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Abstract—We propose embedding executable code frag-
ments in cryptographically protected capabilities to enable
flexible discretionary access control in cloud-like computing
infrastructures. We demonstrate how such a code capability
mechanism can be implemented completely in user space. Using
a novel combination of X.509 certificates and JavaScript code,
code capabilities support restricted delegation, confinement,
revocation, and rights amplification for secure abstraction.
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I. INTRODUCTION

The predominant way of providing discretionary access
control in the cloud is through a combination of authentica-
tion and Access Control Lists (ACLs) that map principals,
roles, or attributes of principals to a predetermined set of
rights on available services. But such mechanisms are not
without problems. People and even entire companies end up
with accounts in many different places. While single-signon
mechanisms exist, they are adopted sparingly.

This problem with access control lists became apparent
while developing Muithu [1], a sports analytics application
that runs on a federation of public and enterprise clouds.
Much of the data is private and highly sensitive; this includes
medical performance data, internal individual performance
evaluations, and future training strategies. An important part
of Muithu is abstraction. Raw data from various sources
are processed and made available in another form, so that
multiple layers of abstraction can be developed. With access
control lists, each layer would need to have accounts with
the lower layers, and also keep track of accounts of its own
users. Much of the complexity then revolves around securely
managing user accounts and correctly configuring the access
control lists. Access control lists make it difficult to maintain
fine grained control over distribution and access of data.

The mechanism we propose here does not require au-
thenticating any users because authorization is done through
capabilities [2]. Capabilities are unforgeable digital tokens
that can be passed around, and possession of a capability
grants specific rights to services independent of who the
possessor is. Consistent with the principle of least privilege,
capabilities are given out on an as-needed basis.

Capabilities have been used in a variety of systems (see
Section VIII). But these capabilities still have the problem
that, for each service, there is a predetermined collection
of rights that can be turned on or off. The instantiation of
capabilities that we propose is novel in that the capabilities
contain embedded code that allows fine-grained control over

restricted delegation. In other words, the set of rights that can
be delegated is not predefined as in other capability-based
(or ACL-based) systems, but can be evolved as needed. We
call these capabilities “code capabilities” or codecaps. In
addition, codecaps support rights amplification so they can
be used to implement secure abstraction.

Our implementation requires no special trusted language,
trusted operating system kernel, or other trusted infrastruc-
ture to develop applications—the capabilities are managed
completely in user space using well-known public key
cryptographic techniques. Even though managed in user
space, transfer of capabilities is implicitly mediated so that
confinement can be supported. A directory service provides
a secure way for users to manage their capabilities, and to
delegate restricted capabilities to other users.

II. SECURE ABSTRACTIONS IN SPORTS ANALYTICS

In close collaboration with a Norwegian major-league
soccer club, we developed Muithu [1], a cloud-based nota-
tional analytics system for recording and analyzing soccer
team performance data. Notational analytics has become a
competitive advantage for many elite sport coaches resulting
in an emerging sports analytics industry. Example data
include physical variables of individual athletes like speed,
distance covered, agility, energy consumption, and muscle
force. Such objective physical data is acquired using body-
area sensors and from vision algorithms parsing video feeds.

A key requirement for Muithu was the ability to exter-
nalize collected data to third parties that specialize in com-
plex sports analytics. Obviously, there are strong security
constraints related to athlete and team performance data.
For example, medical related information like heart-rate and
injuries are highly personal and cannot be made public.

The architecture of Muithu is designed to observe security
requirements from the ground up. One can think of Muithu
as consisting of layers of abstraction. Each layer implements
its own services and supports operations through a remote
procedure call mechanism. Access to data is mediated
through codecaps. Services are run by principals; clients that
access services are principals as well.

