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Abstract—An open distributed system can be secured by
requiring participants to present proof of work and rewarding
them for participation. The Bitcoin digital currency introduced
this mechanism, which is adopted by almost all contemporary
digital currencies and related services.

A natural process leads participants of such systems to form
pools, where members aggregate their power and share the
rewards. Experience with Bitcoin shows that the largest pools
are often open, allowing anyone to join. It has long been known
that a member can sabotage an open pool by seemingly joining
it but never sharing its proofs of work. The pool shares its
revenue with the attacker, and so each of its participants earns
less.

We define and analyze a game where pools use some of
their participants to infiltrate other pools and perform such
an attack. With any number of pools, no-pool-attacks is not a
Nash equilibrium. We study the special cases where either two
pools or any number of identical pools play the game and the
rest of the participants are uninvolved. In both of these cases
there exists an equilibrium that constitutes a “tragedy of the
commons” where the participating pools attack one another
and earn less than they would have if none had attacked.

For two pools, the decision whether or not to attack is
the miner’s dilemma, an instance of the iterative prisoner’s
dilemma. The game is played daily by the active Bitcoin
pools, which apparently choose not to attack. If this balance
breaks, the revenue of open pools might diminish, making them
unattractive to participants.

I. INTRODUCTION

Bitcoin [1] is a digital currency that is gaining accep-
tance [2] and recognition [3], with an estimated market
capitalization of over 4.5 billion US dollars, as of Novem-
ber 2014 [4]. Bitcoin’s security stems from a robust incentive
system. Participants are required to provide expensive proofs
of work, and they are rewarded according to their efforts.
This architecture has proved both stable and scalable, and it
is used by most contemporary digital currencies and related
services, e.g. [5], [6], [7], [8], [9]. Our results apply to all
such incentive systems, but we use Bitcoin terminology and
examples since it serves as an active and archetypal example.

Bitcoin implements its incentive systems with a data
structure called the blockchain. The blockchain is a serial-
ization of all Bitcoin transactions. It is a single global ledger
maintained by an open distributed system. Since anyone
can join the open system and participate in maintaining the
blockchain, Bitcoin uses a proof of work mechanism to deter
attacks: participation requires exerting significant computa-
tional resources. A participant who proves she has exerted
enough resources with a proof of work is allowed to take a

step in the protocol by generating a block. Participants are
compensated for their efforts with newly minted Bitcoins.
The process of creating a block is called mining, and the
participants — miners.

In order to win the reward, many miners try to generate
blocks. The system automatically adjusts the difficulty of
block generation, such that one block is added every 10
minutes to the blockchain. This means that each miner
seldom generates a block. Although its revenue may be
positive in expectation, a miner may have to wait for
an extended period to create a block and earn the actual
Bitcoins. Therefore, miners form mining pools, where all
members mine concurrently and they share their revenue
whenever one of them creates a block.

Pools are typically implemented as a pool manager and a
cohort of miners. The pool manager joins the Bitcoin system
as a single miner. Instead of generating proof of work, it
outsources the work to the miners. In order to evaluate the
miners’ efforts, the pool manager accepts partial proof of
work and estimates each miner’s power according to the
rate with which it submits such partial proof of work. When
a miner generates a full proof of work, it sends it to the pool
manager which publishes this proof of work to the Bitcoin
system. The pool manager thus receives the full revenue of
the block and distributes it fairly according to its members
power. Many of the pools are open — they allow any miner
to join them using a public Internet interface.

Such open pools are susceptible to the classical block
withholding attack [10], where a miner sends only partial
proof of work to the pool manager and discards full proof
of work. Due to the partial proof of work it sends to the
pool, the miner is considered a regular pool member and the
pool can estimate its power. Therefore, the attacker shares
the revenue obtained by the other pool members, but does
not contribute. It reduces the revenue of the other members,
but also its own. We provide necessary background on the
Bitcoin protocol, pools and the classical block withholding
attack in Section II, and specify our model in Section III.
For a broader view of the protocol and ecosystem the reader
may refer to the survey by Bonneau et al. [11].

In this work we analyze block withholding attacks among
pools. A pool that employs the pool block withholding attack
registers with the victim pool as a regular miner. It receives
tasks from the victim pool and transfers them to some of
its own miners. We call these infiltrating miners, and the
mining power spent by a pool the infiltration rate. When
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the attacking pool’s infiltrating miners deliver partial proofs
of work, the attacker transfers them to the victim pool,
letting the attacked pool estimate their power. When the
infiltrating miners deliver a full proof of work, the attacking
pool discards it.

This attack affects the revenues of the pools in several
ways. The victim pool’s effective mining rate is unchanged,
but its total revenue is divided among more miners. The
attacker’s mining power is reduced, since some of its miners
are used for block withholding, but it earns additional
revenue through its infiltration of the other pool. And finally,
the total effective mining power in the system is reduced,
causing the Bitcoin protocol to reduce the difficulty.

Taking all these factors into account, we observe that a
pool might be able to increase its revenue by attacking other
pools. Each pool therefore makes a choice of whether to
attack each of the other pools in the system, and with what
infiltration rate. This gives rise to the pool game. We specify
this game and provide initial analysis in Section IV.

In Section V we analyze the scenario where exactly two
of the pools take part in the game and only one can attack
the other. Here, the attacker can always increase its revenue
by attacking. We conclude that in the general case, with any
number of pools, no-pool-attacks is not a Nash equilibrium.

