
PLATO: Predictive Latency-Aware Total Ordering

Mahesh Balakrishnan, Ken Birman and Amar Phanishayee

{mahesh, ken, amar}@cs.cornell.edu

Department of Computer Science

Cornell University

Keywords: Datacenters, Distributed Systems, Group Communication, Multicast, Replication, Total Ordering.

Abstract

PLATO is a predictive total ordering protocol designed for low-latency multicast in datacenters. It predicts

out-of-order arrival of multicast packets by observing their inter-arrival times, and delays packets before passing

them up to the application only if it believes the packets to have arrived in the wrong order. We show through

experimentation on real datacenter-style networks that the inter-arrival time of consecutive packet pairs is an

excellent predictor of out-of-order delivery. We evaluate an implementation of PLATO on the Emulab testbed, and

show that it drives down delivery latencies by more than a factor of 2 compared to the fixed-sequencer protocol.

1 Introduction

Total ordering is a fundamental problem in distributed systems - in simple terms, it refers to the task of ensuring

that a set of nodes deliver incoming multicast messages in the same order. The total ordering problem is defined

within the context of thegroup communicationparadigm, where processes communicate with each other using

multicast groups providing different message delivery semantics.

Total ordering protocols occupy a critical slot in the communication stack of modern commercial datacenters,

allowing applications to distribute and replicate data and functionality with strong consistency guarantees. Made

popular by online e-commerce websites, datacenters are increasingly the computing platform of choice for a

wider range of applications, ranging from computational finance to mission-critical applications. Application

domains traditionally centered around expensive, specialized hardware and software - such as air-traffic control

or military command-and-control - have begun to migrate towards commodity datacenters, lured as much by the

cheap running costs and easy maintainability of COTS components as by the possibilities of the scale-out paradigm

- massive scalability and very high availability.

A growing class of datacenter applications is time-sensitive and requires low-latency delivery of multicast mes-

sages. In some cases, timeliness is directly related to real-world metrics - for instance, the inventory service of

1

an online bookseller has to reflect the latest item counts, to prevent losses caused by overselling. Other examples

involve calculators running in financial datacenters, which require up-to-date information on stock quotes, and

tracking applications on military datacenters dealing in location updates of targets. Such applications require the

ability to spread data consistently and rapidly throughout a datacenter - mandating the need for a fast, low-latency

total ordering protocol.

In this paper, we present PLATO, an optimistic total ordering protocol designed for time-critical datacenter

applications. The key idea behind PLATO is to delay incoming data packets from the application only if there is a

significant likelihood that they might be out of order - and to use a predictive scheme to determine that likelihood.

PLATO allows applications to consume most incoming data packets within a few hundred microseconds of arrival,

delaying packets to wait for ordering information only when it believes their arrival order to be inconsistent across

the multicast group. In line with other optimistic ordering protocols [6, 7, 8], PLATO requires the application to

haverollback capability, allowing delivered packets to be revoked when predictions are incorrect.

The predictor of out-of-order arrival used by PLATO is the inter-arrival time of consecutive packet pairs into

user-space. Packet inter-arrival time is a simple yet powerful predictor of disorder in a datacenter setting - im-

portantly, it is local information available at no extra cost or instrumentation at the receivers. To our knowledge,

PLATO is the first predictive total ordering protocol - while there is at least one protocol that masks delay dif-

ferences between receivers to achieve total order [8], we are not aware of any existing protocol that attempts to

speculate on disorder on a per-packet basis.

The contributions of this paper are:

• We experimentally assess the causes and extent of out-of-order delivery on two datacenter-style switched

networks - the Emulab testbed at Utah and a 252-node cluster at Cornell University.

• We propose the usage of inter-arrival times of consecutive packet pairs as a predictor of out-of-order delivery.

We motivate this predictor by experimentally observing a high correlation between low inter-arrival times

2

and out-of-order delivery.

• We design and implement PLATO, a predictive total-ordering protocol that uses the above predictor to

decide whether arriving packets are in order or not - and waits for extra ordering information only in the

latter case.

• PLATO is evaluated on the Emulab testbed, and performs significantly better than the existing fixed-sequencer

protocol, slashing delivery latency by more than a factor of 2 while incurring less than 1% rollbacks.