The base-layer of Muithu consist of captured notational
data, video feeds, and sensor data that are pushed to and
stored on an enterprise cloud platform. This set of data,
hosted by the base-layer principal P0, is represented as a
set of data objects that can be accessed through a simple
interface. Such data objects might, for instance, correspond



Figure 1. Muithu data layering example

to raw sensor data of individual players in the team, and
might be updated as new data about that player becomes
available. Additional layers are then added as the data is
being processed and tagged. Some layers have significant
cloud resources available, but others work more like a
library executed by their clients, often using JavaScript in
the browser. The cloud resources of such layers are only
accessed when the library cannot handle requests itself.

As an example, consider the situation where a team
coach P1 wants to provide up-to-date information about each
player object o to the local supporter club P2. However, P1

has no interest in running a large web site to share this
information. Instead, P1 can obtain a codecap c1 from P0

for o and give P2 a library and a delegated codecap c2 for o.
When P2 invokes the library, the library can use c2 to access
the current version of o directly from P0 and generate the
derived object o′ using the client’s computational resources.
Code in c2 ensures that P2 can only access those parts of o
that P1 allows it to access.

Now suppose that there are certain proprietary operations
on o that P1 does not want to distribute in the library itself
or using parts of the data in o that P1 does not want P2

to access directly. For instance, P1 might not want to give
access to detailed heart-rate information, but instead provide
only access to aggregated values. In that case the library
can access a service run by P1 to execute the operation
using codecap c2, as illustrated in Figure 1. P1 cannot
use c2 directly to access o because it does not have the
corresponding private key and because it does not give the
necessary access rights. However, as we shall see, P1 can
reconstruct c1 from c2 and pair the resulting code cap with
its own private key to obtain the correct access credentials
to o. This is a case of rights amplification, a necessary
ingredient of secure abstraction. It is not necessary for P1

to keep around all the intermediate codecaps, which would
be inconvenient and waste computing resources.

III. CODE CAPABILITIES

The implementation of codecaps is based on standard
certificate chains. Each principal P is identified by its
public key P.pubkey and has a corresponding private

key P.privkey that it keeps carefully hidden from other
principals. In order for a client to execute a request as some
service, the client needs a codecap for the request.

A codecap cn is a pair 〈hn, kn〉 consisting of a heritage
and a private key. The heritage hn is a chain of public key
certificates [C1 :: C2 :: ... :: Cn] corresponding to a chain
of n + 1 principals P0...Pn. (The operator :: denotes list
concatenation.) In this case, P0 has delegated certain rights
to P1, P1, has delegated rights to P2, ..., and Pn−1 has
delegated rights to Pn. Certificate Ci is signed by ki−1 =
Pi−1.privkey. kn is the private key of Pn. Codecap cn is
owned by principal Pn and gives access rights to services
provided by principal P0. However, P0 does not have access
control lists, does not need to know anything about Pn, and
only needs to maintain its private key k0.

Each certificate Ci is a collection of attributes signed by
a private key. An attribute is a pair consisting of a name and
a value. We denote by Ci.attr the value of the attribute
named “attr” in certificate Ci. Each certificate Ci has at least
the following attributes:
• Ci.pubkey: contains Pi.pubkey;
• Ci.rights: contains a boolean function that takes a

request as argument and returns true iff the function
allows the request.

The validity of a heritage can be checked by anybody
who knows P0.pubkey, and that the private key kn in
the codecap is the private key corresponding to the last
certificate Cn on the heritage. A request is itself a certificate,
signed by kn = Pn.privkey. In some sense the request is
appended to the end of the heritage as a certificate Cn+1 as if
delegated. The attributes in the request describe the request
type and its various parameters. Principal P0 will execute the
request only if heritage hn is valid, the request’s signature
can be verified, and if Ci.rights(r) holds for all i in 1...n.

Principal P0 determines the programming language in
which the rights functions are expressed. The language can
be very simple. For example, a file service might have a
language that consists of only three programs: “R”, “W”,
and “RW”. When the program “R” is applied to an update
operation, it evaluates to false.

