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Abstract— Future applications running on mobile plat-
forms will sometimes need to query sensors and track
sensor data over time. This paper uses the publish-
subscribe paradigm as a natural solution to querying
sensors from mobile platforms, and proposes a scalable
approach to implement publish-subcribe, driven by the
querying application. Our approach is evaluated by sim-
ulation, focusing on scalability.

I. I NTRODUCTION

With the widespread availability of wireless technol-
ogy and the deployment of an increasing variety of
sensors, information generated by sensors is becoming
available to applications running on mobile nodes. Re-
trieving this information in a reliable, efficient manner
will be an important building block for many applica-
tions. However, unreliable, low bandwidth communica-
tion links and node mobility make efficient, reliable, and
scalable information retrieval a challenge.

Consider the example of an amusement park or urban
environment, in which a large number of visitors moves
around. Every visitor carries a PDA or cell phone run-
ning the relevant monitoring application (called query
node). This application allows the user to query the
environment in order to ask about queue length, waiting
time, ride status, directions (e.g., shortest path), etc. On
his PDA, the monitoring application constantly updates
the results of his query. The user is generally interested
in the sensors within a certain area, and this area moves
with him.

In this scenario, the query nodes want to track the data
of particular sensors over time. For instance, the length
of a waiting queue may be interesting for the query node
when it drops below a certain threshold. Hence, the query
node needs somehow to be notified when this is the case.
Note that queries can be much more complex, involving
multiple sensors or types of sensors. While traditional
approaches typically assume power-constrained sensor

nodes and thus try to minimize the number of sent
packets, the applications and sensors we have in mind
will not be that power-constrained, although they will
need to cope with wireless communication issues. For
instance, sensors can be integrated into devices that
are connected to electrical power, such as light bulbs.
Moreover, critical sensors such as the ones used for
disaster response will probably have sufficient power
during periods of activity.

Traditional approaches (e.g., [1]) generally use so-
called in-network processing and aggregation, by which
the query is flooded within a certain area and a routing
tree rooted at the query node is used to return the result
to the query node. If the query permits, the results are
aggregated on their way to the query node. This type
of aggregation, which we callintra-query aggregation,
reduces the size of the query reply and thus scales well
in the number of considered sensors. However, these ap-
proaches generally only consider stationary query nodes.

Inspired by the work in [2] and [3], we propose to use
the publish-subscribe paradigm to approach the problem
of querying sensors from mobile nodes. In our approach,
a query node periodically runs an algorithm to identify
the sensors it wishes to track. It then ”subscribes” to
updates, which these sensors periodically “publish”. The
query node is now able to repeatedly evaluate the query,
presumably updating a map or other application-specific
user interface. At some second frequency, the query
node recomputes the sensors of interest. Thus perhaps
the query node decides which sensors to monitor every
minute, but the sensor nodes send updates every few
seconds. In a sense, instead of intra-query aggregation
we transform the query into subscriptions to sensor
updates and aggregate at the level of these subscriptions.
This allows us to scale up to a large number of query
nodes, as query nodes take advantage of and share
preexisting subscriptions.



The paper’s main contribution is the novel, highly
scalable mapping from queries to topics and the cor-
responding underlying sensor network structure. More
specifically, we show that structuring the sensor network
into a regular grid provides a convenient underlying
network structure for this class of applications. The map-
ping is entirely driven by the querying application. Our
performance simulation measures the impact of query
node mobility and the number of considered sensors on
the quality of the query result and the message overhead.
It shows that our approach scales well even for large
numbers of query nodes.

The remainder of the paper is structured as follows: In
Section II we define a query model. Section III discusses
how to generate the result of the query, in particular
the mapping from query to topic and from topic to the
underlying sensor network. In Section IV, we present
SENSTRAC and we show the corresponding simulation
results in Section V. Section VI puts our work in larger
context with existing work and Section VII concludes
the paper.

II. QUERY MODEL

We consider queries that track sensor data over time;
as updates are received the result of the query continu-
ously evolves.

