
Verifying a C implementation of Derecho’s
coordination mechanism using VST and Coq

Ramana Nagasamudram1[0000−0003−2779−2071], Lennart
Beringer2[0000−0002−1570−3492], Ken Birman3[0000−0003−2400−149X], Mae

Milano2[0000−0003−3126−7771], and David A. Naumann1[0000−0002−7634−6150]

1 Stevens Institute of Technology
2 Princeton University
3 Cornell University

Abstract. Derecho is a C++ framework for distributed programming
leveraging high performance communication primitives such as RDMA.
At its core is the shared state table (SST), a replicated data structure that
supports efficient protocols for consensus and group membership. Our
aim is to formalize the reasoning principles articulated by the designers,
which focus on knowledge and monotonicity, as basis for highly assured
high performance distributed applications. To this end we develop a high
level model that exposes the SST principles in an application-friendly way.
We use the model to specify and verify a re-implementation in C of the
SST API. We validate the specifications by verifying simple applications
that embody key parts of the Derecho protocols. The development is
carried out using VST and Coq. This lays groundwork for verification of
the full Derecho protocols and applications built on them.

1 Introduction

Distributed systems occur ubiquitously in modern computational infrastructures,
ranging from sensor networks or communicating embedded systems in the auto-
motive domain to the datacenter and the global communication infrastructure.
As application domains differ in their requirements concerning the performance
and the applicable notion of consensus, numerous protocols have been developed.

In the domain of datacenter networks, latency and throughput requirements
have recently led to the emergence of protocols that exploit monotonicity [14] to
reduce communication overhead while facilitating strong notions of consensus [17].
At the same time, the reliance of everyday life on cloud computing necessitates
that the expected efficiency and functionality guarantees of these protocols ought
to be substantiated by verified implementations. But research that connects formal
analyses of protocol-level properties [45,2,36] to implementation-level verification
frameworks is only emerging now [13,16,38,40]. Ultimately, assurance of such
comprehensively verified systems should encompass implementation correctness
(down to instructions and hardware), protocol properties, and application-level
guarantees, in a provably gap-free manner, with machine-checkable proofs.

2 R. Nagasamudram et al.

To explore this challenge in a concrete setting, this paper reports on a
comprehensive verification effort for the key data structure of Derecho [17],
a distributed system platform implemented in C++ that combines protocol
efficiency with low-latency communication, as facilitated through CPU-bypass
technologies such as RDMA (remote direct memory access) [32]. Our approach
is to:

– isolate the data structure, shared state table (SST), as a separate code unit
in C, with a simplified API that supports the key functionality but can
potentially be retrofitted into Derecho;

– equip the API with an expressive specification that connects functional code
correctness to an abstract model of local data structure operations and global
synchronization events but does not unduly constrain concurrency (Sec. 3);

– formulate the designer’s intuitions concerning monotonicity and knowledge-
based consensus as abstract trace (hyper-)properties over the operations and
events (Sec. 3);

– confirm applicability of the resulting programming model by verifying two ap-
plications, exploiting only the API-level specifications and the trace properties
to establish application-level correctness guarantees (Sec. 4 and 6);

– verify the isolated SST implementation and connect all verification compo-
nents to a comprehensive verification artifact (Sec. 5).

Our verification is carried out in Coq and utilizes the Verified Software Toolchain
(VST [5]) to verify implementation correctness. Our choice of a (dependently-
typed) higher-order logic is motivated by the need to integrate multiple abstraction
levels in a common logical framework and the need to support the formulation
of monotonicity, epistemic principles, and trace-based models. Indeed, prior
attempts by Derecho’s developers to verify the monotonicity principles in Ivy [27]
were unsatisfactory, in part due to a lack of expressiveness. Our choice to use
VST is motivated by its foundational connection to a verified compiler [23], its
demonstrated robustness and suitability for abstraction-bridging verification, and
the fact that it targets an established systems programming language, providing
an avenue for future work to gradually integrate treatments of more advanced
aspects of Derecho and its applications.

We begin with background on Derecho, Coq, and VST (Sec. 2). Sec. 7 discusses
related and future work. A current snapshot of our development, including C code
and Coq proof scripts can be found at https://zenodo.org/records/10819602.

2 Background on Derecho, Coq, and VST

Derecho. The Derecho system is an open-source library for leveraging high-speed
networking in modern cloud computing platforms such as file systems, key-value
stores, coordination and pub-sub [17]. The central feature is the support for a
strong consistency model: state machine replication (atomic multicast and Paxos,
integrated with a “virtual synchrony” layer for self-managed and self-repairing
membership). Derecho supports replication and state-machine actions in a manner

https://zenodo.org/records/10819602

Verifying Derecho’s coordination mechanism 3

that maps cleanly to modern communications hardware, as supported by the
LibFabric library [12] such as RDMA, DPDK, and other forms of high-speed
networking. Even on standard TCP, Derecho is said to be faster than any prior
Paxos-like technology [4,39]. In part this speed reflects modern engineering: The
system is coded in C++ 17, entirely zero-copy, lock-free, and all data paths
are opportunistically batched. The mapping to RDMA is particularly efficient
and enables continuous data transmission so that the RDMA transport can run
non-stop at its peak speed. Another important aspect of performance is the way
that the Derecho protocols are implemented using the shared state table, SST.
Owing to monotonic operations that can be understood in terms of knowledge,
Derecho has a control plane that is especially well-suited to shared memory
implemented using one-sided RDMA.

Several industrial applications of Derecho are in deployment or development,
for safety- and security-critical applications, which motivates the need for high
assurance [39]. It becomes important to formally specify the system itself, to
verify that the protocols as implemented are correct solutions with respect to
these specifications, to fully quantify their assumptions about the environment
and the types of failures that might occur at runtime, and to formally characterize
the conditions under which progress can be guaranteed. An initial attempt to
prove the Derecho protocols using Ivy [27] was a mixed success [4]. With the help
of the Ivy developers, the Derecho team was successful in translating the Derecho
specification into a solvable fragment of first order logic and then verifying the
protocols using Ivy’s prover. But such first-order invariants are not adequate
to express the monotonicity and epistemic properties that are key to Derecho
and to applications built on it. There has been much other work on verifying
Paxos protocols (e.g. [31]) or implementations of Paxos (e.g. [13]) but not on
leveraging monotonicity or explicating the role of knowledge. There have been
no prior efforts to verify Derecho at the implementation level.