Next, Section VI deals with the case of two pools, where
each can attack the other. Here, analysis becomes more
complicated in two ways. First, the revenue of each pool
affects the revenue of the other through the infiltrating
miners. We prove that for a static choice of infiltration
rates the pool revenues converge. Second, once one pool
changes its infiltration rate of the other, the latter may prefer
to change its infiltration rate of the former. Therefore the
game itself takes multiple rounds to converge. We show
analytically that the game has a single Nash Equilibrium
and numerically study the equilibrium points for different
pool sizes. For pools smaller than 50%, at the equilibrium
point both pools earn less than they would have in the non-
equilibrium no-one-attacks strategy.

Since pools can decide to start or stop attacking at any
point, this can be modeled as the miner’s dilemma — an
instance of the iterative prisoner’s dilemma. Attacking is the
dominant strategy in each iteration, but if the pools can agree
not to attack, both benefit in the long run.

Finally, we address in Section VII the case where the
participants are an arbitrary number of identical pools. There
exists a symmetric equilibrium in which each participating
pool attacks each of the other participating pools. As in
the minority two-pools scenario, here too at equilibrium all
pools earn less than with the no-pool-attacks strategy.

Our results imply that block withholding by pools leads
to an unfavorable equilibrium. Nevertheless, due to the
anonymity of miners, a single pool might be tempted to
attack, leading the other pools to attack as well. The implica-
tions might be devastating for open pools: If their revenues

are reduced, miners will prefer to form closed pools that
cannot be attacked in this manner. Though this may be
conceived as bad news for public mining pools, on the whole
it may be good news to the Bitcoin system, which prefers
small pools. We examine the practicality of the attack in
Section VIII and discuss implications and model extensions
in Section IX.

In summary, our contributions are the following:
1) Definition of the pool game where pools in a proof-of-

work secured system attack one another with a pool
block withholding attack.

2) In the general case, no-pool-attacks is not an equilib-
rium.

3) With two minority pools participating, the only Nash
Equilibrium is when the pools attack one another, and
both earn less than if none had attacked.
Miners therefore face the miner’s dilemma, an instance
of the iterative prisoner’s dilemma, repeatedly choos-
ing between attack and no-attack.

4) With multiple pools of equal size there is a symmetric
Nash equilibrium, where all pools earn less than if
none had attacked.

5) For Bitcoin, inefficient equilibria for open pools may
serve the system by reducing their attraction and
pushing miners towards smaller closed pools.

The classical block withholding attack is as old as pools
themselves, but its use by pools has not been suggested
until recently. We overview related attacks and prior work in
Section X, and conclude with final remarks in Section XI.

II. PRELIMINARIES — BITCOIN AND POOLED MINING

Bitcoin is a distributed, decentralized digital cur-
rency [12], [13], [1], [14]. Clients use the system by issuing
transactions, and the system’s only task is to serialize
transactions in a single ledger and reject transactions that
cannot be serialized due to conflicts with previous transac-
tions. Bitcoin transactions are protected with cryptographic
techniques that ensure that only the rightful owner of a
Bitcoin can transfer it. The transaction ledger is stored by a
network of miners in a data structure caller the blockchain.

A. Revenue for Proof Of Work

The blockchain records the transactions in units of blocks.
The first block, dubbed the genesis block, is defined as part
of the protocol. A valid block contains the hash of the
previous block, the hash of the transactions in the current
block, and a Bitcoin address which is to be credited with a
reward for generating the block.

Any miner may add a valid block to the chain by
(probabilistically) proving that it has spent a certain amount
of work and publishing the block with the proof over an
overlay network to all other miners. When a miner creates
a block, it is compensated for its efforts with Bitcoins. This
compensation includes a per-transaction fee paid by the users



whose transactions are included, and an amount of minted
Bitcoins that are thus introduced into the system.

The work which a miner is required to do is to repeatedly
calculate a a hash function — specifically the SHA-256 of
the SHA-256 of a block header. To indicate that he has
performed this work, the miner provides a probabilistic proof
as follows. The generated block has a nonce field, which
can contain any value. The miner places different values
in this field and calculates the hash for each value. If the
result of the hash is smaller than a target value, the nonce
is considered a solution, and the block is valid.

The number of attempts to find a single hash is therefore
random with a geometric distribution, as each attempt is
a Bernoulli trial with a success probability determined by
the target value. At the existing huge hashing rates and
small target values, the time to find a single hash can be
approximated by an exponential distribution. The average
time for a miner to find a solution is therefore proportional
to its hashing rate or mining power.

To maintain a constant rate of Bitcoin generation, and
as part of its defense against denial of service and other
attacks, the system normalizes the rate of block generation.
To achieve this, the protocol deterministically defines the
target value for each block according to the time required to
generate recent blocks. The target, or difficulty, is updated
once every 2016 blocks such that the average time for each
block to be found is 10 minutes.

Note that the exponential distribution is memoryless. If
all miners mine for block number b, once the block is found
at time t, all miners switch to mine for the subsequent block
b + 1 at t without changing their probability distribution of
finding a block after t. Therefore, the probability that a miner
i with mining power mi finds the next block is its ratio out
of the total mining power m in the system.

Forks

Block propagation in the overlay network takes seconds,
therefore it is possible for two distant miners to generate
competing blocks, both of which name the same block as
their predecessor. Such bifurcations, or forks, are rare since
the average mining interval is 10 minutes, and they occur
on average once every 60 blocks [15]. The system has a
mechanism to solve forks when they do occur, causing one
of the blocks to be discarded.