Typically, queries are constrained by geographical
boundaries - generally somewhere in the proximity of the
query node. The geographical boundaries are defined by
the query node’sarea of interest (AoI). For simplicity,
we consider a two-dimensional area of interest, which
is represented by the smallest square1 that includes all
affected sensors; the generalization to three dimensions
is straightforward. The AoI generally moves with the
query node.

We also assume that the sets of sensors upon which
a query depends overlap considerably between two in-
stances of a query from the same query node, unless
the AoI is explicitly reassigned by the query node. In
intuitive terms, we assume that the query nodes move
at a moderate speed (e.g., walking or running speed),
although our approach could also support faster-moving
query nodes. Generally, the query node speed that can be
supported also depends on the transmission range. The
larger the transmission range, the longer two nodes are
likely to be within each other’s transmission range.

We support any query that depends on current and
future values of a set of sensors; queries that ask for

1The reason for using a square becomes apparent later in the paper.
It is related to the fact that cells are represented as rectangles.

sensed values in the past are not supported. Once a query
is running, sensor data is tracked as it evolves, however,
hence queries can depend on a sequence of values from a
sensor. For instance, the query node can ask to be notified
when any temperature sensor detects a drop exceeding
60 degrees F.

Clearly, not all queries can be answered with the
same efficiency and accuracy. In our model, accuracy
is a complicated function of update rate, mobility rate,
transmission ranges, and network load; here, we explore
the question using simulations.

Queries are expressed in traditional SQL syntax [4].
They depend on a set of tables defined across the
sensor network that conceptually represent the available
data. The core table, called SensorTypes, indicates in its
columns the sensor ID, the x and y coordinates of its po-
sition, and its type (e.g., temperature, queueLength). This
table (and other tables defined below) are not “stored”
at any single location. Instead, they can be considered
as ”virtual” tables. Indeed, the way the information in
these tables is collected and stored is the main focus of
this paper.

For instance, the following query returns the tem-
perature, ID, and location (inx and y coordinates) of
all sensors whosex and y coordinates lie in the in-
terval [xcoord1 . . . xcoord2] and [ycoord1 . . . ycoord2],
respectively.

SELECT Temperature.VALUE, Temperature.SID,
SensorTypes.LOCX, SensorTypes.LOCY

FROM Temperature, SensorTypes
WHERE Temperature.SID = SensorTypes.SID

AND SensorTypes.LOCX BETWEEN xcoord1 AND xcoord2
AND SensorTypes.LOCY BETWEEN ycoord1 AND ycoord2
AND VALUE > 100F

III. QUERYING THE SENSORS

Traditionally, a tree-based in-network aggregation pro-
tocol queries sensors by flooding the entire query within
the AoI. While this works well for single or small
number of subscribers, it does not leverage the fact
that multiple subscribers may require a reply from the
same sensor. In other words, it is generally very hard
to combine the queries from two different subscribers.
Hence, such an approach does not scale well in the
number of subscribers.

Moreover, tree-based in-network aggregation works
best if the AoI is centered around the query node.
However, we can easily imagine cases in which the AoI
may not include the location of the query node and may
not be directly accessible from the query node, e.g., if
it is located in the next valley in a mountainous region.



In this case, flooding is no longer the most suitable and
efficient query distribution mechanism.

The alternative explored here uses the publish-
subscribe (pub/sub) communication paradigm to collect
query results. Pub/sub is a widely used communication
paradigm and a variety of specifications have appeared
over time (e.g., [5]). Its most important feature is the
decoupling of the message sender from the receivers,
and the asynchronous nature of the communication. In
its simplest form, publishers (the sensors in our case)
publish messages to a particulartopic, while subscribers
(query nodes) subscribe to all the topics that match
their interests. The pub/sub system acts as an inter-
mediary, hence the publisher does not need to know
the subscribers. If the subscriber looses interest in the
messages published on a particular topic, it unsubscribes
from the topic. Many pub/sub systems provide message
filtering on topics, which allows a subscriber to specify
his interest in more detail. Only messages that match
the topic and also pass the filter are delivered to the
subscribers.