The Coq proof assistant. Coq is a system for interactive development of formal
proofs in a powerful higher order logic. The system home page (coq.inria.fr)
includes information on the user community and teaching materials including the
Software Foundations textbook series (softwarefoundations.cis.upenn.edu).
The Coq system may have been renamed to “The Rocq Prover” by the time the
conference takes place.

Verified Software Toolchain. The Verified Software Toolchain (VST) [5] imple-
ments a concurrent separation logic for C in Coq and is justified by a machine-
checked proof of soundness with respect to the C semantics as formalized by the
CompCert compiler [23]. Verification using VST provides higher assurance than
SMT-based tools, which rely on trusted axiomatizations of program semantics.
Being embedded in Coq, VST specifications can exploit whatever mathematics is
convenient for the application domain – including high level distributed system
properties.

Similar to auto-active tools like Dafny, the proof engineer using VST must
write specs, provide loop invariants, and sometimes guide other reasoning (using

coq.inria.fr
softwarefoundations.cis.upenn.edu

4 R. Nagasamudram et al.

Fig. 1: Distributed system with three nodes, each holding an SST replica and
maintaining local state, Max. The first column of the SST represents the myrow
index. Values in the second (data) column monotonically increase over time.
When replica 1’s row is synchronized with the SSTs of replicas 0 and 2, the
local state of replica 2 is updated to value 5. Replica 0’s local state is unaffected
as the received value does not dominate the current local state. Subsequent
synchronization of replica 0’s row triggers updates to the local states of replicas
1 and 2, yielding agreement between the local states. A final synchronization of
replica 2’s row (not shown) would affect the SSTs in replicas 0 and 1 but not the
local states.

the Coq IDE). The VST tactics automate forward symbolic execution. Any code
verified in VST is proved to be safe and free of undefined behavior, assuring
the absence of numeric overflows, memory errors, etc. VST supports refinement
(“subsumption”) between specifications, so a component can be verified with
respect to detailed low-level specs that are in turn connected to more abstract or
client-friendly specs, such as a distributed system model.

3 The SST interfaces: code API and trace-based specs

Here is a sketch of the Derecho programming model. A system is comprised of a
collection of replicas, as shown in Fig 1. The replicas all run the same program.
A replica’s state has its private state and its copy of the shared state table (SST).
Replicas are numbered 0..N − 1 and the SST has N rows. During an epoch
between failures, there is a fixed group with N members. The shared state of
replica i comprises row i, called its own row ; this is the only row that a replica
can write in its SST. The framework asynchronously copies row i from its owner
to the SST’s of all other replicas. This is called a sync. In this way the SST
provides replica i with a possibly stale snapshot of the rows for all other replicas
j, j ̸= i.

Fig. 2 shows excerpts from the SST API in C. Function new system initializes
the system, specifying the number nrows of replicas and an application specific

Verifying Derecho’s coordination mechanism 5

typedef struct sst sst t;
int getMyrow(sst t ∗sst);
int getCell(sst t ∗sst, int r, int c);
void setCell(sst t ∗sst, int c, int z); /∗ set column c of sst’s own row to z ∗/

typedef struct priv state priv state t; /∗ kept abstract: struct priv state defined by client ∗/
typedef bool (∗predicate t) (priv state t ∗, sst t ∗); /∗ guard of an action ∗/
typedef void (∗trigger t) (priv state t ∗, sst t ∗); /∗ effect of an action ∗/

typedef struct action action t;
action t ∗mkAction(predicate t p, trigger t t, priv state t ∗s);

typedef struct sys state sys state t;
sys state t ∗new system(int nrows, int nappcols, int ∗iniRow);
void install action(sys state t ∗reps, int repId, action t ∗act);

void run(sys state t ∗reps, int rounds);

Fig. 2: SST interface in C; excerpts.

number nappcols of columns in the SST of each replica. A fixed initial row value
iniRow is used to populate all rows of all replicas. The SST is a matrix of int’s, but
the API can easily be extended to cater for other base types. Finally, in addition
to application specific columns, the SST has columns used to store framework
specific data. These keep track of whether a replica has been suspected to have
failed, or whether a replica is no longer actively participating. Derecho’s treatment
of failure is important and leverages monotonicity in interesting ways, but for
lack of space we do not elaborate on it here.

Application code is organized as a collection of actions, where each action
comprises a predicate and trigger in addition to auxiliary private state. (We use
the Derecho [17] terms for the guard and effect, respectively, of an action.) The
typedefs predicate t and trigger t define the type of these as function pointers. A
replica’s actions can read the SST, and the trigger of an action can write the
replica’s own row of its SST (function getMyrow returns the index to its own
row). The application defines a struct type priv state t which is left abstract in
the interface. This is meant for the private state used by an action. Each action
has its own private state. At a minimum, this can be used to communicate from
a predicate (which checks some condition) to its trigger, which gets executed
only if the predicate returns true. Private state persists between invocations of
an action. Actions are installed during initialization; the client calls install action

for this purpose: the parameter repId is the index of the replica in the system.
In general, application code is structured to include definitions of nrows

and nappcols; a definition of priv state t; one or more actions, each comprising a
predicate and a trigger; and a main function. The main function:

– creates the application-specific data of the initial row,

6 R. Nagasamudram et al.

Class ClientParams := { NROWS: Z; NAPPCOLS: Z; privSt: Type; ... }.

Definition repId := {n: Z | 0 ≤ n < NROWS}. (∗ replica identifier ∗)
Definition NCOLS := NAPPCOLS + ... (∗ framework specific columns ∗)
Definition SSTrow := {xs: list Z | length xs = NCOLS}.
Record SST Tp := {the tbl: {xs: list SSTrow | length xs = NROWS}; the id: repId }.

Definition PredicateTp := SST Tp → privSt → bool ∗ privSt.
Definition TriggerTp := SST Tp → privSt → SSTrow ∗ privSt.
Definition ActionTp := PredicateTp ∗ TriggerTp ∗ privSt.

Record replica := {the sst: SST Tp; actions: list ActionTp}.
Definition sys state := {reps: list replica | length reps = NROWS}.