We ignore bifurcations for the sake of simplicity. Since the
choice of the discarded block on bifurcation is random, one
may incorporate this event into the probability of finding a
block, and consider instead the probability of finding a block
that is not discarded.

B. Pools

As the value of Bitcoin rose, Bitcoin mining has become
a rapidly advancing industry. Technological advancements
lead to ever more efficient hashing ASICs [16], and mining
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Figure 1. A system with 8 miners and 3 honest pools. Pool 1 has 3
registered miners, pools 2 and 3 have 2 registered miners each, and one
miner mines solo.

datacenters are built around the world [17]. Mining is only
profitable using dedicated hardware in cutting edge mining
rigs, otherwise the energy costs exceed the expected revenue.

Although expected revenue from mining is proportional
to the power of the mining rigs used, a single home miner
using a small rig is unlikely to mine a block for years [18].
Consequently, miners often organize themselves into mining
pools. Logically, a pool is a group of miners that share
their revenues when one of them successfully mines a block.
For each block found, the revenue is distributed among the
pool members in proportion to their mining power1. The
expected revenue of a pool member is therefore the same
as its revenue had it mined solo. However, due to the large
power of the pool, it finds blocks at a much higher rate, and
so the frequency of revenue collection is higher, allowing
for a stable daily or weekly income.

In practice, most pools are controlled by a centralized
pool manager.2 Miners register with the pool manager and
mine on its behalf: The pool manager generates tasks and
the miners search for solutions based on these tasks that can
serve as proof of work. Once they find a solution, they send it
to the pool manager. The pool manager behaves as a single
miner in the Bitcoin system. Once it obtains a legitimate
block from one of its miners, it publishes it. The block
transfers the revenue to the control of the pool manager.
The pool manager then distributes the revenue among the
miners according to their mining power. The architecture is
illustrated in Figure 1

In order to estimate the mining power of a miner, the pool
manager sets a partial target for each member, much larger
(i.e., easier) than the target of the Bitcoin system. Each miner
is required to send the pool manager blocks that are correct
according to the partial target. The partial target is chosen to
be large, such that partial solutions arrive frequently enough
for the manager to accurately estimate the power of the
miner, but small (hard) to reduce management overhead.

1This is a simplification that is sufficient for our analysis. The intricacies
of reward systems are explained in [10].

2A notable exception is P2Pool [19], which we discuss in Section IX.



Pools often charge a small percentage of the revenue as fee.
We discuss in Section IX the implications of such fees to
our analysis.

Many pools are open and accept any interested miner. A
pool interface is typically comprised of a web interface for
registration and a miner interface for the mining software.
In order to mine for a pool, a miner registers with the
web interface, supplies a Bitcoin address to receive its
future shares of the revenue, and receives from the pool
credentials for mining. Then he feeds his credentials and
the pool’s address to its mining rig, which starts mining.
The mining rig obtains its tasks from the pool and sends
partial and full proof of work, typically with the STRATUM
protocol [20]. As it finds blocks, the pool manager credits
the miner’s account according to its share of the work, and
transfers these funds either on request or automatically to
the aforementioned Bitcoin address.

Too Big Pools

Despite their important role of enabling small-scale min-
ing, pools can constitute a threat to the Bitcoin system if their
size is too large. If one pool controls the majority of mining
power, the system becomes unstable [21], [22] (and [23]
warns that the system is unstable with even smaller pools).

Arguably, in realistic scenarios of the Bitcoin system no
pool controls a majority of the mining power. As an example,
for one day in June 2014 a single pool called GHash.IO
produced over 50% of the blocks in the Bitcoin main
chain. The Bitcoin community backlashed at the pool (which
has done nothing worse than being extremely successful).
GHash.IO reduced its relative mining power and publicly
committed to stay away from the 50% limit.

C. Block Withholding and its Detection

Classical Block Withholding [10] is an attack performed
by a pool member against the other pool members. The
attacking miner registers with the pool and apparently starts
mining honestly — it regularly sends the pool partial proof
of work. However, the attacking miner sends only partial
proof of work. If it finds a full solution that constitutes a full
proof of work it discards the solution, reducing the pool’s
total revenue.3 This attack is illustrated in Figure 2.

The attacker does not change the pool’s effective mining
power, and does not affect directly the revenue of other
pools. However, the attacked pool shares its revenue with
the attacker. Therefore each miner earns less, as the same
revenue is distributed among more miners.

Recall that the proof of work is only valid for a specific
block, as it is the nonce with which the block’s hash is
smaller than its target. The attacking miner cannot use it.

3Although the term block withholding has become canonical, note that
the block is discarded and never introduced into the system as the name
block withholding implies.

Miners

Pool 1

Bitcoin Network

Miners MinersMiners

Pool 2

Figure 2. Classical Block Withholding attack. A group of miners attack
Pool 2 with a block withholding attack, denoted by a dashed red arrow.

Moreover, this attack reduces the attacker’s revenue com-
pared to solo mining or honest pool participation: It suffers
from the reduced revenue like the other pool participants,
and its revenue is less than its share of the total mining
power in the system. The classical block withholding attack
can therefore only be used for sabotage, at a cost to the
attacker.

Detection: Even if a pool detects that it is under a block
withholding attack, it might not be able to detect which
of its registered miners are the perpetrators. A pool can
estimate its expected mining power and its actual mining
power by the rates of partial proofs of work and full proofs
of work, respectively, supplied by its miners. A difference
above a set confidence interval indicates an attack. To detect
whether a single miner is attacking it, the pool must use a
similar technique, comparing the estimated mining power of
the attacker based on its partial proof of work with the fact
it never supplies a full proof of work. If the attacker has
a small mining power, it will send frequent partial proofs
of work, but the pool will only expect to see a full proof
of work at very low frequency. Therefore, it cannot obtain
statistically significant results that would indicate an attack.