In contrast to the traditional pub/sub systems, our
subscriptions are lease based, i.e., they time out after
a certain time. As a consequence, we do not explicitly
support the unsubscribe method traditionally present in
pub/sub systems. Indeed, unsubscribe only makes sense
if it is guaranteed that the unsubscribe eventually re-
moves all subscriptions. In a mobile system, this cannot
be ensured and thus seems too much of a constraint to
be supported.

Querying sensors using the pub/sub paradigm requires
that we implement two different mappings: (1) the
mapping from the query to topic subscriptions, and (2)
the mapping from topics to the actual sensors. These
two mappings are not entirely independent; a particular
choice in one mapping may influence the choices in the
other. While (1) is a more abstract, high-level mapping
(Section III-A), (2) is concerned with implementing
pub/sub and thus structuring the sensor network (Sec-
tion III-B) to provide efficient pub/sub.

A. Mapping Queries to Topics

The mapping of queries onto topics involves a trade-
off between the number of subscribed topics and the
number of messages unnecessarily delivered to the sub-
scriber. Every topic relevant to a query incurs the cost
of subscribing to it. In contrast, subscribing to a topic
to which sensors not included by the query will publish
values can result in situations in which undesired mes-
sages are delivered to a query node, forcing it to filter

and discard them.
Since for any query the primary selection criteria on

the sensors is the area of interest, it makes sense to
first group the sensors into geographic areas and then to
assign topics within each area. This limits the geographic
span of the sensors that publish to a topic, improving the
scalability in the size of the sensor field. The difficulty
here is to find a geographical grouping that maps closest
most query nodes’ typical area of interest. The simple
grouping considered here is that of a grid of cells. Within
a cell, sensors can then be organized into groups accord-
ing to their types. Using this grouping, which is apriori
known to all nodes, queries can be quite easily mapped
onto topics. To simplify the identification of topics and to
avoid having to explicitly send topic names around in the
network, we define a one-to-one mapping between topic
names, types, IDs, and geographical regions. Assume,
for instance, that a topic is defined for every cell in a
grid overlaying the sensors. Such a topic could have the
same name as the corresponding cell, e.g.,B-4, while
temperature sensors in this cell publish to topic/B-
4/Temperature. Revisiting the SQL query in Section II
results in a subscription to topics/B-4/Temperature, /B-
5/Temperature, /C-4/Temperatureand /C-5/Temperature,
assuming that the AoI is covered by cellsB-4,B-5,C-4
andC-5.

B. Structuring the Sensor Network

In this section, we start by briefly exploring two rout-
ing tree-based pub/sub architectures and giving reasons
that make them not practical in our setting. We then
present our broker-based pub/sub architecture for query
applications in sensor networks.

Sensors and query nodes communicate by establishing
(mobile) wireless ad hoc networks. Nodes within trans-
mission range of each other can communicate directly.
More distant nodes rely on other nodes to forward
messages. A routing protocol sets up a route between
a sender and a distant destination.

a) Tree-based architectures:In such settings,
pub/sub can be built over overlay routing trees among
subscribers and publishers. These routing trees are either
(1) rooted at the subscribers, or (2) rooted at every
publisher.

Approach (1), inspired by prior research on in-network
aggregation [6], [1], constructs a tree for every subscriber
(see Fig. 1(i)). The subscriber floods its subscriptions
into the sensor network, with the relevant publishers
responding along a tree structure implicitly built during
the flooding phase. This scales well in the number of



included publishers, but not in the number of subscribers,
due to the need for one flooding broadcast per issued
subscription. It is suitable for stationary subscribers,
but lacks appropriate support for their mobility, making
tracking sensors over time costly. To adjust to subscriber
mobility, one could imagine a so-called proxy root that
forwards the results to the subscriber. This requires that a
path exists from the proxy to the subscriber. Moreover,
every subscriber potentially uses another proxy, which
does not scale well, raising again route discovery and
maintenance issues.