We intend the language to be Turing-complete and to
provide powerful library functions, such as JavaScript. For
example, say that a file service only provides “read” and
“write” operations and we want to create a codecap that can
“increment” an integer that is stored in the file. The client
would first read the file and then write back the incremented
value. The rights function in the codecap would check that
the value that is to be written is an integer that is one higher
than the integer stored in the file. Rights functions may also
be able to read the clock on the server. This can be used to
implement expiration times on codecaps, or, for example, to
specify that an operation is only allowed during daytime.

It is important that such rights functions cannot have
external effects (such as writing files or sending messages)



and that the functions have finite running times. They must
be carefully sandboxed in order to prevent operations with
side effects. Also, running times must be limited by a
timer—if the timer expires, the access is disallowed.

IV. USING CODECAPS

To illustrate how codecaps are used, suppose a client Pn

has a codecap cn for a service provided by P0 and wants P0

to execute a request r. To do so, client Pn sends a message
m to P0 that contains the following attributes:
• m.request: a certificate that described the requested

operation and is signed by Pn.privkey;
• m.heritage: contains hn, the heritage of the codecap

needed to execute the request.
Upon receipt of a message m, P0 verifies the her-

itage, and verifies the signature on the request certificate
using Cn.pubkey. P0 then checks that all rights func-
tions Ci.rights(m.request) return true. For exam-
ple, a rights function might express m.request.type =
READ ∧ m.request.offset ≥ 256. If verified, P0

executes m.request and returns the result to client Pn.
An eavesdropper on the network may intercept the request

message and obtain the heritage of the codecap. However,
without the corresponding private key, the eavesdropper will
not be able to sign new requests with it. The eavesdropper
can replay the request—it is thus important that either
the service is capable of eliminating duplicates or that
requests are idempotent. The former requires that requests
are uniquely identified by the client so the service can detect
duplicates. In practice, communication between a client and
a service is usually over SSL, eliminating this concern.

There are two ways in which a codecap can be created.
The first is from scratch, when a new service is offered or
a new client is added. The second is by (often restricted)
delegation, in which case a client communicates one of its
codecaps to another principal. Note that only heritages of
codecaps are communicated between principals—the recip-
ient of the heritage of a new codecap has to complete the
codecap by pairing it with its private key.

The rights function in certificate Cn has the ability to test
if it is the rights function of the last certificate in the heritage
of the codecap, returning false if not. Using this feature, a
principal Pn−1 can create a codecap for Pn so that Pn cannot
delegate rights of that codecap to other principals without
revealing its private key to those principals thus achieving
confinement. If Pn is faulty it can share its private key with
other principals, but this does not extend the damage from
having delegated to Pn in the first place.

V. CODECAP DIRECTORIES

Clients and services may end up owning many codecaps.
All codecaps of a principal have the same private key,
which the principal has to maintain securely. To simplify

management of all the heritages and delegation, we are de-
veloping a distributed directory service. However, different
from ordinary directory services, a “lookup” operation is a
restricted delegation: the directory service delegates its rights
to its client.

A directory has rows and columns. Both rows and
columns have names. There are no two rows with the same
name, and no two columns with the same name. The first
column is called “name” and contains the name of the
row. The second column is called “cap” and contains the
heritage of a codecap in each row. The remaining columns
contain rights functions. Each such column is called a
group. Directories support an operation “chmod” by which
rights functions in the group columns may be updated. The
execution of the chmod operation itself is restricted by rights
expressed in the directory codecap.

A directory codecap gives access to one or more groups
within a directory. Given a directory codecap dc, the op-
eration lookup(dc, name, group) first finds the row for the
given name. In the row it retrieves a heritage hn in the “cap”
column and the rights function R in the given group. The
directory service then delegates its rights given by hn by
appending a new heritage hn+1 using R and signed by the
private key of the directory service. The directory service
then returns the result to the client, which uses hn+1 and its
private key to construct a codecap.

We do not run public directory servers as this would be
tantamount to simulating access control lists using codecaps.
Directories are privately owned by principals and run by
those principals to keep track of their own codecaps and to
help with delegating codecaps to other users.