An attacker can use multiple small block withholding
miners and replace them frequently. A small miner is,
for example, a miner whose expected full proof of work
frequency is yearly. Such a miner will see a non-negligible
average daily revenue (B25/365 ≈ B0.07). If the attacker
replaces such a small miner every month, he will collect
about B2 at the end of each month. The pool must decide
within this month whether the miner is an attacker (and
revoke its earnings), or just an unlucky honest miner. Since
an honest miner of this power is unlikely to find a full proof
of work within a month (probability of about 8% according
to the exponential distribution) a pool that rejects miners
based on this criterion would reject the majority of its honest
miners. The alternative of rejecting small miners in general
or distributing revenue on a yearly basis contradicts the goal



of pooled mining.

III. MODEL AND STANDARD OPERATION

We specify the basic model in which participants operate
in Section III-A, proceed to describe how honest miners
operate in this environment in Sections III-B and III-C, and
how the classical block withholding attack is implemented
with our model in Section III-D.

A. Model

The system is comprised of the Bitcoin network and nodes
with unique IDs, and progresses in steps. A node i generates
tasks which are associated with its ID i.

A node can work on a task for the duration of a step. The
result of this work is a set of partial proofs of work and a
set of full proofs of work. The number of proofs in each set
has a Poisson distribution, partial proofs with a large mean
and full proofs with a small mean. Nodes that work on tasks
are called a miners, miners have identical power, and hence
identical probabilities to generate proofs of work.

The Bitcoin network pays for full proofs of work. To
acquire this payoff an entity publishes a task task and its
corresponding proof of work to the network. The payoff
goes to the ID associated with task. The Bitcoin protocol
normalizes revenue such that the average total revenue dis-
tributed in each step is a constant throughout the execution
of the system. Any node can transact Bitcoins to another
node by issuing a Bitcoin transaction.

Nodes that generate tasks but outsource the work are
called pools. Pools send tasks to miners over the network,
the miners receive the tasks, perform the work, and send the
partial and full proofs of work to the pool.

Apart from working on tasks, all local operations, pay-
ments, message sending, propagation, and receipt are in-
stantaneous.

We assume that the number of miners is large enough such
that mining power can be split arbitrarily without resolution
constraints.

Denote the number of pools with p, the total number
of mining power in the system with m and the miners
participating in pool i (1 ≤ i ≤ p) with mi. We use a quasi-
static analysis where miner participation in a pool does not
change over time.

B. Solo Mining

A solo miner is a node that generates its own tasks. In
every step it generates a task, works on it for the duration
of the step and if it finds a full proof of work, it publishes
this proof of work to earn the payoff.

C. Pools

A pool is a node that serves as a coordinator and multiple
miners can register to a pool and work for it. In every step
it generates a task for each registered miner and sends it

over the network. Each miner receives its task and works on
it for the duration of the step. At the end of the step, the
miner sends the pool the full and the partial proofs of work
it has found. The pool receives the proofs of work of all its
miners, registers the partial proofs of work and publishes the
full proofs. It calculates its overall revenue, and proceeds to
distribute it among its miners. Each miner receives revenue
proportional to its success in the current step, namely the
ratio of its partial proofs of work out of all partial proofs of
work the pool received. We assume that pools do not collect
fees of the revenue. Pool fees and their implications on our
analysis are discussed in Section IX.

D. Block Withholding Miner

A miner registered at a pool can perform the classical
block withholding attack. An attacker miner operates as
if it worked for the pool. It receives its tasks and works
on them, only at the end of each round it sends only its
partial proofs of work, and omits full proofs of work if it
had found any. The pool registers the miner’s partial proofs,
but cannot distinguish between miners running honestly and
block withholding miners.

The implications are that a miner that engages in block
withholding does not contribute to the pool’s overall mining
power, but still shares the pool’s revenue according to its
sent partial proofs of work.

To reason about a pool’s efficiency we define its per-miner
revenue as follows.

Definition 1 (Revenue density). The revenue density of a
pool is the ratio between the average revenue a pool member
earns and the average revenue it would have earned as a
solo miner.

The revenue density of a solo miner, and that of a miner
working with an unattacked pool are one. If a pool is at-
tacked with block withholding, its revenue density decreases.

E. Continuous Analysis

Because our analysis will be of the average revenue,
we will consider proofs of work, both full and partial, as
continuous deterministic sizes, according to their probability.
Work on a task therefore results in a deterministic fraction
of proof of work.

IV. THE POOL GAME

A. The Pool Block Withholding Attack

Just as a miner can perform block withholding on a pool j,
a pool i can use some of its mining power to infiltrate
a pool j and perform a block withholding attack on j.
Denote the amount of such infiltrating mining power at step t
by xi,j(t). Miners working for pool i, either mining honestly
or used for infiltrating pool j, are loyal to pool i. At the end
of a round, pool i aggregates its revenue from mining in the
current round and from its infiltration in the previous round.



It distributes the revenue evenly among all its loyal miners
according to their partial proofs of work. The pool’s miners
are oblivious to their role and they operate as regular honest
miners, working on tasks.