Approach (2), used in [2], [3], constructs one routing
tree per (group of) publisher (see Fig. 1(ii)), in which
the subscribers are generally located at the leaves of the
tree (some subscribers may act as intermediate nodes).
This scales well in the number of subscribers, but not in
the number of publishers. If a subscriber moves, then
the routing tree of every included publisher needs to
be adjusted, which leads to a high route maintenance
overhead. Moreover, route discovery requires that the
publishers find at least one node that knows a route to
the tree. If the publisher is very far from the subscriber,
route discovery can become expensive. Both Approach
(1) and (2) are not explored any further. A representative
finding, comparing Approach (1) with the algorithm we
favored, appears in Fig. 2(e).

b) Broker-based architecture:Having ruled out the
use of these architectures, we now present the architec-
ture that we will explore further. To address the route
discovery and maintenance issues we use a broker-based
architecture (see Fig. 1(iii)), in which some sensors are
designated as brokers that take over the role of routers.
The first issue that arises is how to position the brokers in
the network. As queries use the AoI as primary criterion
(see Section II), we cluster the network into geographic
regions, corresponding to the static grid cells defined in
Section III-A. We thereby assume that the sensors know
their approximate coordinates, either by using on-board
GPS or by inferring their location from their neighbors.

The important advantage of static in contrast to dy-
namic clustering is that every node a priori knows the
clustering and can compute another node’s cell ID solely
based on this node’s coordinates.

Each cell/cluster contains one or, in the case of par-
titions within the cell, multiple brokers. Publishers send
updates to the broker in their cell (or in their partition
within their cell). Subscribers send their subscriptions
to any close broker (see Fig. 1(iii)). The brokers com-
municate updates and subscriptions among them, along
the ”logical” communication links represented by dashed

lines in Fig. 1(iii). Hence, the communication between
cells is routed through the brokers. This has the ad-
vantage that updates are sent as a single copy between
brokers and only need to be duplicated for the last
part of the routing path, namely from the broker to the
subscribers. Thus, the route maintenance cost between
brokers is distributed over multiple subscriptions shared
by many subscribers. Moreover, the broker does not
need to forward a new subscription if it already has
existing subscriptions that consider all topics that are
in the new one. Using an overlay network that primarily
routes messages between brokers keeps a large part of
the routing infrastructure stable and only modifies the
relatively short routes that suffer from mobility, i.e., the
routes between subscribers and brokers.

Moreover, the brokers will eventually be well-known
in the sensor network and many sensors will have routing
information to the brokers in their routing table, making
route discovery very efficient.

Fig. 1. Options for structuring the network.

IV. SENSTRAC

We distinguish betweenintra-cell and inter-cell rout-
ing, using a variant of the landmark hierarchy [7]. Intra-
cell routing addresses the routing infrastructure among
the (sensor) nodes within a particular cell. Inter-cell
routing, in contrast, governs the routing among the cells.

c) Intra-Cell Routing.:The scope of messages sent
in the context of intra-cell routing is limited to that
particular cell. In the intra-cell routing scheme, we rely
on a leadernode. Leaders handle routing, while brokers
are query processing intermediaries. Although we will
use the leaders as brokers in our implementation, we
use different terms because one could imagine using
different nodes for these different roles. The leader is
selected dynamically, according to a certain deterministic
criteria such as lowest node ID. The sensors in the same
cell build a shortest path tree rooted at the cell leader
(see Fig. 1(iii)). Leaders can change over time to handle
failures and load balancing [8].

Partitions within a single cell in the sensor network
may lead to multiple leaders (e.g., Cell B-1 in Fig. 1(iii)).



These partitions may have been artificially introduced by
subdividing the grid into cells.

d) Inter-Cell Routing.: Inter-cell routing governs
communication among the leaders of different cells. All
messages are sent from and directed to a leader. We use
two mechanisms by which leaders learn of the existence
of other leaders. The first periodically forwards leader
hello messages overheard from neighboring cells to the
leader of this cell. We call the leaders of neighboring
cells, of which the leader learns,neighbor leaders.

The second is based on gossiping leader information
among neighbor leaders. Periodically, a leader chooses
a random subset of all leaders it is aware of within a
certain range (measured in leader hops, i.e., the number
of intermediate leaders before getting to the destination
leader) and sends it to a random number of its neigh-
bor leaders. Gossiping leader information results in an
overlay mesh among the leaders (see Fig. 1(iii)).