Fig. 3: SST model in Coq; excerpts.

– calls new system to construct and initialize the replicas’ SSTs
– allocates private states for the actions,
– calls install action to install the actions,
– calls run, which runs the main computation,
– and finally deallocates everything, using API functions like teardown.

The main computation is carried out by the function run. Derecho arranges that
all the actions of all the replicas are repeatedly invoked. Each invocation first calls
the predicate and then, if the predicate returns true, calls the trigger. Function
run is called with a bound, rounds, which is the number of rounds to be executed,
meaning the number of times a given action is invoked on a given replica.

Coq model and C specifications. Fig. 3 shows types in Coq used to model the SST
and replica data structures. A sys state in Coq is a list of replicas where each replica

contains an SST and a list of actions. SSTs are modeled using the type SST Tp

which, essentially, is a matrix of a fixed dimension. The field the id keeps track
of the index of the SSTs own row. Clients specify SST dimensions by creating
an instance of the ClientParams typeclass; they also provide the type for private
states, provide an initial condition on private states and prove that NROWS and
NAPPCOLS fall within implementable bounds (these details are elided in Fig. 3).
The types PredicateTp and TriggerTp model predicates and triggers respectively.
Note that these types model monadic computations in the state monad for privSt.
A trigger returns the updated value for the replica’s own row.

The Coq model includes definitions corresponding to each C function in the
SST API (Fig. 2). Specifications defined in VSTs separation logic tie C code to
model programs. They posit that C implementations have the same effect on
concrete structures as model programs have on abstract ones; a connection made
precise using representation predicates which relate data structures laid out in
the heap in C to structures in Coq. For example, here is the spec for install action

written in stylized notation and using ∗ for separating conjunction.

Verifying Derecho’s coordination mechanism 7

{ Replicas rep sys reps ∗ Action rep act a }
install action(reps, n, a)
{ Replicas rep (model install action sys n act) reps }

The precondition says the heap contains Replicas rep sys reps and Action rep act a.
The first conjunct says that pointer reps points to a data structure that represents
the abstract system state sys of Coq type sys state. The second says that pointer
a points to a data structure that represents the abstract action act of Coq type
ActionTp. Calling install action then ensures that reps represents an abstract state
consistent with applying the model level function model install action on the initial
abstract state. The postcondition also expresses a transfer of resources: the
Action rep is no longer available to the caller.

Specifications for other API functions are given in a similar style. For predi-
cates and triggers, we define generic specifications. These are used, for instance,
by Action rep act a above which asserts that a’s predicate satisfies predicate spec for
the abstract predicate for act (resp. for a’s trigger). Here is the generic predicate
spec for predicate pred in C with respect to the model predicate model pred.

{ SST rep SST sst ∗ privSt rep pst p }
pred(sst, p)
{ let (b, pst’) := model pred SST pst in SST rep SST sst ∗ privSt rep pst’ p ∧ RET b }

The precondition expresses that pointers sst and p represent the abstract SST

and the abstract private state pst, respectively. Note that privSt rep is application-
specific and provided to the framework by the client. The postcondition then
asserts that the SST is left unmodified and that the effect on the private state
is in accord with the function model pred. Expression RET b denotes the return
value, which must also be in accord with model pred.

The generic trigger spec is similar. Its precondition requires the corresponding
predicate to be true and its postcondition ensures that the SST’s own row is
updated in accord with the given model trigger. Predicates and triggers defined
by client applications are required to satisfy these generic specs.

Schedules, traces, and Run spec. In order to capture distributed computation
and its inherent nondeterminism, we depart from the above style of specification
when it comes to run. The spec for run is formulated in terms of global traces
which in turn are based on schedules. A schedule is a list of events that serves
to record a linear order in which actions have taken place at particular replicas,
and syncs have happened between replicas.

In the model, a sched item (intuitively, an event) is either of the form sch act r n t

which indicates that replica r has performed its nth action at timestamp t, or
sch sync from to t for from≠to which indicates that replica from has sync’d its
own row at timestamp t to replica to.4 Syncs in Derecho are based on totally
ordered point-to-point channels (e.g., as implemented in one-sided RDMA) and

4 In our formal development events are also used to keep track of Derecho-style failures
where one replica can suspect another of failing if it hasn’t received a sync for some
amount of time. We omit discussion since failures are not the focus of this article.

8 R. Nagasamudram et al.

the timestamps associated with events help model this behavior. The timestamp
in a sch sync event connects the sync with the state of its “from” replica following
a designated action instance. This is needed because at the time the “to” replica’s
SST gets updated by the sync, the “from” replica may have changed its state.

We say a list of sched item’s is a schedule if it satisfies certain well-formed
constraints on the order of timestamps: (a) action timestamps are unique and
increasing, and (b) syncs to a given replica are for actions in increasing timestamp
order. This is meant to capture an accurate minimal model of what Derecho
provides. Our library defines some additional constraints on schedules, such as
bounds on relative progress between actions at different replicas. Such bounds
may need to be assumed in order to prove progress properties of applications.

A trace is a list of system states generated from an initial system state and a
schedule. Traces are defined by the predicate traceOf which goes by induction on
the schedule sch, performing state updates in accord with sched item’s in sch. The
event sch act r n t updates replica r’s own row in accord to it’s nth action. The
event sch sync from to t updates row from in replica to. The updated value is the
own row of from at some point earlier in the execution, determined by timestamp t.
The model works with finite traces. Although Derecho is a nonterminating system,
a trace models execution up to some arbitrary point. The schedule predicate is
prefix-closed and likewise the prefix of a trace is itself a trace.

The run API function (Fig. 2) runs a system once its actions have been
installed. It acts on a single system state, running actions on all replicas, to
simulate a distributed system in which each replica runs concurrently on its own
node. In principle, the system runs forever. To reason about partial executions,
our prototype parameterizes run on the number of rounds of execution to perform,
rounds. The specification for run is given as follows.

{ Replicas rep sys reps ∧ initial sys ∧ Forall (fun r ⇒ length r.(actions) > 0) sys }
run(reps, rounds)
{ ∃ sch tr, schedule sch ∧ traceOf sys sch tr ∧ nActions sch sys rounds
∧ Replicas rep (lastState tr) reps }

The spec is formulated in terms of the abstract state sys which is required to
satisfy an initial condition – this is given by initial sys and includes an application-
specific condition provided by clients. The precondition also requires every replica
in sys to have at least one action installed. The postcondition says that there is
some schedule sch and trace tr of that schedule from initial state sys. Moreover,
every action of every replica has been invoked rounds many times as expressed by
nActions sch sys rounds. The final conjunct says that the concrete state pointed to
by reps represents the final state of the trace.