However, such directories can field queries from remote
clients. Because directories are objects themselves, they may
be organized in any arbitrary directed graph structure (it does
not have to be a tree and can contain cycles), yielding a
public service for obtaining codecaps. A user then needs to
hold only one codecap, that of its local “home directory”.
All objects reachable from that directory, subject to the
restrictions specified in the rights functions, are accessible
to the user.

VI. REVOCATION

The “chmod” operation (as well as the “remove” opera-
tion) on directories provide a means to do selective revo-
cation, preventing users from obtaining codecaps. However,
codecaps that have already been distributed remain valid.
Various ways have been proposed to revoke outstanding
capabilities. (For an early approach, see [3].) Our initial
approach is to associate version numbers with objects [4].
A codecap is then for a version of the object, and certificate
C1 contains the version number the codecap refers to. When
a service wants to invalidate outstanding codecaps on one
of its objects, it simply increments the version number.



This only works for the raw objects. If an intermediate
service wants to revoke delegated codecaps, it must ask the
provider of the raw object to increment the version number.
Selective revocation can be supported with this scheme by
having multiple version numbers per object, that is, one
version number for each group of principals. Alternatively,
services can build expiration times into the rights functions
of codecaps as described above. Clients should think of such
codecaps as “soft references” that may at any time become
invalid. Those clients should be prepared to acquire new
codecaps when necessary.

Another revocation technique exploits indirection. An
intermediate service, instead of passing out delegated code-
caps, could generate fresh codecaps and act as a proxy to
the service that provides the raw objects. Such a scheme
also supports selective revocation in which only a subset
of clients are affected. This proxy scheme complicates the
intermediate service (in a similar way as maintaining access
control lists) and consequently has security disadvantages
compared to the simple scheme of revoking all outstanding
codecaps. Whether to use one scheme or another can be
determined by each application individually.

A weakness of codecaps compared to ACLs is that there
is no way to review which principals have rights to a
service [5]. One option is for a service to confine all its
codecaps so it can keep track of all delegation.

VII. IMPLEMENTATION

Our prototype implementation of codecap authorization is
based on standard X.509 certificates [6] using the widely
adopted OpenSSL library and tools. The X.509 standard
defines several standard fields in certificates including a
subject name, an issuer name, and validity dates. It enables
us to make use of RSA, DSA, and ECC, with varying
key sizes and parameters. We use established best practices.
Certificates can be either self-signed, in which case a PKI
is not required, or signed by a common trusted CA.

A codecap heritage is implemented as list of concate-
nated X.509 proxy certificates as defined in the RFC-
3820 standard [7]. This standard defines the proxyCertInfo
certificate extension containing three fields: path length,
policy language, and policy. The path length C.pLength
is used to restrict the length a heritage and can be used to
implement confinement. The policy field holds our rights
functions C.rights (expressed in JavaScript), and the
policy language C.pLanguage is set to anyLanguage to
indicate application-specific policies.

Certificate size varies with key size, signature algorithm,
and with the size of the information used to identify subject
and issuer. A certificate may also contain extensions with
variable content length. A typical DER encoded certificate
combining 2048-bit RSA public key with SHA-1 and with
common extensions like subject key identifier, authority key
identifier, and usage constraints, will be about 860 bytes.

Currently we do all communication over SSL, since it
is widely adopted on the Internet for server authentication
using X.509 certificates. By requiring that the optional client
authentication step of the SSL handshake is run, both end-
points will mutually authenticate themselves. The protocol
also provides us with transport level encryption.

After establishing the mutually authenticated SSL connec-
tion and having received the server certificate Cs, the client
can check that it is connected to the right service. The client
is free to reject certificates that do not conform to additional
constraints like a valid expiration date or set usage areas. If
the client accepts the connection, it will transmit the heritage
in combination with its intended request.