We use the Ad hoc On-demand Distance Vector
(AODV) [9] routing protocol for gossiping and, in gen-
eral, for all messages (e.g., also updates) sent between
two leaders. Clearly, other routing protocols are also
possible (e.g., [10]).

A. Implementing Pub/Sub

A broker channels subscriptions and updates between
interested parties. As noted, our implementation reuses
the leaders for this second role. Sensors publish their
updates by sending them to the cell leader (broker).
Query nodes send their subscriptions to the closest
broker, usually the one within the same cell.

Upon reception of a subscription, the broker adds the
subscription to its subscription list. Then, it maps the
subscription to the cells and subscribes to the broker
that is on the shortest path to the broker(s) in the
corresponding cells, using inter-cell communication. The
brokers remember active subscriptions to avoid loops.

Although loops are prevented in the subscription
mechanism, update messages may still loop. We cache
update messages for some time to prevent any broker
from forwarding an update message more than once.

Having forwarded a subscription for a topic to another
broker, a broker will not forward any new subscriptions
on the same topic for some timet. This allows the
broker to take advantage of already existing subscriptions
and reduces the number of subscriptions sent between
brokers. However, if the first subscription is lost, then no
updates published to this topic will arrive during timet
and the time until a new subscription is received by the
broker. Hence, the value chosen fort balances a tradeoff

between reducing the number of sent subscriptions and
the consequences of subscription message loss.

B. Routing Between Query Node and Broker

The query node periodically queries its neighboring
sensors for their leader/broker. The routing between
query node and broker takes advantage of the fact that
each sensor node knows a route to the cell leader (broker)
and thus easily can route the message from the query
node to its leader. While the routing path from the
query node to the leader is given, the inverse is not
true. To forward the updates to the query node, we
use the following approach: When intermediate sensor
nodes forward subscriptions from the query node to
the broker, they store a copy locally.2 They then use
the stored subscriptions to determine whether or not
to forward an update from the broker to the query
node. The advantage of using broadcasts rather than
point-to-point communication is that a parent node only
broadcasts an update once, instead of sending it to all
its children sensor nodes one after the other. Thus,
the parent sensor node in the routing tree does not
explicitly know its children nodes. Rather, it forwards
the update based on the currently active subscriptions and
the corresponding filters. This routing scheme is different
from the approaches traditionally used in multicast trees.

When the query node moves, the routing path to the
leader may be broken. To detect a link breakage, the
first sensor in the routing path from the query node to
the leader periodically broadcasts a hello message during
periods of broadcast inactivity. If the query node detects
a link breakage, it tries to establish a new route to the
same broker, resending a previous subscription, and to a
new broker if this is not possible.

V. SIMULATION

For our simulation we used JiST/SWANS v1.0.4 [11],
[12], a simulation environment for ad hoc networks. Java
applications written for a real deployment can be ported
to the simulation environment and then placed under
a variety of simulated scenarios and loads. Jist/Swans
intercepts the calls to the communication layer and
dynamically transforms them into calls to the simulator’s
communication package.

A. Setup

We consider a set of sensor and query nodes. While
sensor nodes are stationary or relatively immobile, query

2To save memory, intermediate sensor nodes can also store an
aggregate of the subscriptions and filters.



nodes are mobile. Communication between two nodesm
and n occurs in an ad hoc manner with a transmission
range of 88m. We use a CSMA MAC protocol as defined
in the 802.11 standards [13], but without the RTS/CTS
and ACK mechanism. Communication can be subject
to interference, in which case the message cannot be
received. Interference can occur without the sender being
able to detect it (this is called thehidden terminal
problem[14]).

Our work does not inject artificial packet loss, al-
though we do model disconnections due to mobility,
transmission range limits, and the hidden terminal prob-
lem just mentioned (using JiST/SWANS’RadioNoiseIn-
deppackage, which uses a radio model identical to ns-2
[15]). Unless otherwise mentioned, we use the default
values defined in JiST/SWANS, such as a bandwidth of
1Mbs.