B. Revenue Convergence

Note that pool j sends its revenue to infiltrators from
pool i at the end of the step, and this revenue is calculated
in pool i at the beginning of the subsequent step. If there is
a chain of pools 1, 2, . . . , ` where each pool infiltrates the
previous one, the pool revenue will not be static, since the
revenue from infiltration takes one step to take each hop.
From the first step, the revenue of pool 1 is unchanged,
since it is only infiltrated and loses some of its revenue for
pool 2. Starting from the second step, the revenue of pool 2
is unchanged, comprised of its own mining and its revenue
from the infiltration of pool 1, with some revenue lost due
to its infiltration by pool 3. Starting from the third step, the
revenue of pool 3 is unchanged, and so on. If `max is the
longest chain in the system, the revenue stabilizes after `max

steps. If there are loops in the infiltration graph, the system
will converge to a certain revenue, as stated in the following
lemma.

Lemma 1 (Revenue convergence). If infiltration rates are
constant, the pool revenues converge to a limit as time
progresses.

Proof: Denote the revenue density of pool i at the end
of step t by ri(t), and define the revenue density vector

r(t) ∆
= (r1(t), . . . , rp(t))T .

In every round, pool i uses its mining power of m1−
∑

j x1,j

used for direct mining (and not attacking), and shares it
among its m1 +

∑
j xj,1 members, including malicious

infiltrators (all sums are over the range 1, . . . , p). Denote
the direct mining revenue density of each pool (ignoring
normalization, which is a constant factor) with the vector

m ∆
=

(
m1 −

∑
j x1,j

m1 +
∑

j xj,1
, . . . ,

mp − xp,j

mp +
∑

j xj,p

)T

.

The revenue of Pool i in step t taken through infiltration
from pool j’s revenue in step t− 1 is xi,jrj(t− 1). Pool i
distributes this revenue among its mi+

∑
k xk,i members —

loyal and infiltrators. Define the p× p infiltration matrix by
its i, j element

G ∆
=

[
xi,j

mi +
∑

k xk,i

]
ij

.

And the revenue vector at step t is

r(t) = m + Gr(t− 1) . (1)

Since the row sums of the infiltration matrix are smaller
than one, its largest eigenvalue is smaller than 1 according

to the Perron-Frobenius theorem. Therefore, the revenues at
all pools converge as follows:

r(t) =

(
t−1∑
t′=0

Gt′

)
m + Gtr(0)

t→∞−−−→ (1−G)−1m . (2)

C. The Pool Game

In the pool game pools try to optimize their infiltration
rates of other pools to maximize their revenue. The overall
number of miners and the number of miners loyal to each
pool remain constant throughout the game.

Time progresses in rounds. Let s be a constant integer
large enough that revenue can be approximated as its conver-
gence limit. In each round the system takes s steps and then
a single pool, picked with a round-robin policy, may change
its infiltration rates of all other pools. The total revenue of
each step is normalized to 1/s, so the revenue per round is
one.

The pool taking a step knows the rate of infiltrators
attacking it (though not their identity) and the revenue rates
of each of the other pools. This knowledge is required
to optimize a pool’s revenue, as we see next. We explain
in Section VIII how a pool can technically obtain this
knowledge.

D. General Analysis

Recall that mi is the number of miners loyal to pool i. and
xi,j(t) is the number of miners used by pool i to infiltrate
pool j at step t.

The mining rate of pool i is therefore the number of its
loyal miners minus the miners it uses for infiltration. This
effective mining rate is divided by the total mining rate in
the system, namely the number of all miners that do not
engage in block withholding4. Denote the direct mining rate
of pool i at step t by

Ri
∆
=

mi −
∑p

j=1 xi,j

m−
∑p

j=1

∑p
k=1 xj,k

(3)

The revenue density of pool i at the end of step t is its
revenue from direct mining together with its revenue from
infiltrated pools, divided by the number of its loyal miners
together with block-withholding infiltrators that attack it:

ri(t) =
Ri(t) +

∑p
j=1 xi,j(t)rj(t)

mi +
∑p

j=1 xj,i(t)
. (4)

Hereinafter we move to a static state analysis and omit
the t argument in the expressions.

4Recall that difficulty is only adjusted periodically, and there are transient
effects that are not covered by this stable-state analysis. We discuss this in
Section VIII.
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Figure 3. The one-attacker scenario. Pool 1 infiltrates pool 2.

No attack

If no pool engages in block withholding,

∀i, j : xi,j = 0 ,

and we have
∀i : ri = 1/m ,

that is, each miner’s revenue is proportional to its power, be
it in a pool or working solo.

V. ONE ATTACKER

We begin our analysis with a simplified game of two
pools, 1 and 2, where pool 1 can infiltrate pool 2, but pool 2
cannot infiltrates pool 1. The m−m1 −m2 miners outside
both pools mine solo (or with closed pools that do not
attack and cannot be attacked). This scenario is illustrated in
Figure 3. The dashed red arrow indicates that x1,2 of pool 1’s
mining power infiltrates pool 2 with a block withholding
attack.

Since Pool 2 does not engage in block withholding, all
of its m2 loyal miners work on its behalf. Pool 1, on the
other hand does not employ x1,2 of its loyal miners, and its
direct mining power is only m1 − x1,2. The Bitcoin system
normalizes these rates by the total number of miners that
publish full proofs, namely all miners but x1,2. The pools’
direct revenues are therefore

R1 =
m1 − x1,2

m− x1,2

R2 =
m2

m− x1,2
.