For invariance-based reasoning about safety properties, this postcondition
is directly applicable as we will seen in the example of Sec. 4. Progress-based
reasoning is less direct, as it must be in a partial correctness logic like VST. The
spec caters for application-specific postconditions of this form: “if sufficiently
many action invocations have occurred then [something interesting about the
final state]”. The antecedent might be expressed by a numerical lower bound
on rounds. For an application intended to converge to a result, an alternative to

Verifying Derecho’s coordination mechanism 9

bounding rounds is for the antecedent to say a fixed point has been reached, i.e.,
the actions no longer change the state. An example of this kind is in Sec. 6.

Monotonicity, system invariants and Knowledge. Invariants on system states are
needed in order to prove top-level safety properties of interest. A predicate on
system states P is invariant provided it holds initially and is preserved by all
transitions of the system. Here, a transition is either a sync from a replica to
another, or the invocation of an action on a replica. Showing that P is preserved
by syncs may be harder than showing that it is preserved by actions.

An invariance proof is made easier when P is restricted to be of certain special
forms. For example, suppose P is of the form “all rows of all replicas satisfy Q”,
where Q is a predicate on SST rows. To show P is invariant, it suffices to show it
holds initially and is preserved by all actions; syncs don’t have to be considered
at all. This is because such a P is always preserved by syncs. Consider a sync
between replica from and to. Preceding the sync, all rows of both replicas satisfy
Q. The sync updates row from of replica to. This new row also satisfies Q, and
hence Q continues to hold for all rows of both replicas. Our library includes
reasoning principles for invariants expressed in these special forms.

Even when P is a predicate on the whole SST or the whole system, one can
often reason only in terms of the actions. This can be done when P is monotonic
and the actions are inflationary, i.e., each action increases the own row of a replica
with respect to the pointwise (cell-wise) ordering. In such cases, all traces are
non-decreasing. Reasoning based on monotonicity is conceivable for any ordering.
However, for our purposes, it suffices to use the magnitude ordering on integers
and its pointwise liftings to SST rows, SSTs and system states (all written ≥).

Now suppose a sys state predicate P is monotonic: if P holds for sys, then
it holds for any sys’ with sys’ ≥ sys. Then P is stable, provided the actions are
inflationary Stability of a predicate means that once it holds, it continues to hold.
Further, if P is stable and holds in the initial state, then P is invariant. Thus, in
a system with inflationary actions, all the monotonic predicates are invariants.

This reasoning is captured by the following two results in our library. File
sst theory.v defines the pointwise ordering on rows, non-decreasingness of traces,
etc, and proves this key result.

Theorem mono act non dec trace: ∀ (init: sys state) sch tr,
allReplicasSame init ∧ inflaActions init ∧ schedule sch ∧ traceOf init sch tr →
non dec trace tr.

It says that any trace is non-decreasing provided that the system’s actions are
inflationary. Traces are based on schedules, so the theorem quantifies over all
schedules. It also assumes all replicas have the same own row value initially. This
simplification is in accord with our prototype implementation.5

The connection with monotonic predicates is made precise by the following
theorem: it says that if actions are inflationary and pred is a monotonic predicate

5 It loses no generality since one of the actions might serve as an actual initializer.
Action predicates can be used to arrange that no other actions are enabled until the
initializer has run, and that the initializer becomes effectively disabled thereafter.

10 R. Nagasamudram et al.

on SSTs, then if it holds in replica r in the final state of a trace tr’, it holds in r

at any later final state. (This result can be extended to monotonic predicates on
system states.)

Theorem monoPred stable trace: ∀ (pred: SST Tp → Prop) sch ini tr st r,
initial ini ∧ inflaActions ini ∧ monotonic pred ∧ schedule sch ∧ traceOf ini sch tr →
∀ tr’, tr’ ≲ tr ∧ pred (lastState tr’).[r] → pred (lastState tr).[r].

Here ≲ is the temporal (prefix) order on traces with which we express that trace
tr’ extends to trace tr. We use notation sys.[r] to refer to replica r in state sys.

These results are used to prove general facts about the SST framework. For
example, it’s a general invariant in any system with inflationary actions that
any row of an SST is less than or equal to the corresponding replica’s own row.
In this sense, an SST approximates the “ideal SST” comprised of all the own
rows. Our library provides general rules for proving invariants of several forms,
including those that aren’t monotonic.

Prior work on Derecho emphasizes epistemic reasoning [4]. Our library adapts
the standard semantics of epistemic logic to our setting. Rather than formalizing
the syntax of epistemic logic [10], we define the “knows” operator semantically
and prove various useful properties. Here we just sketch the ideas. We consider
what a given replica knows, in the final state of a trace, based on what it has
observed. The replica observes the sequence of updates to its SST. So two traces
are indistinguishable for r if projecting them to the list of r’s SSTs, and removing
stuttering steps, results in the same list of SSTs. In other words, r can distinguish
between two traces only if its SST differs at some step. So r knows system
predicate P in the final state of tr just if P is true in the final state of all traces
r-indistinguishable from tr. This is written Know tr r P. Our library includes a
collection of standard theorems about knowledge, as well as connections between
knowledge, invariants, and monotonic predicates.

4 Example: stability detection

Our first example, stability detection, illustrates message streaming. Each replica
is equipped with two actions. The first, multicast, sends a message to all replicas
in the system. The second, receive, acknowledges receipt of a message. Message
sends and receives are modeled using counters, which are kept track of in the
SST of each replica.

In the model, sys.[r] is the SST of replica r in state sys, and sys.[r].[i,k] is cell k
of row i of replica r. Cell sys.[r].[r,r] stores the number of messages r has sent and
sys.[r].[r,k], the number of messages sent by replica k that r has acknowledged. In
our setup, r acknowledges a message sent by k simply by incrementing the cell
sys.[r].[r,k].