A total of 600 sensor nodes are uniformly distrib-
uted within the sensor field, which ensures, with high
probability, that at least one route exists between any
two sensor nodes. In the case of single query node, the
query node moves along a straight line[200, 200] to
[900, 900] in the field of 1200x1200m with origin[0, 0].
For multiple query nodes, we use the random waypoint
model [16] with a fixed speed and zero pause time,
thereby removing the randomness caused by varying
speeds and pause times.3 We limit the scope of the
query node’s movement such that its AoI does not extend
beyond the field boundaries. This prevents unrealistic
results due to the measurement setup.

The sensor and query nodes start up at random times,
uniformly distributed between 0 and 100s, and positions.
When they are all up and running, we start our measure-
ments (also called steady-state simulation).

B. Results

In this section, we present the results of our simula-
tion. The query node periodically, every 60s, sends its
query, i.e., subscribes to the relevant sensors. The sensors
publish their current value every 50s (we vary this value
in the simulation displayed in Fig. 2(b)). To enable the
evaluation of our approach, every sensor reports the
current time as its value.

This value is then used to measure three types of
sensor coverage, i.e., the sensors from which the query
node received an update of the corresponding type over
all sensors currently in the AoI:recent denotes the

3Note that in [17] it has been shown that the random waypoint
model is not entirely appropriate. However, for our measurements,
this has no immediate impact.

ratio of sensors for which the query node has received
an update within the latest subscription period (known
value is less than 60s old);1-stalethe ratio from which
the query node has missed the update in the latest
subscription period (60 to 120s old); andn-stale if the
latest update is older (more than 120s old). N-stale is
generally omitted for space reasons. The sum of recent,
1-stale, and n-stale sensor coverage is 1, meaning that
100% of the sensors in the AoI are covered.

The cell size is set to 300m. The default AoI con-
tains all sensors with coordinates600 ≤ x, y ≤ 900
(corresponding to a single cell), amounting to roughly
40 to 50 sensors with a total number of 600 sensors, or
with distance smaller than 200m from the query node’s
position. All results give the average over 20 runs in
different uniform sensor distributions. The approximate
95%-confidence intervals (CI) are:∓0.05 for sensor cov-
erage in the case of single query nodes;∓0.1 for single
query node with moving AoI;∓0.001 for multiple query
nodes; and∓5% for message overhead measurements.

Unless explicitly stated otherwise, we use the above
default values in our measurements.

1) Mobility: We first look at the effects of the query
node mobility on sensor coverage. The graph in Fig. 2(a)
shows the case of a single query node travelling through
the sensor field along a straight line. In this simulation
run, the AoI travels with the query node. More specifi-
cally, the query node is interested in all the sensors that
are within 200m of its current position. As the moving
AoI may involve at times more than one cell it requires
to contact more than one broker. As a consequence, the
sensor coverage fluctuates to some degree. In the same
graph, the forth curve (y2-axis) illustrates the lease-based
nature of SENSTRAC. It displays the message overhead
over time with 100 query nodes and shows that the
increase in the message overhead eventually diminishes
once all the subscriptions time out and update messages
are no longer sent to the query nodes (around 1200s).

The next two graphs show the impact of the update
rate and the speed on sensor coverage. In Fig. 2(b) we
use the same setup as in Fig. 2(a), but with stationary
AoI. The sensors send an update every 30, 50, and
70 seconds. It comes as no surprise that the recent
sensor coverage decreases with decreasing update rate.
Similarly, the recent sensor coverage generally decreases
with increasing speed of the query node. The results of
this experiment, with the query node moving along a
straight line but with a stationary AoI, are shown in
Fig. 2(c). Notice that query nodes with higher speeds
reach the end point of the line (at location [900,900])
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faster and thus the corresponding simulation run stops
earlier.

2) Scalability: We now evaluate the scalability of
SENSTRAC with respect to the number of sensor and
query nodes. Fig. 2(d) shows the sensor coverage (y1-
axis) and the message overhead (y2-axis) averaged over
time (1200 seconds) and all the query nodes. It shows
that the message overhead increases with increasing
number of sensor nodes. Clearly, the more sensor nodes
are within the AoI, the more updates are routed to the
query node. However, the sensor coverage is nearly the
same for all the considered numbers of sensor nodes.
Moreover, the message overhead increases with increas-
ing number of query nodes.

