
area network at the time of this writing. 

We see Astrolabe as a very good match to the needs of the utility Internet. First, 
we are convinced that the “regular” structure of the system will bring benefits because 
uniformity facilitates the design of general purpose monitoring and system control tools.  
The automated membership mechanism eliminate the need to keep track of who should 
connect to whom: a new monitoring node is simply assigned appropriate credentials and 
told where it will reside in the Astrolabe hierarchy; it then connects to the system and the 
database expands automatically to include it, without any changes to the configurations 
of programs that read the data (of course, one might also need to update one or more map 
database, but this is outside the scope of our paper).   

The consistency properties of Astrolabe are also of potential value.  In the past, 
control of large sectors of the grid was easy because of the uniformity of line frequency.  
All operators saw the same frequency at the same time, hence without explicit 



communication, could react to changes in load on the system.   Systems like Astrolabe 
bring a similar kind of consistency to the monitoring problem, this encourages 
consistency in the control decisions made by participating machines.  Finally, the ability 
to configure Astrolabe selectively, and to run multiple instances side by side, gives 
architects of the utilities network many options for limiting the disclosure of sensitive 
data. The robustness of the technology would even offer a considerable degree of 
protection against attacks on the control system launched by intruders within the network. 

Bimodal Multicast and Gravitational Gossip 
At the start of this paper, we noted that monitoring arises at several time scales. 

For purposes such as relay control, or notifying operators when a line trips or a generator 
goes offline or comes online, rapid event delivery is often required.  However, Astrolabe 
targets problems requiring information accurate within tens of seconds or minutes, not 
shorter time scales.  Thus, one could use Astrolabe to track slowly-varying properties of 
the grid, equipment status, line status, and other similar attributes.  In contrast, the 
technology is not suitable for rapid response when a contingency suddenly occurs, such 
as the sudden loss of a major long-distance power line. 

As noted in the introduction, Astrolabe is just one of several technologies our 
group is evaluating.  Bimodal Multicast [Birman99] and Gravitational Gossip [Jenkins01] 
are examples of other systems, based on the same kinds of peer-to-peer epidemic 
protocols as are used in Astrolabe, but targeted to settings in which urgent notifications 
must be sent to large numbers of nodes as rapidly and reliably as possible.  These can 
also support streams a stream of data sent from a few sources to a large number of 
receivers at high data rates (so-called “multicast” data dissemination patterns).  We 
believe that Bimodal Multicast seems to be a good match to urgent notification problems, 
and Gravitational Gossip may be especially well-matched to load-following scenarios 
where streams of events report the status of the load-following contract. For reasons of 
brevity and focus, however, we have chosen to omit detailed discussion and analysis of 
these mechanisms from the present paper.   

Experimental Study 
We now report on an experimental evaluation of Astrolabe in the target setting.  

As mentioned earlier, we worked with a novel simulation system known as EPOCHS that 
combines several best-of-breed simulators into one platform.  NS/2 is a protocol 
simulator, best known for its high-quality simulations of the most widely used versions of 
TCP, and for its ability to accurately model the behavior of commercial routers.  PSLF  is 
used for electromechanical transient simulation.  PSLF can simulate power systems with 
tens of thousands of nodes and is widely used by electric utilities to model 
electromechanical stability scenarios.  EPOCHS synchronizes these simulators and 
insulates its users from many simulation details through a simple agent-based framework.   

The use of EPOCHS allowed us to examine the effect that a large-scale 
deployment of an Astrolabe system could have in preventing large-scale blackouts such 
as the one experienced earlier this year in the Northeastern United States.  The Northeast 
blackout is a good example of an event that might have been prevented had a trustworthy 
large-scale information architecture been available.   



The electric power grid is divided into a number of relatively large regions 
including New York, New England, and PJM (Pennsylvania-New Jersery-Maryland).  A 
central control center resides in each center and monitors the state of the loads, 
generators, and utilities within its domain.  Supervisory Control and Data Acquisition 
(SCADA) systems allow these control centers to get an accurate picture of the system 
state and allows the center to take action if problems arise.  SCADA information is polled 
as often as once every four seconds from each location and provides a relatively rich 
picture of a region’s current operation.  Unfortunately, this information is not shared 
between control centers.  Areas can get some sense of their neighbor’s state by 
monitoring the tie lines that connect them, but this knowledge is extremely limited.  It is 
rare that information is shared between areas with any great frequency. This serves as a 
major constraint to preventing outages that cascade between areas.  