On replica r, the multicast action increments sys.[r].[r,r]. It is guarded by the
predicate true, modeling the scenario where message sends are always possible.
Other replicas learn about messages from r through syncs of r’s own row. The
receive action scans r’s SST and checks whether there is a pending message from a
replica, say k, that hasn’t been acknowledged yet. If so, it increments sys.[r].[r,k].

Verifying Derecho’s coordination mechanism 11

Our model-level implementation of the application first creates an instance of
the ClientParams type class, specifying the number of application columns in each
SST to be NUM REPLICAS in accord with the layout described above. Private
state in stability detection is only used by the receive predicate to communicate to
its following trigger invocation; it does not rely on the private state persisting
between action invocations. (See Sec. 6 for an example using persistence.)

The initial condition asserts that no replica has sent or acknowledged any
messages. The implementations of triggers and predicates then use the generic
functions from the SST model library to create system states and simulate runs.
The model-level application specification is knowledge-oriented:

Definition stabDet (tr: list sys state) : Prop :=
(∀ (r k:repId), Know tr r (fun sys ⇒ sys.[r].[k,r] ≤ sys.[k].[k,r])) ∧
(∀ (r k:repId), Know tr r (fun sys ⇒ sys.[r].[k,k] ≤ sys.[k].[k,k])) ∧
(∀ (i k:repId), everyoneKnows tr (fun sys ⇒

ForallReplica (fun (r: replica) ⇒ Min of col r i ≤ sys.[k].[k,i]) sys)).

The first conjunct says any replica r knows it has received no more acknowledge-
ments from k than have been sent by k. The second says any r knows it has
acknowledged no more messages from k than have been sent. The third says
everyone knows (the K1 operator of epistemic logic) for each sender i, receiver k,
and every replica r, that k has acknowledged at least Min of col r i many messages
from i. Thus by computing, on its own SST, the value of Min of col r i, replica r

can determine which messages from i are committed. All of these properties are
relative to a trace tr. The top-level specification, described below, relies on proof
that stabDet holds for all traces of an initial system in which the send and receive

actions are installed in all replicas.

At the C level, we define predicates and triggers, relying on generic functions
provided in simple sst.h. We prove that each C predicate/trigger pair conforms
to corresponding model-level functions, in accord with generic specifications for
SST actions defined in our library. For example, we prove the multicast trigger
satisfies the generic triggerSpec with its parameters P and T instantiated with
predicate fun SST st ⇒ (true, st) and the increment of sys.[r].[r,r] respectively.

The top-level program, unittest, calls run for some number of rounds and is
structured as a generic application of the SST API (described in Sect. 3). Its
specification is as follows.

{ Replicas rep ini reps ∧ initial ini ∧ sys with actions ini stabilityActions }
unittest(reps,N)
{ ∃ sch tr, Replicas rep (lastState tr) reps ∧ schedule sch ∧ traceOf ini sch tr ∧ stabDet tr }

By formulating this for arbitrary number N of rounds, we show that stabDet holds
at any point of any execution.

The code of unittest just calls run, the spec of which provides all but the last
conjunct of the postcondition. To prove stabDet tr we reason entirely at the model
level: we have a trace in which the multicast and receive actions take place,
interleaved with syncs. General results about monotonicity in connection with
invariants reduce our proof obligation to reasoning about the two actions.

12 R. Nagasamudram et al.

5 The SST implementation and its verification

Our C implementation represents replicas as an SST table whose main component
is row-oriented matrix, and a linked list of actions. Each action contains function
pointers for a predicate and a trigger, and some action-private state.

struct sst{
int numrows;
int numcols;
int my row;
row t rows[];};

struct action{
predicate t predicate;
trigger t trigger;
priv state t ∗act state;
action t ∗next;};

typedef struct replica{
action t∗ actions;
sst t sst;} replica t;

struct replicas {
replica t ∗∗collection; };

We omit descriptions of the administrative functions that construct or deallocate
replicas and install or uninstall actions. The main execution loop is the function
run, which carries out a client-specifiable number of rounds, each round invoking
the following (non-API-exposed) do actions sync all function on all replicas.

void do actions sync all(replicas t∗ reps, int r)
{ replica t ∗rep = reps→collection[r];
action t ∗act = rep→actions;
while (act)
{ run action(rep, act);
for (int to = 0; to < getNumreplicas(reps); to++)
{ if (to != r) sync sst(&rep→sst, getSST(reps, to)); }
act = act→next; }}

The function traverses the replica’s actions by executing run action on each element
– which is non-trivial only in case the action’s predicate fires – and immediately
invoking sync sst afterwards to communicate any update to its local SST matrix to
all other replicas. We currently implement sync sst as a memcpy instruction, which
suffices for our sequential ’run’ function. Future refinements will realize concurrent
execution with fine-grained communication primitives (ultimately, RDMA as in
Derecho). In anticipation, our specifications – and the model of schedules, traces,
etc. – do not expose the sequential nature of our implementation.

The VST specification of do actions sync all asserts adherence to the following
Coq expression, where sync sst all models the communication and do action sys

models the execution of a single action:

Definition do actions sync all (n:Z) (i:repId) (sys:sys state) : sys state :=
let f sys actnum := sync sst all NROWS (do action sys i actnum sys) i in
fold left f (upto (Z.to nat n)) sys.

We embed this Coq expression in VST as shown in earlier sections and then
verify the C code; we then verify run against the specification from Sec. 3.

6 Example: distributed transitive closure

In our second application, replicas collectively compute the transitive closure of
a given graph with N vertices. Each row of the SST is divided into two portions.

Verifying Derecho’s coordination mechanism 13

Definition Find aux : (Z ∗ Z ∗ Z) → PredicateTp := Fix (well founded ltof lexSize) ...
Lemma Find aux def : ∀ (i s e: Z) (SST: SST Tp) (p: privSt),
Find aux (i, s, e) SST p = (∗ i: intermediate vertex, s: start vertex, e: end vertex ∗)
if inBounds (i, s, e)
then if hasPath SST s i && hasPath SST i e && negb (hasPath SST s e)

then (true, (i, s, e)) else Find aux (incr (i, s, e)) SST p
else (false, (i, s, e)).

Definition Find pred : PredicateTp := ’(i,s,e) ← st get ;; Find aux (i,s,e).
Definition Find trig : TriggerTp :=
’(i,s,e) ← st get ;; markPath SST s e ;; st put (incr (i,s,e)) ;; ret SST.[the id SST].