In Fig. 2(e), we compare the message overhead of
SENSTRAC with traditional tree-based in-network ag-
gregation (INA). We consider 700 sensors and use the
same AoI with radius 200m and centered at the query
node’s position for both, and we do not aggregate query
replies. Notice that the choice of this particular AoI
is biased towards the INA approach. Since the INA
approach uses polling, we flood the query at double the
frequency than in SENSTRAC. Still, an updated sensor
value may not be discovered in the INA approach for
30s in the worst case. We can see that the message
overhead for SENSTRAC increases fast for low numbers
of query nodes, but then the increase diminishes with
increasing number of query nodes (see curve labelled
“total”). This is an indication for the scalability of our
approach. Indeed, with a high number of query nodes it
becomes more likely that a broker to which a query node
sends a subscription already has an active subscription.
This allows newly arriving query nodes to take advan-
tage of existing subscriptions. In contrast, INA message
overhead costs increase linearly with the number of
query nodes. The two message types in SENSTRAC
that add the most to the message overhead are the
inter-cell messages and the query node messages (qn).
The former result from sending updates between the
brokers and include all the messages sent by intermediate
hops, while the latter count the number of messages
exchanged between query node and the broker, including
intermediate nodes. Moreover, intra-cell packets are the
messages needed to maintain the routing structure within
a cell and the updates sent to the cell leader. Finally, the
AODV packets indicate the number of packets sent to
maintain/discover the routes between the cell brokers.
Total packets gives the sum of these packets. Fig. 2(f)
shows the corresponding sensor coverage. Notice that in
the case of a single query node the sensor coverage for

SENSTRAC considerably depends on the path chosen
by the single query node (using the random waypoint
model). Thus, the confidence interval is also greater
(∓0.02) in this case.

3) Mapping of Query to Topics:In this section, we
evaluate SENSTRAC with varying queries and cell sizes.

Varying cell size.Fig. 2(g) and Fig. 2(h) highlight
the impact of the cell size on sensor coverage and
message overhead. Consider the curve for cell size 600
in Fig. 2(g). At time 1106 the query node changes from
one cell into another, right at the intersection of four
cells. As a consequence, the resubscription process leads
to a sharp decrease in sensor coverage. Before this, no
cell changes occurred and the sensor coverage was very
high in comparison with the graphs for smaller cell
sizes. Fig. 2(h) measures the network load with respect
to varying cell sizes. The considered packet types are
the same as in Fig. 2(e). With increasing cell size, the
number of intra-cell and qn packets increases and the
number of inter-cell packets decreases. In the case of a
single cell (of length 1200m), no inter-cell packets are
sent. The AODV messages decrease as well, except in the
case of four cells of length 600m. Here, the cell leaders
are generally many hops away so that the route discovery
becomes quite expensive. It may even involve sending
multiple discovery messages with increasing hop count.
Our chosen cell size is 300m, which has the lowest total
message overhead. In the graph we do not consider the
messages sent by the query node. Since we only consider
a single query node, this number is very low and thus
not significant.

In Fig. 3 we show the impact of the AoI on the quality
of the query reply for 30 and 60 query nodes. As before,
we select a stationary AoI that matches a cell. We then
move the AoI – keeping its size unchanged – to cross
one or four cell boundaries (labelled “1 c bdry” and “4
c bdries”). The results show virtually no increase in the
message overhead, nor a decrease in the recent sensor
coverage. Now, we increase the size of the AoI to four
times the size of the original, and to the entire sensor
field. Not surprisingly, the quality of the query reply
decreases, while the message overhead increases.