SCADA traffic is light on a per-bus basis, but its large volume in aggregate 
making it impractical to forward it between regions.  An attractive alternative is to 
aggregate the most useful data for use by other regions that can use it to monitor the 
general health of their neighbors.  During the Northeast blackout, American Electric 
Power (AEP) was able to detect the dangerous state of its neighbor in northern Ohio and 
disconnected itself before serious consequences occurred.  However, many of the 
region’s other neighbors were not able to react in time.  Analysis of the August 14 event 
may continue for many years, but it already seems clear that a major cause of the system 
disturbance was a gradual decline in voltage in Northern Ohio over a period of hours.  If 
aggregate information had been available to neighboring control regions then there would 
have had ample time for each of them to take action to minimize the impact of this 
disturbance on the electric power grid.  

One of the defining characteristics of the August 14 blackout was the voltage 
collapse that occurred on portions of the transmission system both surrounding and 
within the northern Ohio and eastern Michigan load center during the blackout.  The 
transmission system’s voltage is somewhat similar in function to water pressure. 
Sufficient voltage is needed to transfer electric power through a power network.  Reactive 
power plays a major role in maintaining proper system voltages.  Reactive power sources 
usually need to be close to reactive loads such as major load centers.  The reason for this 
is that reactive power cannot travel long distance due to considerable loss in transmission 
lines.  For an area with only limited local reactive supplies, increased power loads will 
cause the region’s voltage to drop.   

A so-called voltage collapse can occur if a reactive power shortage is severe.  
These system disturbances typically take minutes or even hours before they become 
serious enough to cause widespread disruption.  As such, Astrolabe would be well suited 
to aid in monitoring and preventing this class of problems.  We designed a series of 
experiments that mimicked the conditions that led up to the August 14 blackout in order 
to demonstrate Astrolabe’s utility. 

Our experiments centered on the (NYPP) New York Power Pool, a 3,000-bus 
system that is shown in Figure 1.  The NYPP system consists of 2,935 buses, 1,304 
generators, 1,883 loads, and 7,028 transmission lines with a base load of 11,553 MW.  
We used the New York system to model a much larger region of the electric power grid.  
That is, we divide the New York system into eight regions and assumed that each area 



was independently operated by its own control center.  Each of these areas was assigned a 
letter from A to H.  A sequence of outage events was created to illustrate the 
effectiveness of preventing major blackouts from spreading in the manner of the latest 
August 14, 2003 blackout via timely communication between control regions. 

 
Figure 1: The New York Power System 

The New York Power Pool’s cascading sequence mimics the Northeast voltage 
collapse.  The disturbance starts with a gradual load increase in Region F over relatively 
long period of time, for example, from noon to afternoon in a hot summer day. Region F 
is a “load pocket” in system.  This means that large power imports are needed from the 
neighboring area, Region G.   

Air conditioners utilize motors that require that they be supplied with reactive 
power.  The aggregate increase in demand can become relatively large on the hot 
afternoon that we have envisioned for our experimental study.  The demand for reactive 
power could normally be met by generators on the southeast corner of area G through tie 
lines if that became necessary, but the tie lines that connect F to G are unusually heavily 
loaded due to the region’s large power imports.  This means that the reactive power 
demand in Region F is mainly supplied by local resources.  

The increasing load will create a slowly declining voltage profile in Region F.  
Region F will face voltage problems when significant numbers of bus voltages drop 
below a certain threshold.  The North American Electric Reliability Council (NERC) 
suggests 0.95 per unit as a typical threshold value.  In our scenario, a relay misoperation 
occurs in the afternoon after an hour of exposure to the system’s low voltage profile. This 
operation opens up the ShoreHam – WildWood 138kV line, making the already 
inadequate voltage condition worse. Five minutes later, the BrookHvn Unit (rating 
121MW) trips by the under-voltage protective relay.  Six minutes after that, HoltSvle- 
UnionAve 138kV line trips, again due to low voltage, which also disconnects the Union 
Avenue Unit (rating 138 MW) from the power grid. This action creates a voltage collapse 
situation in Region F.   