Fig. 4: The Find action for the distributed transitive closure client.

The first N2 columns, the edge matrix, stores a copy of the adjacency matrix of
the input graph as a one-dimensional array. The second N2 columns, the path
matrix, stores the transitive closure of the graph. The replica is equipped with
two actions that update the path matrix. The first, Find, computes new paths
in the transitive closure. The second, Copy, learns new paths by copying those
that other replicas may have already found. Find suffices to ensure the transitive
closure is eventually computed by every replica. Copy improves performance by
allowing replicas that are “lagging behind” to catch up.

Implementation of predicates and triggers. The implementation of the Find action
at the model level is shown in Fig. 4. It is a rendering of the usual Floyd-Warshall
algorithm with two key changes. The first is that it recurses over lexicographically
ordered triples of graph vertices; this departs from the usual presentation of the
algorithm as three nested loops. This is done by the function Find aux, elided in
Fig. 4. For reasoning, the lemma Find aux def provides a convenient unfolding of
the definition. This change facilitates the second.

The second change is that the predicate/trigger pair follow a “resumption”
style of computation in order to fit with our general framework of SST actions,
wherein the trigger is used to update the SST and communication between
predicate and trigger is facilitated by private state. The private state for this
application stores a triple of graph vertices.6

Function Find pred first checks whether a new path exists via intermediate
vertex i between start and end vertices s and e. If so, it updates the private state to
(i,s,e). The corresponding path is then marked in the SST by the trigger Find trig.
In addition, the trigger increments the private state so that in a subsequent
invocation, the predicate starts searching for paths from the next lexically ordered
triple of graph vertices. In the case where a path hasn’t been found, the predicate
doesn’t update the private state and recursively tries the next lexically ordered
triple. In Fig. 4, the functions st get and st put operate on the state monad. We
use standard notations for monads.

6 This is a simplification for expository purposes. In our implementation, the private
state contains an additional component used by the Copy action.

14 R. Nagasamudram et al.

The Copy action is implemented similarly. It continuously polls each row of
the SST and marks any path not already recorded in the own row. Both actions
monotonically increase the path matrix.

We verify C implementations of the Find and Copy actions using the generic
predicate and trigger specs.

Application specifications. Like unittest in Sect. 4, the main program, tc main,
calls run for some number of rounds (here, N3). Its specification is as follows.

{ Replicas rep ini reps ∧ initial TC sys ini gph }
tc main(reps)
{ ∃ sch tr, let fin := lastState tr in

Replicas rep fin reps ∧ schedule sch ∧ traceOf ini sch tr ∧ computedTC fin }

In the precondition, initial TC sys ini expresses that ini is a system that is initialized
with the graph gph and each replica is equipped with the Find and Copy actions.
The postcondition says that there is a schedule and a trace and moreover, that
each replica has computed the transitive closure of the graph provided it has
reached a fixpoint. Since the Find action is sufficient for correctness, we define
fixpoint to mean that the Find predicate returns false: there are no more paths
to be found in the transitive closure. In the definition below, Find privSt refers to
the private state of the Find action. The antecedent expresses “reached a fixpoint”
and the consequent says that the path matrix of sys.[r] is equal to the transitive
closure of the edge matrix of sys.[r]. Recall the sys.[r,r] notation refers to the own
row (which is at index r) of sys.[r].

Definition computedTC sys := ∀ r, fst (Find sys.[r] (Find privSt sys.[r])) = false →
clos trans (hasEdge sys.[r,r]) = hasPath sys.[r,r].

We verify the final conjunct of tc main entirely at the model level. We start
by proving two invariants of any trace of the application. The first, TC row inv, is
a predicate on rows and says that the edge matrix of replica sys.[r] is contained
in its path matrix, which in turn is contained in the transitive closure of its edge
matrix. We prove this using generic lemmas about invariants provided by the
SST model library. The second invariant path via inv is a predicate on a replica
and the private states of its actions. Given sys.[r] and a private state (i,s,e), it says
that all paths that go via intermediate vertices {0,...,i} are marked in the path
matrix of sys.[r]. This is again proved using library support for reasoning about
invariants. Together, these invariants suffice to prove computedTC (lastState tr)

holds for any trace tr of the application.

7 Related and future work

TLA+ has been used to verify versions of the Paxos protocol [7]. Padon et al [31]
used first-order provers for fully automated verification of several Paxos variants.
Ivy [27] has been used to verify single instances of a Paxos interaction [30].

Auto-active verification tools based on SMT typically structure proofs in
terms of program annotations (e.g., Dafny, Frama-C, Verifast). IronFleet [13] uses

Verifying Derecho’s coordination mechanism 15

a methodology in which behaviors described in the TLA logic are expressed as
Dafny specifications; a version of Paxos, and a sharded key-value store application
are verified, and there is an (un-verified) compiler from Dafny to C#.

Like VST, RefinedC [34], Bedrock2 [9], and Autocorres [11] are embedded
in higher order proof assistants whose expressive logics enable the integration
of code verification and model level reasoning. RefinedC builds on Iris [18] and
provides a higher degree of automation thanks to the use of refinement types and
backtracking-free proof search. It is based on an adhoc semantics of C rather than
an established semantics such as CompCert. Bedrock2 is a C-like language and
Coq-verified compiler under active development at MIT. Rather than supporting
the entire C language, its language features and compilation strategy are limited,
motivated by its intended application domain of embedded systems.

VST’s concurrent separation logic enables thread-modular verification of
shared-memory concurrent code [24,29] and programs with I/O [46]. The latter
work concerns a rudimentary web server in C – one node in a distributed system,
whose external behavior is specified using interaction trees [44]. The server
contains a KV store and communicates using a socket API spec compatible
with the implementation-side view of the CertiKOS operating system kernel [26].
Recent work [25] further enhances VST’s concurrency capabilities by incorporating
the Iris theory and proof mode, atomic specifications [33], higher-order ghost
state and invariants, and persistent state. These developments will be relevant
for verifying a multi-threaded implementation of our system.