(5)

Pool 2 divides its revenue among its loyal miners and the
miners that infiltrated it. Its revenue density is therefore

r2 =
R2

m2 + x1,2
. (6)

Pool 1 divides its revenue among its registered miners.
The revenue includes both its direct mining revenue and

the revenue its infiltrators obtained from pool 2, which is
r2 · x1,2. The revenue per loyal Pool 1 miner is therefore

r1 =
R1 + x1,2 · r2

m1
. (7)

We obtain the expression for r1 in Equation 7 by substi-
tuting r2 from Equation 6 and R1 and R2 from equation 5:

r1 =
m1(m2 + x1,2)− x2

1,2

m1(m− x1,2)(m2 + x1,2)

A. Game Progress

Pool 1 controls its infiltration rate of pool 2, namely x1,2,
and will choose the value that maximizes the revenue density
(per-miner revenue) r1 on the first round of the pool game.

The value of r1 is maximized at a single point in the
feasible range 0 ≤ x1,2 ≤ m1. Since pool 2 cannot
not react to pool 1’s attack, this point is the stable state
of the system, and we denote the value of x1,2 there by
x̄1,2

∆
= arg maxx1,2

r1 , and the values of the corresponding
revenues of the pools with r̄1 and r̄2.

Substituting the stable value x1,2 we obtain the revenues
of the two pools; all are given in Figure 4, normalizing
m = 1 to simplify the expressions.

B. Numerical Analysis

We analyze this game numerically by finding the x1,2

that maximizes r1 and substituting this value for r1 and r2.
We vary the sizes of the pools through the entire feasible
range and depict the optimal x1,2 and the corresponding
revenues in Figure 5. Each point in each graph represents
the equilibrium point of a game with the corresponding m1

and m2 sizes, where we normalize m = 1. The top right
half of the range in all graphs is not feasible, as the sum of
m1 and m2 is larger than 1. We use this range as a reference
color, and we use a dashed line to show the bound between
this value within the feasible range.

Figure 5a shows the optimal infiltration rate. In the entire
feasible range we see that pool 1 chooses a strictly positive
value for x1,2. Indeed, the revenue of pool 1 is depicted in
Figure 5b and in the entire feasible region it is strictly larger
than 1, which the pool would have gotten without attacking
(x1,2 = 0). Figure 5c depicts the revenue of Pool 2, which
is strictly smaller than 1 in the entire range.

Third parties: Note that the total system mining power
is reduced when pool 1 chooses to infiltrate pool 2. There-
fore, the revenue of third parties, miners not in either pool,
increases from 1/m to 1/(m− x1,2). Pool 2 therefore pays
for the increased revenue of its attacker and everyone else
in the system.

C. Implications to the general case

Consider the case of p pools. For any choice of the pools
sizes m1, . . . ,mp, at least one pool will choose to perform
block withholding:



x̄1,2 =
m2 −m1m2 −

√
−m2

2(−1 + m1 + m1m2)

−1 + m1 + m2

r̄1 =
m1 + (2 + m1)m2 − 2

√
−m2

2(−1 + m1 + m1m2)

m1(1 + m2)2

r̄2 =
m2(−1 + m1 + m2)2(

m2
2 −

√
−m2

2(−1 + m1 + m1m2)
)(

1−m1(1 + m2)−
√
−m2

2(−1 + m1 + m1m2)
)

(8)

Figure 4. Stable state where only pool 1 attacks pool 2.

(a) x1,2 (b) r1 (c) r2

Figure 5. Two pools where one infiltrates the other: Optimal infiltration rate x1,2 and corresponding revenues (r1 and r2) as a function of pool sizes.
The line in (a) shows x1,2 = 0 and the lines in (b) and (c) show the revenue density of 1.

Lemma 2. In a system with p pools, the point ∀j, k : xk
j = 0

is not an equilibrium.

Proof: Assume towards negation this is not the case,
and ∀j, k : xk

j = 0 is an equilibrium point. Now consider
a setting with only pools 1 and 2, and treat the other pools
as independent miners. This is the setting analyzed above
and we have seen there that pool 1 can increase its revenue
by performing a block withholding attack on pool 2. Denote
pool 1’s infiltration rate by x̃1,2 > 0. Now, take this values
back to the setting at hand with p pools. The revenue of
pool 1 is better when

x1,2 = x̃1,2,∀(j, k) 6= (1, 2) : xj,k = 0 .

Therefore, pool 1 can improve its revenue by attacking
pool 2, and no-one-attacks is not an equilibrium point.

D. Test-case

As a test case, we take the pool distribution in January 16,
2015 [24], shown in Figure 6. We analyze the cases where
each of the pools attacks all other open pools, all of which
behave honestly. Note that attacking all pools with force
proportional to their size yields the same results as attacking
a single pool of their aggregate size. Plugging in the numbers
into the analysis above shows that a larger pool needs to use
a smaller ratio of its mining power for infiltration and can
increase its revenue density more than a small pool. The

Name Size Infiltration
Rate

Revenue
Density

DiscusFish 24% 25% 102.9%
AntPool 13% 28% 101.8%
GHash.IO 10% 30% 101.5%
BTChine 7% 30% 101.1%
BTCGuild 6% 30% 100.9%
Eligius 4% 32% 100.6%
Others 36% - -

Figure 6. The six largest open pool sizes as of January 16, 2015 [24],
their optimal infiltration rates (of each pool as a fraction of its size, if it
attacked all others without reciprocation), and their revenue density when
attacking.

largest pool, DiscusFish, achieves its optimum attack rate
at 25% of the pool’s mining power, increasing its revenue
by almost 3%. This amounts to a daily revenue increase
of B26 Bitcoin, or almost 5500 USD at the exchange rate
on that date. This represents a considerable increase of the
pools net revenue. However, for the smallest pool, Eligius,
the attack is much less profitable. To reach the optimum it
needs almost a third of its power for attacking but increases
its revenue density by merely 0.6%, amounting to B0.86 a
day or 18 USD.