In Section 2, we articulate the requirements of a time-critical datacenter ordering protocol. In Section 3, we

assess the extent and causes of out-of-order delivery on datacenter-style networks, and show that the inter-arrival

time of packets can be an excellent predictor of disorder. Section 4 provides the design and implementation details

of PLATO, and Section 5 is the evaluation of the implementation.

2 The profile of a datacenter total ordering protocol

A time-critical total ordering protocol is likely to co-exist on nodes with other protocols, competing for band-

width and CPU cycles. A typical design for a datacenter application is shown in 1.(a), where several nodes host

a replicated service; they are queried by other nodes via TCP/IP or some other unicast protocol, and updated

using totally ordered multicast. For example, the replicated inventory service mentioned earlier would receive up-

dates from the service responsible for processing buy transactions and be queried by services requiring up-to-date

information on the availability of items.

The existence of other competing protocols and a time-critical, possibly CPU-intensive application running

on the node emphasizes the need for a light-weight, low-overhead ordering mechanism. Datacenter workloads

are likely to vary due to external factors - Christmas season for online stores and high-activity periods for stock

calculators come to mind - and the ordering protocol should be capable of working well at different data rates,

providing timely delivery at low and intermediate throughputs while being able to sustain bursts of high-throughput

3

E

D

C

B

A

Ke
rn

el
 B

uf
fe

r

Order of arrivals into
user-space

t

H

Loss Induced Disorder:
Kernel Buffer Overflows
F and G are dropped
App sees H after E !

A B C D E H

E

D

C

F G

G

F
Replicated Shopping Cart ServiceInventory Service

Replica 1

Inventory Service
Replica 2

Catalog Service
Replica 1

Catalog Service
Replica 2

Query

Query
Update 1

Receiver 1

Sender 1

Switch Switch
Receiver 2

Sender 2

Receives Sender 1's
message after Sender

2's message

Receives Sender 2's
message after Sender

1's message

Replicated Warehousing Service

Update 2

Updates to
Inventory Service

are Totally
Ordered (a): Total Order for updating services

(b): Swap-induced Disorder (c): Loss-induced Disorder

Figure 1.

traffic. A related goal is throughput and performance stability, typically achieved by inducing exclusively proactive

overheads and avoiding costly reactions to failures that further destabilize the system. Additionally, datacenters

and large clusters exhibit specific failure modes and performance trade-offs, and the ideal ordering protocol for

such settings should be able to exploit the natural properties of the underlying hardware - while retaining the ability

to work well on many different kinds of commodity hardware.

Of this wishlist of properties, we would like to underscore the importance of performance at low and rapidly

varying data rates. We have argued elsewhere that the natural use of multicast in a datacenter gives rise to large

numbers of groups with low individual data rates [1]. Imagine a replicated data store where fine-grained objects

are cloned and cached on different nodes with high-level objectives such as fault-tolerance and data locality; if

multicast is used to update objects, each node has to belong to as many groups as the number of objects it caches

or replicates, resulting in large numbers of groups that overlap in chaotic patterns. Another example involves

4

financial calculators that use publish-subscribe libraries to subscribe to the latest prices for different equities, and

hence belong to as many multicast groups as the equities they are interested in. The activity level within a single

group can vary dramatically, even if the overall system throughput stays constant - the popularity of a single

replicated object could experience sharp spikes, either independently or in correlation with other objects.

To summarize the properties mentioned thus far:

• The protocol should leverage the natural properties of the datacenter hardware,

• impose minimal and stable overheads,

• and crucially, work well at low per-group data rates that vary sharply over time and across groups.

3 Cluster Properties

It is a well-known fact that broadcasts on LANs arrive almost simultaneously at all receivers, and consequently

the arrival of packets in different orders at different receivers is a very rare event. Multiple protocols have leveraged

this property to provide optimistic delivery of broadcast messages to the application [6, 7]. In this paper, we extend

this observation to IP Multicast [2] within datacenters.

Datacenters are typically heterogenous agglomerations of smaller homogenous clusters, interconnected by high-

capacity switches. Intuitively, out-of-order delivery in switched networks occurs in two forms:swapsandpacket

loss. Swaps occur due to disparities in the distances between senders and receivers. Consider the simple case

of two senders and two receivers illustrated in Figure 1.(b), where one sender is very close to one receiver and

relatively far from the other one, and the other sender is placed close to the second receiver and far away from the

first one. Nearly simultaneous multicasts from the two senders will arrive at different orders at the two receivers.