Modeling and reasoning about about state machine replication, failure han-
dling, chain replication, two-phase-commit, and variations of Paxos or Raft
protocols in Coq is a topic of substantial current interest (e.g. [41,42,36,16,6]).
Most of these works present clean-slate formalizations, proposing novel models
or domain-specific proof libraries. Typically, they achieve executability only by
extraction to OCaml code (with performance limitations) or handle client-side
applications only at the model level.

ADO [15] and Adore [16] are recent Coq theories for justifying state machine
replication abstractions, focusing on failures and reconfiguration, respectively.
ADO takes inspiration from the push/pull model developed for shared-memory
concurrency in CertiKOS and involves an event log trace. It includes an im-
plementation of multiPaxos and Chain Replication, but its execution employs
unverified send/recv system calls and applications are directly written inside the
Coq prover. Adore enables derivation of ADO’s mechanism using a slightly more
refined state/event model, but its implementation is only extracted to OCaml
and has hence not been subjected to realistic performance evaluation. Likewise
for execution in Aneris [19] and Verdi [41] (including its application to Raft [42])
and Disel [35].

Monotonicity-exploiting programming models are increasingly popular, in
the context of databases [8], logic programming [1], distributed programming
languages [28], and parallel programming [20].

Much recent excitement has centered around monotonic uses of Conflict-Free
Replicated Datatypes (CRDTs) [37]. These datatypes feature the ability to merge

16 R. Nagasamudram et al.

uncoordinated, concurrent updates across weakly-synchronized replicas, without
risking replica divergence. This in turn allows development of software which
does not rely on consistent or immediate replication, enabling new trends in
everything from local-first software [3] (where a user’s machine is not expected to
wait for synchronization) to high-speed datacenter settings [43] (where a replica
should not need to wait for coordination to make progress).

Recent work has made CRDTs far more tractable as a programming model.
Some recent work makes CRDTs easier for programmers to use; in particular,
monotonic observations (as proposed in [21]) provide the ability to consistently
observe projections of an inconsistently-replicated CRDT. Other work has made
CRDTs easier to build; in particular, Katara [22] provides the ability to synthesize
CRDTs automatically from programmer-provided specifications.

Future work. We have completed the verification of Derecho’s core coordination
mechanism together with small applications that embody features of the full
replication/consensus protocols. VST ensures only partial correctness but our
high level model features partial traces and considers arbitrary finite executions
whereby we specify nonterminating computations. We formulate a standard
semantics of knowledge, but leave to future work the extension of the model to
temporal properties, and its use in verification of the full protocols.

While VST has no intrinsic notion of distributed computation, its separation
logic lets us specify a system as a collection of replicas acting in disjoint state
spaces, modeling RDMA by memcpy. One of our next steps will exploit VST’s
concurrency principles to verify a more faithful (non-sequential) implementation
of Derecho in which each replica executes in a separate thread, with lock-free
syncs that exploit monotonicity and the fact that rows are single-writer. Towards
verifying the core Derecho group membership and view change protocols, a next
step will be to verify a 2-phase commit implementation, building on stability
detection. Once the core protocols have been implemented and verified, existing
applications built on top of Derecho can be formalized.

Acknowledgments. The authors gratefully acknowledge support from Siemens Cor-

poration for this project, initiated and coordinated by Charif Mahmoudi. First author

Ramana Nagasamudram is the beneficiary of a graduate fellowship grant from Siemens

called the #FutureMakers Fellowship.

References

1. Arntzenius, M., Krishnaswami, N.: Seminäıve evaluation for a higher-order func-
tional language. Proc. ACM Program. Lang. 4(POPL), 22:1–22:28 (2020). https:
//doi.org/10.1145/3371090

2. Azmy, N., Merz, S., Weidenbach, C.: A machine-checked correctness proof for
Pastry. Sci. Comput. Program. 158 (2018)

3. Bieniusa, A., Haas, J., Kleppmann, M., Mogk, R. (eds.): Programming Local-first
Software (ECOOP workshop). European Conference on Object-Oriented Program-
ming (2022), https://2022.ecoop.org/home/plf-2022

https://doi.org/10.1145/3371090
https://doi.org/10.1145/3371090
https://doi.org/10.1145/3371090
https://doi.org/10.1145/3371090
https://2022.ecoop.org/home/plf-2022

Verifying Derecho’s coordination mechanism 17

4. Birman, K., Jha, S., Milano, M., Rosa, L., Song, W., Tremel, E.: Monotonic-
ity and opportunistically-batched actions in Derecho. In: SSS. Lecture Notes in
Computer Science, vol. 14310, pp. 172–190 (2023). https://doi.org/10.1007/
978-3-031-44274-2_14

5. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: A separation
logic tool to verify correctness of C programs. J. Autom. Reason. 61 (2018)

6. Chajed, T., Tassarotti, J., Theng, M., Kaashoek, M.F., Zeldovich, N.: Verifying
the DaisyNFS concurrent and crash-safe file system with sequential reasoning. In:
OSDI (2022)

7. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of Multi-Paxos for distributed
consensus. ArXiv abs/1606.01387 (2016)

8. Cheung, A., Crooks, N., Hellerstein, J.M., Milano, M.: New directions in cloud
programming. In: Conference on Innovative Data Systems Research (CIDR) (2021),
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf

9. Erbsen, A., Gruetter, S., Choi, J., Wood, C., Chlipala, A.: Integration verification
across software and hardware for a simple embedded system. In: PLDI (2021)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

11. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: formal
verification of C code without the pain. In: PLDI (2014)

12. Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R.D., Pritchard, H., Squyres,
J.M.: A brief introduction to the OpenFabrics interfaces - a new network API for
maximizing high performance application efficiency. In: IEEE Annual Symposium
on High-Performance Interconnects. pp. 34–39 (2015). https://doi.org/10.1109/
HOTI.2015.19

13. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving safety and liveness of practical distributed
systems. Commun. ACM 60(7) (2017)

14. Hellerstein, J.M., Alvaro, P.: Keeping CALM: when distributed consistency is easy.
Commun. ACM 63 (2020)

15. Honoré, W., Kim, J., Shin, J., Shao, Z.: Much ADO about failures: a fault-aware
model for compositional verification of strongly consistent distributed systems.
Proc. ACM Program. Lang. 5(OOPSLA), 1–31 (2021). https://doi.org/10.1145/
3485474