Although SSL supports transmission of more than one cer-
tificate from the server to the clients during the handshake,
its intended use is to inform the client about trusted CAs, and
there is no facility for transferring extra certificates from the
client to the server. Therefore, a codecap containing multiple
certificates cannot be transferred and validated during the
SSL handshake and codecaps must be validated separately.

Having received the client certificate Cc, the heritage hn,
and the request r, the server will check that:
• Cn.public = Cc.public (to ensure that the client

is correctly authenticated);
• for i = 1, . . . , n − 1, Ci.subject = Ci+1.issuer

(to ensure that the heritage is correctly chained);
• for i = 1, . . . , n − 1, Ci.pLength >

Ci+1.pLength ≥ 0 (sanity check);
• the signature of each certificate verifies with the issuer’s

public key.
We have enhanced the Twisted-Python1 web-server mod-

ule with codecap-based authorization. To transfer the her-
itage, we extended the commonly used HTTP authentication
mechanism with a codecap credential method. The client
authenticates itself by setting the header field:

Authentication: Codecaps <heritage>

where <heritage> is the list of PEM encoded X.509 cer-
tificates. If the header is not provided or the heritage does not
validate correctly the server returns a “401 Unauthorized”
error code and includes the header:

WWW-Authenticate: Codecaps realm=<sub>

where <sub> corresponds to P0.subject and is used by
the client to identify the correct codecap to use. If the same
codecap is used to authorize multiple requests, the server
may temporarily store the provided heritage and use a client-
side session cookie to decrease network overhead.

To evaluate the rights function we use the Firefox Spi-
derMonkey2 JavaScript engine. When executed, the script is
initialized with the following context:

1http://twistedmatrix.com
2https://developer.mozilla.org/en/SpiderMonkey



var allow = heritage[idx].get_subject().CN;
if (request.uri == allow) 1; else 0;

Figure 2. A simple JavaScript based rights function

• heritage — a list of X.509 certificate objects;
• idx — the position in the heritage list of the certificate

currently being evaluated; and
• request — the client request.

Figure 2 shows a simple rights function that matches the URI
of the client’s request with any path restrictions encoded in
the common name field of the certificate.

VIII. RELATED WORK

Dennis and Van Horn [2] first used the term “capa-
bility” for an unforgeable access token. Many capability-
based systems have been built, but they usually rely on
a trusted runtime environment in order to prevent forging
of capabilities and to mediate communication of capabil-
ities. Chaum [8] presents the first cryptographic approach
to capabilities that does not make such an assumption.
The Livermore Network Communication System [9] and
the Amoeba distributed operating system [10] adopted and
improved on this approach [11]. Amoeba also contained a
directory service for capabilities. However, such capabilities
cannot be confined in any way and rights that can be
delegated are predefined. Codecaps build on this work, but
supports fine-grained rights delegation and confinement.

The capability mechanism proposed by Harnik et al. [12]
uses keyed cryptographic hashes in a way similar to Amoeba
and supports delegation by chaining hashes. Each entry
on the chain can contain regular expressions to express
which rights are being delegated. The mechanism is less
expensive than our approach, but does not support rights
amplification and cannot be used for secure abstraction.
The MyProxy service [13] uses X.509 proxy certificates to
delegate credentials, but lacks facilities for including and
evaluating complex rights functions.

Amazon Web Services and Microsoft Azure support
capability-like URLs for use in the cloud, which contain
a query, an expiration time, and a signature. The query
is similar to the embedded code of rights functions in
codecaps. However, the URLs cannot be confined or be
delegated in a restricted manner, and they do not support
rights amplification.

IX. CONCLUSION

We have proposed codecaps—capabilities that embed
code. Using codecaps, we have demonstrated how to sup-
port fine-grained rights delegation, confinement, and rights
amplication as needed for secure abstraction layers. Users
can maintain codecaps and facilitate their delegation using
codecap directories. We have not yet finished the implemen-
tation of our codecap-based access control infrastructure, but
soon hope to present experimental data on its effectiveness.
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