Packet loss in a datacenter almost never occurs within the networking fabric; more commonly, it is the end-host

kernel that gets overwhelmed by the rate of incoming traffic and drops packets [1]. Figure 1.(c) illustrates how

kernel buffer overflows trigger out-of-order delivery - the receiver delivers the packets immediately before and

5

Cisco 6509

Cisco 6509Cisco 6509

Cisco 6509

Cisco 6513

1 Gb
8 Gb

4 Gb

4 Gb

100 Mb

100 Mb

100 Mb

600 Mhz

850 Mhz

850 Mhz 2 Ghz

Emulab3 test scenario:
3 switches of separation
One-way ping latency:

~110 microseconds

H
P

 P
ro

cu
rv

e
40

00
M

H
P

 P
rocurve

4000M

HP Procurve
6108

100 Mb 100 Mb
1 Gb 1 Gb

Cornell3 test scenario:
3 switches of separation
One-way ping latency:

~70 microseconds

Emulab2 test scenario:
2 switches of separation
One-way ping latency:

~100 microseconds

H
P

 P
ro

cu
rv

e
40

00
M

H
P

 P
rocurve

4000M

HP Procurve
6108

100 Mb 100 Mb
1 Gb 1 Gb

1.3 Ghz

1 Gb
Cornell5 test scenario:

2 switches of separation
One-way ping latency:

~60 microseconds

4 Gb

1.3 Ghz

HP Procurve
6108

1 Gb 1.3 Ghz

1.3 Ghz

3 GHz

850 Mhz

100 Mb

The Utah Emulab Testbed

The Cornell Testbed

Figure 2. Clusters

after the loss burst in consecutive order.

3.1 Experiments

We ran simple experiments on two datacenter-style switched networks to evaluate the extent of out-of-order

delivery of multicast messages. The first of these is the Emulab testbed at Utah [10], which is a heterogenous

collection of several smaller clusters connected by Cisco 6500 series switches; Figure 2 shows the topology of

the testbed (redrawn from information on www.emulab.net) - inter-node one-way ping latencies range from 100

to 300 microseconds, depending on the location of the nodes and how loaded the network is. The second network

6

is a homogenous rack-style cluster of 252 1.3 Ghz nodes at Cornell University, comprising of 14 racks of 18

blade-servers each, interconnected via a 3-level hierarchy with HP Procurve 4000M switches at the leaves and HP

Procurve 6108 switches in the interior - the network diameter is around 60-100 microseconds.

Our experiment involved placing a receiver and a sender each on two different parts of the network separated

by multiple switches, and multicasting data at different rates to measure the frequency of out-of-order deliveries.

We ran this experiment in four scenarios -Cornell3 andCornell5: the Cornell cluster, with the 1.3 Ghz sender-

receiver pairs separated by three switches and five switches, respectively,Emulab3: the Emulab testbed, where

one sender-receiver pair consists of 3 Ghz nodes and the other sender-receiver pair is made up of 2 Ghz nodes

three switches away, andEmulab2: the Emulab testbed, where one pair consists of 3 Ghz nodes and the other of

850 Mhz nodes two switches away. Figure 2 outlines the placement of these four scenarios.

Figure 3 shows the percentage of swaps and losses in these four scenarios, as we increase the multicast sending

rate in the group. We measure simple swaps by comparing receiver logs after the experiment and locating con-

secutive packets which are delivered in inverted orders at the two receivers. As expected, the higher the rate of

multicasts, the higher the probability of a swap occurring - for the Cornell cluster 5-switch scenario, the percentage

of consecutive packet pairs which are swaps rises from 1% at 800 packets per second to 4% at 4000 packets per

second. For the Emulab 3-switch scenario, the percentage of swaps rises from 0.7% at 800 packets a second to

around 3.2% at 4000 packets per second. In these graphs, we do not show the frequency of more complex swap

events, where a sequence of packets is swapped with another sequence - we observed a very small percentage

(< 0.0001%) of these on the Cornell cluster, and none of them on the Emulab testbed.