Varying AoI size.Clearly, the size of the AoI has
an impact on sensor coverage. Common sense dictates
that sensor coverage decreases with increasing AoI size.
Fig. 4 shows the impact of the AoI size on sensor
coverage. Here, we consider a single query node moving
in a straight line together with the AoI. The AoI radius
varies between 200m and 600m. In general, no particular
AoI size performs significantly better than the others.
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The reason for that is that even smaller AoIs may require
the query node to subscribe to multiple brokers, and a
larger AoI does not necessarily trigger subscriptions to
more brokers. Thus, increasing the AoI has only minor
impact on sensor coverage.
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VI. RELATED WORK

Our work draws from a large body of earlier work:
In the context of sensor networks, many approaches

exist. We have already presented approaches based on
in-network aggregation, e.g., [4], [6], [1].

Directed Diffusion [2] can be seen as a publish-
subscribe mechanism, which is implemented using the
tree-based architecture rooted at the publisher. We have
discussed tree-based architectures in Section III-B and
explained why we did not consider them in our work.
Moreover, our simulations run with a much higher num-
ber of query nodes.

The ACQUIRE mechanism [18] uses the concept of
a mobile agent and sends the query through the sensor
network, while acquiring more and more results on the
way. This may result in high latencies and large query
result messages.

While these approaches all consider stationary query
nodes, the following approaches address the issue of
mobile query nodes.

In [3], Huang and Garcia-Molina explore different
algorithms to construct routing trees rooted at the pub-
lishers. Again, the reader is referred to Section III-B for
a discussion of tree-based architectures.

Mobile database access has been studied in [19].
However, Imielinski and Badrinath consider mobile users
that access databases which are interconnected by a fixed
network. Hence, their model is very different from the
model considered in our work.

Pub/sub has become a mature technology in fixed
networks. Research on pub/sub in mobile ad hoc net-
works is more recent and has mainly focused on mobile
subscribers and publishers relying on a fixed broker
infrastructure to support them. The focus of our work,
in contrast, is not to come up with a new pub/sub
implementation for ad-hoc networks. Rather, we show
that pub/sub can effectively support querying sensor
networks. Our contribution is thus the mapping and the
application of pub/sub to querying applications. Most ex-
isting pub/sub systems provide generic pub/sub solutions
and they do not consider the particular mapping to query
applications, such as for instance the tight dependence on
geographic regions. With this orientation, they naturally
focus on how to forward notifications to the subscriber
once the subscriber has moved (as suggested for instance
in [20]). In our setting, these approaches are too costly
given that the usefulness of an update expires after some
time and leader-to-leader communication involves many
intermediate nodes.

Yoneki and Bacon [21] have implemented pub/sub
over mobile ad hoc networks. They assume that also
the brokers are mobile and thus use ODMRP [22] to
distribute the subscriptions to the brokers. This is costly,
as it involves flooding. Moreover, it suffers from the
other disadvantages discussed in Section III-B. In our
approach, sensors are mostly stationary and thus we can
avoid flooding huge areas of the network.

In [23], Kim et al. propose an approach to route
messages to mobile subscribers (called sink in [23]),
based on intermediary accessor nodes. These accessor
nodes are defined by the sink. The protocol corresponds
to the approach presented in Fig. 1(ii). Moreover, [23]
does not consider the actual application, but just looks at
a way to route the messages from a source to the mobile
sink.

In recent years, many routing protocols based on
hierarchical routing have been proposed, e.g., [8], [24].
While these routing protocols generally rely on clusters
that are set up dynamically, our routing depends on a
well-defined grid to form clusters. This clustering is



driven by the query applications we are considering.

VII. C ONCLUSION

The paper has presented a natural and scalable way to
query sensor networks from mobile platforms. We pro-
pose a layered approach in which the query application
is mapped onto a pub/sub system. In a first step, we
map queries to topics, and then show an architecture for
pub/sub that is efficient in the setting we consider.

We have implemented the proposed architecture on
the JiST/SWANS network simulator and have measured
various aspects of our simulation. Our measurement
results show the scalability of SENSTRAC with respect
to the number of query nodes and its flexibility with
respect to the AoI’s position.

Although this paper limited itself to simulation, a
merit of the JiST/SWANS technology is that the sim-
ulated code is executable on real platforms with only
minor modifications. Accordingly, in our future work we
hope to begin real experiments using actual sensors and
query nodes.
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