16. Honoré, W., Shin, J., Kim, J., Shao, Z.: Adore: atomic distributed objects with
certified reconfiguration. In: Jhala, R., Dillig, I. (eds.) PLDI (2022)

17. Jha, S., Behrens, J., Gkountouvas, T., Milano, M., Song, W., Tremel, E., Renesse,
R.V., Zink, S., Birman, K.P.: Derecho: Fast state machine replication for cloud
services. ACM Trans. Comput. Syst. 36 (2019)

18. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
Journal of Functional Programming 28 (2018)

19. Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal,
L.: Aneris: A mechanised logic for modular reasoning about distributed systems.
In: European Symposium on Programming. LNCS, vol. 12075, pp. 336–365 (2020).
https://doi.org/10.1007/978-3-030-44914-8_13

20. Kuper, L., Turon, A., Krishnaswami, N.R., Newton, R.R.: Freeze after writing:
quasi-deterministic parallel programming with lvars. In: POPL. pp. 257–270 (2014).
https://doi.org/10.1145/2535838.2535842

https://doi.org/10.1007/978-3-031-44274-2_14
https://doi.org/10.1007/978-3-031-44274-2_14
https://doi.org/10.1007/978-3-031-44274-2_14
https://doi.org/10.1007/978-3-031-44274-2_14
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3485474
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2535838.2535842
https://doi.org/10.1145/2535838.2535842

18 R. Nagasamudram et al.

21. Laddad, S., Power, C., Milano, M., Cheung, A., Crooks, N., Hellerstein, J.M.:
Keep CALM and CRDT on. Proc. VLDB Endow. 16(4), 856–863 (2022). https:
//doi.org/10.14778/3574245.3574268

22. Laddad, S., Power, C., Milano, M., Cheung, A., Hellerstein, J.M.: Katara: Syn-
thesizing CRDTs with verified lifting. Proc. ACM Program. Lang. 6(OOPSLA2)
(2022). https://doi.org/10.1145/3563336

23. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
24. Mansky, W., Appel, A.W., Nogin, A.: A verified messaging system. In: OOPSLA

(2017)
25. Mansky, W., Du, K.: An Iris instance for verifying Compcert C programs. Proc.

ACM Program. Lang. (POPL) (2024)
26. Mansky, W., Honoré, W., Appel, A.W.: Connecting higher-order separation logic

to a first-order outside world. In: ESOP (2020)
27. McMillan, K.L., Padon, O.: Ivy: A multi-modal verification tool for distributed

algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV (2020)
28. Milano, M., Recto, R., Magrino, T., Myers, A.: A tour of Gallifrey, a language

for geodistributed programming. In: Lerner, B.S., Bod́ık, R., Krishnamurthi, S.
(eds.) 3rd Summit on Advances in Programming Languages (SNAPL 2019). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 136, pp. 11:1–11:19. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https:
//doi.org/10.4230/LIPIcs.SNAPL.2019.11

29. Nguyen, D.T., Beringer, L., Mansky, W., Wang, S.: Compositional verification of
concurrent C programs with search structure templates. In: CPP (2024)

30. Padon, O.: Deductive verification of distributed protocols in first-order logic. In:
FMCAD (2018)

31. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: Decidable reasoning
about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA) (oct 2017)

32. Recio, R.J., Culley, P.R., Garcia, D., Metzler, B., Hilland, J.: A Remote Direct
Memory Access Protocol Specification. RFC 5040 (Oct 2007). https://doi.org/
10.17487/RFC5040, https://www.rfc-editor.org/info/rfc5040

33. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and
data abstraction. In: ECOOP (2014)

34. Sammler, M., Lepigre, R., Krebbers, R., Memarian, K., Dreyer, D., Garg, D.:
RefinedC: automating the foundational verification of C code with refined ownership
types. In: PLDI (2021)

35. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. (POPL) (2017)

36. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. (POPL) (2018)

37. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated
data types. In: Stabilization, Safety, and Security of Distributed Systems: 13th
International Symposium (SSS). pp. 386–400 (2011). https://doi.org/10.1007/
978-3-642-24550-3_29

38. Sharma, U., Jung, R., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Grove: a
separation-logic library for verifying distributed systems. In: SOSP (2023)

39. Song, W., Yang, Y., Liu, T., Merlina, A., Garrett, T., Vitenberg, R., Rosa, L.,
Awatramani, A., Wang, Z., Birman, K.P.: Cascade: An edge computing platform
for real-time machine intelligence. In: ApPLIED ’22 (2022)

40. Timany, A., Gregersen, S.O., Stefanesco, L., Hinrichsen, J.K., Gondelman, L., Nieto,
A., Birkedal, L.: Trillium: Higher-order concurrent and distributed separation logic
for intensional refinement. Proc. ACM Program. Lang. (POPL) (2024)

https://doi.org/10.14778/3574245.3574268
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.1145/3563336
https://doi.org/10.1145/3563336
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.17487/RFC5040
https://doi.org/10.17487/RFC5040
https://doi.org/10.17487/RFC5040
https://doi.org/10.17487/RFC5040
https://www.rfc-editor.org/info/rfc5040
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29

Verifying Derecho’s coordination mechanism 19

41. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: PLDI (2015)

42. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.:
Planning for change in a formal verification of the raft consensus protocol. In: CPP
(2016)

43. Wu, C., Faleiro, J.M., Lin, Y., Hellerstein, J.M.: Anna: A KVS for any scale.
IEEE Transactions on Knowledge and Data Engineering 33(2), 344–358 (2021).
https://doi.org/10.1109/TKDE.2019.2898401

44. Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B.C., Zdancewic, S.:
Interaction trees: representing recursive and impure programs in Coq. Proc. ACM
Program. Lang. 4(POPL) (2020)

45. Zave, P.: Reasoning about identifier spaces: How to make Chord correct. IEEE
Trans. Software Eng. 43(12), 1144–1156 (2017)

46. Zhang, H., Honoré, W., Koh, N., Li, Y., Li, Y., Xia, L.Y., Beringer, L., Mansky, W.,
Pierce, B., Zdancewic, S.: Verifying an HTTP Key-Value Server with Interaction
Trees and VST. In: ITP (2021)

https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.1109/TKDE.2019.2898401

	Verifying a C implementation of Derecho's coordination mechanism using VST and Coq