The voltage collapse in Region F causes two generators go offline.  This in turn 
leads to a power mismatch in Region F that requires larger imports from Region G.  
Unfortunately, F-G tie lines were already run at close to capacity before the increased 
demand occurred.  The added power demand overloads the DunWoodie – Shore_Rd  
345kV tie- line connecting Region F and G. The corresponding overload protection relay 
reacts by opening up this tie- line.  The other tie- lines between Regions F and G overload 
soon afterwards. The other three tie- lines, the EgrdnCty – SprainBrook 345kV line, the 
LakSucss – Jamaica 138kV line, and the Jamaica – VallyStr 138kV line, trip in quick 
succession due to the overloads.  A blackout results leaving the load center in Region F 
unserved. And because Region G withdraws about 1160MW in this case from the tie-
lines to Region F, there is  a sudden large power mismatch in Region G causing the local 
frequency to speed up. The power mismatch in Region G is more than 25% of local 
capacity meaning that the frequency goes beyond the normal level of 60Hz to roughly 61 
Hz or more.  Most of generators will trip in this overfrequency situation.  The outage will 
cascade into Region G and will potential spread farther into other regions if no 
appropriate actions taken.  That is, if tie lines are not opened and the outputs of local 
generators are not decreased after a region’s control center has sensed that the blackout is 
moving towards its area.   

Although complex, this scenario shares many characteristics with the August 14 
Northeast blackout.  Mechanisms that could assist in preventing a New York State 
blackout in our example scenario could potentially be used on a larger scale to prevent a 
recurrence of the August 14 event. 

We performed our experiments under three different situations.  In the first, there 
was no timely communication between regions.  Events unfolded according to the 
description that was just given and resulted in a large power blackout.  In the second case, 
aggregate system information was shared between regions using standard Internet 
protocol TCP/IP.  TCP/IP was chosen due to the momentum that the power industry has 
toward it widespread adoption in standards such as the Utility Communication 
Architecture (UCA).   Finally, we ran a scenario where system information was between 
regions using Astrolabe.   

TCP/IP connections were made using NS2’s FullTCP implementation.  Packets 
has a 0.1% chance of being dropped per link traversed.  Nodes within the same region 
were typically within a few hops of each other making this an appropriate drop rate.   

Astrolabe does not have a native NS2 implementation.  However, Astrolabe has 
been studied extensively enough to let us model its behavior without implementing a new 
event-level simulation of the Astrolabe protocols per-se.  With adopted this approach to  
model the propagation time and latency distribution for events reported through 
Astrolabe and communicated using its peer-to-peer gossip protocols.  The approach is 
believed to yield realistic predictions about the behavior to be expected from the 
Astrolabe system if it were deployed in our experimental scenario.   

With both TCP/IP and Astrolabe, SCADA data was collected and filtered at 
individual buses so that the current bus voltage could be determined.  Bus voltages are 
aggregated at the control centers.  We felt that the key information that neighboring 
control centers would need in determining the likelihood of an impending voltage 



collapse was the average voltage at the highest 10% and lowest 10% of all nodes in the 
region.  A series of 11 steps were created to emulate a slow decrease in voltage in region 
F.  The final step reduces the average voltage in region F to close to 0.82 and would 
result in a blackout in a real system.  A graph of the voltage drop can be found in Figure 
2.  The goal of either the TCP/IP or Astrolabe information systems is to alert neighboring 
control centers to the impending voltage collapse so that appropriate action can be taken.   

 
Figure 2. System snapshots of the average voltage for each region 

 After each snapshot, we ran an experiment in the EPOCHS environment to see 
how long it took for information about the previous event to travel to all control centers.  
The experiment began with the change in the system state and ended when all buses had 
reported their condensed state in aggregate to every control center in the system.  
Astrolabe’s results were in a tight range between 14.1 seconds and 15.6 seconds.  We 
repeated this process replacing Astrolabe’s gossip process with TCP/IP connections.  Our 
initial TCP trial took 7.1 seconds before all nodes had received notification of dangerous 
voltage levels once their presence had begun.  However, notification times varied widely.  
For example, Region G was notified of the voltage situation in less than 0.1 seconds.   

 This trial was repeated placing a loss rate of 25% at each of the four tie lines 
connecting areas F and G.  All other lines remained at a loss rate of 0.1%.  The trial result 
showed that notification did not reach region F for 6.1 seconds compared with 
Astrolabe’s 3.7 second time delay.  Data had still not reached some control centers after 
one and a half minutes into the simulation in the TCP/IP case.   