Figure 3 also shows that packet loss increases with receive throughput, albeit less smoothly - the Cornell 5-

switch scenario loses more packets at 2000 packets a second than at 2400 packets a second, and the Emulab 3-

switch scenario exhibits more loss at 3200 packets per second than at 3600 packets per second. Our hypothesis for

this uneven increase in packet loss is that the inter-arrival time of packets interacts with the OS thread scheduling

mechanisms in complex ways - at intermediate rates, the receive thread is occasionally context-switched out and

7

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab3

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab2

swaps
total losses

 0

 1

 2

 3

 4

 5

 6
 4

00
0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell5

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell3

swaps
total losses

Figure 3. Disorder Characterization

loses packets while it’s not running, whereas at very high rates the receive thread is continuously dequeueing

packets off the socket and hence is rarely context-switched out.

With this experiment, we established that out-of-order delivery does occur in switched datacenter-style net-

works. Next, we explore the feasibility of using the inter-arrival time of consecutive packets into user-space as a

predictor of both swaps and packet loss. Since swaps occur when multicasts are nearly simultaneous, it is natural

to hypothesize that a swap would involve two packet arrivals that are very close to each other - in this case, we

expect the arrival times of packets into user-space to reflect the actual timing of the multicasts. Since packet loss

occurs when kernel buffers overflow, we’d expect to observe a sequence of very low user-space inter-arrival times

immediately prior to the loss burst, as the receive thread rapidly empties packets from the full kernel buffer. Recall

8

that we explained these scenarios in Figure 1.

To validate our hypotheses, we examined distributions of inter-arrival times for consecutive packet pairs. We

are interesting in two metrics of the distributions:

• The time representing the 95th percentile of inter-arrival times of swapped packet pairs, and

• the percentage of all consecutive packet pairs - swapped or not - whose inter-arrival times fall within this

limit.

Figure 4 shows this data in six settings: the top three graphs are for different throughputs, in theCornell3

scenario, and the bottom three are for a single throughput setting of 1200 packets per second, for theCornell5,

Emulab2andEmulab3scenarios. The top half of each graph shows the histogram for the inter-arrival time intervals

for swapped packet pairs, and the vertical line in each graph is the 95th percentile of these intervals. The bottom

half shows the inter-arrival time for all packet pairs, and as the vertical line continues down into this half, it

indicates the percentage of inter-arrival times of all packet pairs that lie within it. The two metrics mentioned are

stated on top of each distribution graph.

Why are we interested in knowing the percentage of all packet pairs that fall within the 95th percentile of

swapped pair inter-arrival times? In theCornell3 400 packet graph (top, left), 95% of all swaps and 14% of all

packets have inter-arrival times of less than 128 microseconds. Hence, if we use an inter-arrival threshold of

128 microseconds to detect swaps - by raising a ‘red flag’ (we will elaborate later on what exactly this entails)

whenever two packets arrive within that threshold time of each other - we would end up catching 95% of all swaps,

and suspect 14% of all packet pairs of being swaps.

Figure 5 shows how the two metrics mentioned above vary with throughput, for the four different scenarios;

this gives us a better understanding of how data rate affects the quality of prediction that can be obtained by

observing the inter-arrival times. In the graph, the 95th percentile of inter-arrival times of swaps stays almost

constant for all the scenarios - however, the percentage of all packet pairs that fall inside it goes up significantly

9

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 400

128 micro-s (14% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 1200

130 micro-s (25% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 2000

131 micro-s (36% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell5, 1200

125 micro-s (26% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000
%

 o
f p

ac
ke

ts
 re

ce
iv

ed

inter-arrival time in microseconds

Emulab2, 1200

173 micro-s (29% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Emulab3, 1200

134 micro-s (26% of all)

swaps
all

95th %ile swaps

Figure 4. Histograms of Packet Inter-arrival Times

 0

 50

 100

 150

 200

 250

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of inter-arrival times for swapped packet pairs

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% of all packet pairs corresponding to 95th %ile of swaps

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 5. Variation of Swap metrics with throughput

10

 0

 50

 100

 150

 200

 250
 1

50
0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of min inter-arrival time of 5 pairs before a loss burst

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% all packet pairs corresponding to 95th %ile

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 6. Variation of Loss metrics with throughput

as throughput rises. To continue using the metaphor of a ’red flag’, a fixed threshold would catch all swaps, irre-

spective of throughput; however, it would also suspect a much higher percentage of all packet pairs of being swaps.