(a) x1,2 (b) x2,1

(c) r1 (d) r2

Figure 7. Two attacking pools system: Optimal infiltration rates (x1 and x2) and corresponding revenues (r1 and r2) as a function of pool sizes. Lines
in (a) and (b) are at x1,2 = 0 and x2,1 = 0, respectively. Lines in (c) and (d) are at r1 = 1 and r2 = 1, respectively.

VI. TWO POOLS

We proceed to analyze the case where two pools may
attack each other and the other miners mine solo. Again
we have pool 1 of size m1 and pool 2 of size m2; pool 1
controls its infiltration rate x1,2 of pool 2, but now pool 2
also controls its infiltration rate x2,1 of pool 1. This scenario
is illustrated in Figure 8

The total mining power in the system is m− x1,2− x2,1.
The direct revenues R1 and R2 of the pools from mining
are their effective mining rates, without infiltrating mining
power, divided by the total mining rate.

R1 =
m1 − x1,2

m− x1,2 − x2,1

R2 =
m2 − x2,1

m− x1,2 − x2,1
.

(9)

The total revenue of each pool is its direct mining revenue,

Miners

Pool 1 Pool 2

Bitcoin Network

Miners Miners

𝑥1,2 𝑥2,1

Figure 8. Two pools infiltrating each other.



above, and the infiltration revenue from the previous round,
which is the attacked pool’s total revenue multiplied by its
infiltration rate. The pool’s total revenue is divided among
its loyal miners and miners that infiltrated it. At stable state
this is

r1 =
R1 + x1,2r2

m1 + x2,1

r2 =
R2 + x2,1r1

m2 + x1,2
.

(10)

Solving for r1 and r2 we obtain the following closed
expressions for each. We express the revenues as functions
of x1,2 and x2,1.

r1(x1,2, x2,1) =
m2R1 + x1,2(R1 + R2)

m1m2 + m1x1,2 + m2x2,1

r2(x2,1, x1,2) =
m1R2 + x2,1(R1 + R2)

m1m2 + m1x1,2 + m2x2,1
.

(11)

Each pool controls only its own infiltration rate. In each
round of the pool game, each pool will optimize its infiltra-
tion rate of the other. If pool 1 acts at step t, it optimizes
its revenue with

x1,2(t)← arg max
x′

r1(x′, x2,1(t− 1)) , (12)

and if pool 2 acts at step t, it optimizes its revenue with

x2,1(t)← arg max
x′

r2(x′, x1,2(t− 1)) . (13)

An equilibrium exists where neither pool 1 nor pool 2 can
improve its revenue by changing its infiltration rate. That is,
any pair of values x′1, x

′
2 such that{

arg maxx1,2 r1(x1,2, x
′
2,1) = x′1,2

arg maxx2,1
r2(x′1,2, x2,1) = x′2,1

(14)

under the constraints
0 < x′1 < m1

0 < x′2 < m2 .
(15)

The feasible region for the pool sizes is m1 > 0,m2 > 0,
and m1 + m2 ≤ m. The revenue function for ri is concave
in xi for all feasible values of the variables (∂2ri/∂x

2
i < 0).

Therefore the solutions for equations 12 and 13 are unique
and are either at the borders of the feasible region or where
∂ri/∂xi,j = 0.

From Section V we know that no-attack is not an equi-
librium point, since each pool can increase its revenue by
choosing a strictly positive infiltration rate, that is, x1,2 =
x2,1 = 0 is not a solution to Equations 14–15.

Nash equilibrium therefore exists with x1,2, x2,1 values
where 

∂r1(x1,2, x2,1)

∂x1,2
= 0

∂r2(x2,1, x1,2)

∂x2,1
= 0

. (16)

Using symbolic computation tools, we see that there is a
single pair of values for which Equation 16 holds for any
feasible choice of m1 and m2.

A. Numerical Analysis

A numerical analysis confirms these observations. We
simulate the pool game for a range of pool sizes. For each
choice of pool sizes, we start the simulation when both pools
do not infiltrate each other, x1,2 = x2,1 = 0, and the revenue
densities are r1 = r2 = 1. At each round one pool chooses
its optimal infiltration rate based on the pool sizes and the
rate with which it is infiltrated, and we calculate the revenue
after convergence with Equation 11. Recall the players in the
pool game are chosen with the Round Robin policy, so the
pools take turns, and we let the game run until convergence.
The results are illustrated in Figure 7.

Each run with some m1,m2 values results in a single
point in each graph in Figure 7. We depict the infiltration
rates of both pools x1,2, x2,1 in Figures 7a–7b and the pools’
revenue densities r1, r2 in Figures 7c–7d. So, for each choice
of m1 and m2, the values of x1,2, x2,1, m1 and m2 are the
points in each of the graphs with the respective coordinates.

For the xi,j graphs we draw a border around the region
where there is no-attack by i in equilibrium. For the ri
graphs we draw a line around the region where the revenue
is the same as in the no-attack scenario, namely 1.

We first observe that only in extreme cases a pool does
not attack its counterpart. Specifically, at equilibrium a pool
will refrain from attacking only if the other pool is larger
than about 80% of the total mining power.

But, more importantly, we observe that a pool improves
its revenue compared to the no-pool-attacks scenario only
when it controls a strict majority of the total mining power.
These are the small triangular regions in Figures 7c and 7d.
In the rest of the space, the trapezoids in the figures, the
revenue of the pool is inferior compared to the no-pool-
attacks scenario.