 A 25% drop rate across tie lines is not unusual within a network build using 
standard Internet components and shared among multiple users, precisely for the reasons 
discussed in the first sections of this paper.  TCP is designed to overload the network and 
will increase its data rates until packet loss is detected.  Large data transfers of 2.4 MB or 
more have been proposed between a bus and its owner’s engineering center after a fault 
has taken place.  It is not hard to imagine a situation where a bus near the boundary 



between two regions is owned by a company that has an engineering center in its 
neighboring area.  For example, a fault in Long Island might trigger a data transfer to a 
corporate center in New Jersey over the proposed Utility Intranet.    Thus, during periods 
of potential concern, one would expect the Utility Internet to come under a variety of 
loads.  By design, the data loss rate will rise rapidly and could often reach the 25% level.  
And when this occurs, a TCP-based monitoring infrastructure – even the simple one we 
analyzed in our experiments – will already begin to behave erratically.  Astrolabe, on the 
other hand, remains stable, and indeed can be shown to remain stable even under extreme 
conditions, such as might be created in deliberate “denial of service attacks” (such as 
could arise if a virus or worm were to infect machines on the Utility Internet, or an 
intruder were to gain access). 

 The conclusion to be drawn from these experiments is that a robust protocol like 
Astrolabe is well-suited to monitoring the electric power grid for disturbances that take 
place over a time scale of minutes or more.  TCP/IP is an excellent transport protocol for 
use when a network will not be heavily loaded.  However, real networks often experience 
heavy traffic loads at unexpected times.  This makes TCP/IP a questionable choice in 
real-time situations.  This is particularly true when communication is used to support 
critical infrastructures like the electric power grid.  Fortunately, the proposed 
infrastructure that would support  TCP/IP traffic can easily support stronger protocols 
that are compatible with the IP standard like the Astrolabe system described in this 
document. 

Conclusions  
Our paper explored options fo r supporting a new generation of electric power 

system monitoring and control algorithms.  We identified concerns about the tentative 
utilities internet standards, notably the assumption that standard versions of TCP running 
on standard platforms should be used to transport monitoring data.  These issues include 
several stemming from the TCP protocol, and others reflecting the practical difficulty of 
configuring a utilities monitoring system using pair-wise connections and, as that system 
evolves through time, maintaining it.  Used on a large scale, it also seems likely that a 
TCP monitoring infrastructure would suffer from performance problems, of the sort seen 
in the Internet when a web site becomes overloaded. 

We also described the Astrolabe system, a flexible and extensible mechanism for 
large-scale monitoring, control and data mining.  Astrolabe’s peer-to-peer gossip 
protocols result in a system robust against many kinds of disruption, including the 
patterns of localized network disruption typical of network overloads and distributed 
denial of service attacks.  Astrolabe’s protocols “route around” such problems.  A 
simulation study suggests that Astrolabe could be a valuable tool for solving some 
aspects of the utility network monitoring problem.   

At the same time, we found that Astrolabe has some drawbacks.  Information 
propagates reliably, but too slowly for notifications when an urgent event occurs.  There 
may be security issues associated with the Astrolabe model, in which all users can see the 
database and aggregation results.  And Astrolabe offers weak consistency, perhaps too 
weak for certain applications.   Although we have proposed solutions for all of these 



problems, our initial evaluation is not detailed enough to validate this overall vision.  Far 
more work will be needed. 

We also described a model, which can be formalized, within which it is possible 
to derive an analytical prediction of Astrolabe’s performance and robustness to 
disruption.  Such analysis is confirmed by experiments on the current implementation, 
even under network conditions known to disrupt protocols using techniques other than 
the kind of epidemic peer-to-peer mechanism employed by Astrolabe   For example, 
Astrolabe is known to maintain its reliability, with only slightly inc reased data reporting 
latencies, with message loss rates of as much as 50%. 

Finally, we pointed to other work in which we apply similar techniques to study 
problems at smaller time-scales. 

Our work supports several broad conclusions.  First, we have come to believe that 
the power industry is allowing itself to drift towards standardization using technologies 
that just may not be the right choices for this setting.  A scientific effort to evaluate 
options carefully before declaring them to be standards is urgently needed.  The industry 
will need to use the best-of-breed solutions if it is to solve the new generation of 
problems, resulting from a variety of trends: restructuring, the emergence of competitive 
markets, and the desire to operate the grid closer to its limits.  Standardizing on the 
Internet protocols simply because they are widely used may not be appropriate: the 
Internet was not designed to support mission-critical monitoring and control software.   

The good news in our study is that the same Internet infrastructure can be used in 
ways that work around at least some of the problems. Astrolabe is an example of the 
kinds of technologies that could respond to these needs, but is certainly not the only 
technology needed. A broad, industry-backed initiative to rigorously quantify the needs, 
systematically evaluate the options, and standardize on the best technologies will be 
required if we are to advance towards a power grid that is not merely restructured, but 
also as secure and reliable as the one from which it evolved. 
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