Next, we perform a very similar analysis of losses. Here, we measure the minimum inter-arrival time of the

last five packet pairs immediately preceding a loss burst event. The rationale here is that the ’red flag’ in this case

gets raised when we observe a sequence of low inter-arrival times. Figure 6 shows this data; note that for certain

throughput-scenario pairings we did not observe enough loss to compute a percentile, and we have not plotted

these on the graph.

The data presented thus far leads us to formulate the following heuristic for detecting disorder, parameterized

by a threshold∆ - if the inter-arrival time between two packets at a receiver is less than∆, it is reasonably

probable that the packets have arrived in different order at other receivers; if the time is greater than∆, it is

highly improbable that the packets are delivered in different order at other receivers.

This heuristic fits swap-induced disorders precisely - and, in our particular implementation of it, also suffices to

catch loss-induced disorder; this will become clear once we describe our design.

11

4 The Design of a Predictive Ordering Protocol

To embed the heuristic presented above into a practical protocol, we need to examine the design space of total

ordering algorithms. Defago,et al. [3] provide an analytical comparison of total ordering protocols, dividing

them into five broad categories -fixed-sequencer, moving-sequencer, privilege-based, communication history, and

destinations agreement- and conclude that for the non-uniform version of total ordering (where the delivery

order at failed nodes does not matter), fixed-sequencer has the least latency and the second-highest throughput.

The paper states that the moving-sequencer algorithm has slightly higher throughput than fixed-sequencer, but is

more complicated to implement. Accordingly, we focus on the fixed-sequencer algorithm, both as a performance

benchmark to compare against and as a starting point for our own design.

In the fixed-sequencer algorithm, a single receiver - thesequencer- periodically multicastssequencing mes-

sages, establishing the correct order of delivery for the rest of the group. While most theoretical discussions of

fixed-sequencer present the algorithm as sending out a single sequencing message for every received data mes-

sage, in practice the sequencer can send out an ordered list of multiple received data messages in every sequencing

message, allowing it to tune the overhead imposed by sequencing. If the sequencer sends one sequencing message

for everyk received data messages, one out of everyk +1 messages in the group is pure sequencing overhead; we

call k thetrade-off parameter.

Armed with this basic understanding of the operation of the fixed-sequencer protocol, it becomes apparent

that in most cases, messages are delayed unnecessarily while the receiver waits for ordering information from

the sequencer. An ideal total ordering algorithm would delay only those packets which are received in different

orders at different receivers, and deliver all other messages immediately to the application. This observation

leads us towards a redesign of the fixed-sequencer protocol, where receivers wait for sequencing messages before

delivering packets to the application only if they suspect them of arriving in the wrong order. What is needed is a

decision mechanism that can be applied on a per-packet basis to selectively wait for sequencing information, and

12

this is precisely the heuristic described in the previous section.

For a predictive mechanism to be a viable option, the application should provide some form ofrollback ca-

pability to the protocol. We assume that the application provides the protocol with hooks that allow packets to

be revokedonce they are delivered, causing a rollback if the application has already consumed the packet. Since

application rollbacks are likely to be very expensive, we aim at having a very low percentage of them - typically,

one out of every thousand packets. Note that a packet revocation will only trigger an application rollback if the

application has already consumed the packet.

4.1 PLATO: Design and Implementation

The basic idea behind PLATO is extremely simple: If two consecutive packets arrive within∆ of each other,

they are suspected of arriving in incorrect order and further information is awaited from the sequencer node before

they are delivered to the application.

A trivial implementation of this idea would involve delaying packets for∆ time and delivering them to the

application if no other packet arrives within that time. However,∆ is likely to be in the tens or hundreds of

microseconds, making an efficient implementation of this algorithm difficult if not impossible on commodity

platforms - context switching granularity is typically in the milliseconds, and varies greatly over time and across

hardware.

As a result, PLATO does not delay packets before passing them up to the application - instead, it tags each

packet with a timestampTm before which it should not be used by the application, equal to∆ microseconds

after its arrival time. Instead of sleeping for∆ microseconds and then waking up and delivering the packet to

the application if no other packet arrives within that time-span, it just delivers the packet to the application and

resumes listening on the socket. If another packet arrives within∆ microseconds, we revoke the last packet

from the application instantly - since we are within the∆ envelope, we can be sure that the packet has not been

consumed by the application, and hence the revocation does not trigger a potentially expensive application-level

13

D

optdeliver(A)
optdeliver(E)
optdeliver(B)
optdeliver(D)

B E A

A

E

D

B

C

TC-TD<DELTA

TE-TA>DELTA

Seq Msg
Order: ABCD

D

B

revoke(D)
setsuspect(D)
setsuspect(C)

E A

C

E

revoke(E)
setsuspect(E)

confirm(A, B, C, D)

suspicious

suspicious

suspicious

pending

pending

pending

Underlined packets in
pending are suspected

t

s X YKernel Buffer

P
LA

TO

ev
en

t h
an

dl
er

B E A

D Cpending queue

suspicious queue

‘s’ is a sequencing packet
with the order ‘ABCD’

Application

optdeliver(DataPacket) revoke(PacketDescriptor) confirm(PacketDescriptor)

Application hooks

Figure 7. The PLATO Pipeline

rollback. An important metric for the protocol, then, is the frequency with which a revocation of a packet occurs

after the corresponding timeTm has passed.

PLATO has three hooks into the application -optdeliver, which takes a data packet as a parameter and is called

to optimistically deliver packets which may later be revoked;revoke, which takes a packet descriptor as a parameter

and is called to revoke packets previouslyoptdeliver-ed to the application, andconfirm, which is called with the

packet descriptor of a previouslyoptdeliver-ed packet when the final ordering of that packet is known.

As shown in Figure 7, PLATO processes packets through a simple pipeline consisting of two queues - apending

queue, which consists of packets being conservatively withheld from the application, and asuspiciousqueue,

which consists of packets already sent up to the application for which sequencing information has not yet arrived,

and which can consequently be revoked from the application. Packets in thependingqueue are markedsuspected

of being out-of-order and will not be delivered to application until sequencing information arrives for them; or,

they are notsuspectedbut are stuck in the queue behind one or moresuspectedpackets. If no out-of-order arrivals

occur, data packets travel through thependingqueue to thesuspiciousqueue, and then onto the application; if they

14

do occur, the arrival of sequencing information can cause packets to be transplanted from the middle of one queue

to the other, or to the application, violating queue FIFO order.

In addition, PLATO maintains asequencingqueue, which buffers sequencing information - this queue comes

into play only if we receive sequencing information for a data packet which we have not yet received, and hence

have to queue up all subsequent sequencing information until that data packet arrives and can be delivered to the

application.

We now describe PLATO in terms of two simple events - the arrival of a data packet, and the arrival of a

sequencing packet. When a data packet is received, PLATO tags it immediately with the arrival time. If ordering

information for the data packet has already arrived from the sequencer, the packet isoptdeliver-ed to the application

and immediatelyconfirm-ed, with no further processing. If not, the arrival time is compared with the previous data

packet’s arrival time, and the difference checked against∆.

If the difference is less than∆, the packet is tagged assuspected, and added to thependinglist. Now we need

to locate the previous data packet in the PLATO pipeline and prevent it from being used by the application. There

are three possibilities -

1. It is in thependingqueue and has not beenoptdeliver-ed to the application, in which case we can tag it as

suspected.

2. It is the last packet in thesuspiciousqueue and has beenoptdeliver-ed to the application, in which case

we revokeit from the application and move it from the tail of thesuspiciousqueue back to the head of the

pendingqueue. Note that it is necessarily the last packet in thesuspiciousqueue and cannot be in the middle,

since it was the last packet to be received.

3. It is in neither thesuspiciousnor thependingqueues, in which case it has already been sequenced and

confirm-ed to the application. Nothing more has to be done in this case.

If the difference is more than∆, the packet’s fate depends on the contents of thependingqueue. If thepending

15

queue is non-empty - i.e, there are packets ahead of the current packet which are taggedsuspectedand are awaiting

ordering information - then we need to add this packet to the end of thependingqueue. If thependingqueue is

empty, then we canoptdeliverthe packet and add it to the end of thesuspiciousqueue.

The second part of the protocol concerns its behavior when a sequencing packet is received. In its practical

implementation, a sequencing packet contains a list of data packet descriptors - sorted by the order of arrival at

the sequencer node. We iterate over this list of descriptors, and for each of them we locate the corresponding data

packet within the PLATO pipeline (if we can’t locate it in the pipeline, we buffer the descriptor - and all descriptors

following it in this and subsequent sequencing packets - in thesequencingqueue until we receive the data packet).

Once we locate the data packet, we perform one of the following actions:

1. If the packet is in thependingqueue, we remove it andoptdeliverandconfirm it to the application. We

also dequeue all the packets from thesuspiciousqueue,revokethem from the application, tag them as

suspectedand move them back to the head of thependingqueue; these are packets incorrectly delivered to

the application ahead of the currently sequenced packet.

2. If the packet is in thesuspiciousqueue, we remove it andconfirmit to the application. In this case, we have

to dequeue all packets ahead of it in thesuspiciousqueue,revokethem, tag them assuspectedand move

them back to the head of thependingqueue.

4.2 Implementation and other Details

PLATO is implemented as an event-driven system with two threads, one running at high priority dequeueing

packets off the socket and pushing them into the event queue, and the other servicing the queue and processing

events. The implementation is written in Java - for our experiments, we use Java’s System.nanoTime() method

for determining the current system time at microsecond precision; this may not be universally portable, but is

implemented on most modern platforms.

16

PLATO runs a link reliability layer that uses sender-based sequencing and negative acknowledgments to request

unicast retransmissions of lost packets. Node failure is orthogonal to the protocol as it is presented, and any scheme

that works to handle such faults in fixed-sequencer protocols should work equally well here. Also, while we have

presented PLATO as a modification of fixed-sequencer, we could equally well have modified a moving-sequencer

algorithm with similar results.

5 Performance Evaluation

To evaluate PLATO, we ran it in the Emulab 3-switch setting - recall that this involves a 3 Ghz sender-receiver

pair and a 2 Ghz sender-receiver pair on the Utah Emulab testbed, with three switches separating them. Our first

experiment was aimed at observing the impact of the∆ parameter on the performance of the protocol. Figure 8

plots delivery latency against the left y-axis as we run PLATO at increasing values of∆. The left sub-graph shows

performance at400 packets per second, and the right sub-graph at1600 packets per second, at two different values

of k - the trade-off parameter (from Section 4). The horizontal fixed lines in these graphs show the performance

of fixed-sequencer ordering for the sametrade-off parameter, and consequently for the same overhead. The bars

at the bottom of these graphs - plotted against the right y-axis - show the fraction of packets that are rolled back.

We see from these graphs that the higher the value of∆, the higher the delivery latency and lower the fraction of

rollbacks - also, PLATO always out-performs fixed-sequencer for the corresponding value ofk.

Next, we examine PLATO’s performance in the presence of changing throughput levels. In Figure 9, we start

out with 2 senders sending 200 packets/second each, and add 2 more senders 20 seconds into the experiment

sending at 750 packets/second each for a total of 10 seconds - hence, the data rate in the group jumps from 400

packets per second to 1900 packets per second between timet = 20 andt = 30. On the left y-axis of these graphs,

we plot 1-second moving averages every 10 milliseconds, of the delivery latencies achieved by PLATO and fixed-

sequencer. As we can see from the graphs, PLATO’s delivery latency remains constant throughout the experiment,

whereas fixed-sequencer’s delivery latency varies drastically with the data rate. The bars at the bottom of the

17

 0

 5000

 10000

 15000

 20000

 25000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 400

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 1600

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

Figure 8. ∆ vs Delivery Latency: 400 packets/second (left) and 1600 packets/second (right)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=10

Fixed-Sequencer
PLATO

Rollbacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=20

Fixed-Sequencer
PLATO

Rollbacks

Figure 9. Traffic spikes up from 200 packets/sec to 1900 packets/sec between 20 and 30 seconds.

graphs is a 1-second moving fraction of rollbacks, plotted against the right y-axis. Note that for a higher value of

k, delivery latencies are much higher for both protocols - since the latency to receiving ordering information from

the sequencer node is higher.

Figure 10 shows how delivery latency and rollback fraction are affected by the data throughput, for a particular

value of∆. As the throughput goes up, the latency to receiving a sequencing packet goes down for a particular

value of thetrade-off parameterk, and consequently delivery latency drops. There is no real trend for rollbacks

at this particular setting of∆ - all the values are within a tenth of a percent; however, for lower values of∆ we

observe the fraction of rollbacks going up with throughput.

18

 0

 5000

 10000

 15000

 20000

 25000
 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

throughput (# of 1k packets per second)

throughput vs (delivery_latency and fraction of rollbacks); DELTA = 160

latency (k = 10)
rollbacks (k = 10)

fixed seq latency (k = 10)
latency (k = 20)

rollbacks (k = 20)
fixed seq latency (k = 20)

Figure 10. Throughput vs Delivery Latency

-2000

 0

 2000

 4000

 6000

 8000

 10000

 10 15 20 25 30
 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
ic

ro
se

co
nd

s

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=Adaptive, K=10

Delivery Latency
DELTA

Rollbacks

Figure 11. Setting ∆ Adaptively

In Figure 11, we replace the static∆ parameterization of PLATO by a simple adaptive scheme. We multiply the

current value of∆ by 1.5 when a rollback occurs and the current 1-second moving fraction of rollbacks is more

than0.01. Conversely, we multiply PLATO by.9 every 100 milliseconds or 1000 packets, whichever occurs first,

if the moving fraction of rollbacks is less than0.01. In Figure 11 we show that this simple mechanism gives good

performance - for comparison, this setting is similar to thek = 10 scenario in Figure 9, during the traffic spike.

6 Related Work

A plethora of total ordering protocols exists in literature - we would like to point the reader to [4], which offers

an excellent and thorough survey of this body of work, along with very useful categorizations. The particular

subclass of ordering protocols that our work is closest to are the optimistic algorithms [6, 7, 9].

Sousa, et al. propose a solution for WANs where receivers observe network distances and delay packets ap-

propriately to achieve a total ordering [8]. While this work is close in spirit to our own, it targets a completely

different networking environment and uses a technique that works very well in the wide-area but may not be quite

as useful in switched networks.

19

7 Conclusion

Low-latency data replication is a fundamental need for an emerging class of datacenter applications. PLATO

is a total-ordering protocol designed for such settings - it targets the traffic patterns commonly observed in these

applications and exploits the characteristics of the underlying hardware. We experimentally show that out-of-

order delivery occurs to a reasonable degree on switched datacenter-style networks, and that the inter-arrival time

of consecutive packet pairs is a powerful predictor of disorder.

8 Acknowledgments

We would like to thank Danny Dolev for his many valuable comments during the inception of this paper, Saikat

Guha for a key discussion of protocol implementation, Mike Hibler for his quick responses on the Emulab testbed

topology, and Art Munson and Einar Vollset for their feedback.

References

[1] M. Balakrishnan and K. Birman. Reliable multicast for time-critical systems. InTo Appear in Proceedings of the 1st
Workshop on Applied Software Reliability (WASR 2006), 2006.

[2] S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks and extended lans.ACM Trans. Comput.
Syst., 8(2):85–110, 1990.

[3] X. Défago, A. Schiper, and P. Urbán. Comparative performance analysis of ordering strategies in atomic broadcast
algorithms.IEICE Trans. on Information and Systems, E86-D(12):2698–2709, December 2003.

[4] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey.ACM
Computing Surveys, 36(4):372–421, December 2004.

[5] R. Guerraoui, R. Levy, B. Pochon, and V. Quma. High throughput uniform total order broadcast protocol for cluster
environments. InDSN, June 2006.

[6] B. Kemme, G. Alonso, F. Pedone, and A. Schiper. Processing transactions over optimistic atomic broadcast protocols.
In 19th IEEE International Conference on Distributed Computing Systems (ICDCS’99), 1999.

[7] F. Pedone and A. Schiper. Optimistic atomic broadcast. InDISC, pages 318–332, 1998.

[8] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. InSRDS ’02: Proceedings
of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), page 190, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with optimistic delivery. InSRDS, pages
92–101, 2002.

[10] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and networks. InProc. of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255–270, Boston, MA, Dec. 2002. USENIX Association.

20