B. The Prisoner’s Dilemma

In a healthy Bitcoin environment, where neither pool
controls a strict majority of the mining power, both pools
will earn less at equilibrium than if both pools ran without
attacking. We can analyze in this case a game where each
pool chooses either to attack and optimize its revenue, or to
refrain from attacking.

Consider pool 1 without loss of generality. As we have
seen in Section V, if pool 2 does not attack, pool 1 can
increase its revenue above 1 by attacking. If pool 2 does
attack but pool 1 does not, we denote the revenue of pool 1
by r̃1. The exact value of r̃1 depends on the values of m1

and m2, but it is always smaller than one. As we have
seen above, if pool 1 does choose to attack, its revenue
increases, but does not surpass one. The game is summarized
in Figure 9.

When played once, this is the classical prisoner’s
dilemma. Attack is the dominant strategy: Whether pool 2
chooses to attack or not, the revenue of pool 1 is larger when
attacking than when refraining from attack, and the same for



XXXXXXXXXXPool 2
Pool 1

no attack attack

no attack (r1 = 1, r2 = 1) (r1 > 1, r2 = r̃2 < 1)
attack (r1 = r̃1 < 1, r2 > 1) (r̃1 < r1 < 1, r̃2 < r2 < 1)

Figure 9. Prisoner’s Dilemma for two pools. The revenue density of each pool is determined by the decision of both pools whether to attack or not. The
dominant strategy of each player is to attack, however the payoff of both would be larger if they both refrain from attacking.

pool 2. At equilibrium of this attack-or-don’t game, when
both pools attack, the revenue of each pool is smaller than
its revenue if neither pool attacked.

However, the game is not played once, but rather continu-
ously, forming a super-game, where each pool can change its
strategy between attack and no-attack. The pools can agree
(even implicitly) to refrain from attacking, and in each round
a pool can detect whether it is being attacked and deduce
that the other pool is violating the agreement. In this super-
game, cooperation where neither pool attacks is a possible
stable state [25], [26] despite the fact that the single Nash
equilibrium in every round is to attack.

C. Test-case

As an example we take again the pool sizes shown in
Figure 6, and study the case where the two largest pools,
DiscusFish and AntPool, attack one another. The optimal
infiltration rates (out of the total system mining power) are
8% and 12%, respectively, and the pools would lose 4%
and 10% of their revenues, respectively, compared to the
no-attack scenario.

VII. q IDENTICAL POOLS

Let there be q pools of identical size that engage in block
withholding against one another. Other miners neither attack
nor are being attacked. In this case there exists a symmetric
equilibrium. Consider, without loss of generality, a step of
pool 1. It controls its attack rates each of the other pools,
and due to symmetry they are all the same. Denote by x1,¬1

the attack rate of pool 1 against any other pool. Each of the
other pools can attack its peers as well. Due to symmetry, all
attack rates by all attackers are identical. Denote by x¬1,∗
the attack rate of any pool other than 1 against any other
pool, including pool 1.

Denote by R1 the direct revenue (from mining) of pool 1
and by R¬1 the direct revenue of each of the other pools.
Similarly denote by r1 and r¬1 the revenue densities of
pool 1 and other pools, respectively.

The generic equations 3 and 4 are instantiated to

R1 =
mi − (q − 1)x1,¬1

m− (q − 1)(q − 1)x¬1,∗ − (q − 1)x1,¬1

R¬1 =
mi − (q − 1)x¬1,∗

m− (q − 1)(q − 1)x¬1,∗ − (q − 1)x1,¬1

(17)

and

r1 =
R1 + (q − 1)x1,¬1r¬1

mi + (q − 1)x¬1,1

r¬1 =
R¬1 + (q − 2)x¬1,∗r¬1 + x¬1,∗r1

mi + (q − 2)x¬1,∗ + x1,¬1

. (18)

Substituting Equations 17 in Equation 18 and solving
we obtain a single expression for any ri, since in the
symmetric case we have r1 = r¬1. The expression is shown
in Equation 18 (Figure 10).

Given any value of q and mi (where qmi < 1), the feasi-
ble range of the infiltration rates is 0 ≤ xi,j ≤ mi/q. Within
this range ri is continuous, differentiable, and concave in
x1,¬1. Therefore, the optimal point for pool 1 is where
∂r1/∂x1,¬1 = 0. Since the function is concave the equation
yields a single feasible solution, which is a function of the
attack rates of the other pools, namely x¬1,1 and x¬1,∗.

To find a symmetric equilibrium, we equate x1,¬1 =
x¬1,1 = x¬1,∗ and obtain a single feasible solution. The
equilibrium infiltration rate and the matching revenues are
shown in Equation 20 (Figure 11).

As in the two-pool scenario, the revenue at the symmetric
equilibrium is inferior to the no-one-attacks non-equilibrium
strategy.

VIII. PRACTICALITIES

A. Ramp-up

Our analysis addresses the eventual revenue of the pools,
assuming the mining difficulty is set based on the effective
mining power, not including mining power used for with-
holding. However, difficulty is updated only periodically —
every 2016 blocks in Bitcoin. When mining power in the
system is regularly increasing, which has been true for the
majority of Bitcoin’s history [27], no adjustment may be
necessary. Specifically, if an attacker purchases new mining
hardware and employs it directly for block withholding,
this mining power is never included in the difficulty cal-
culation — the system is never aware of it. The difficulty
is therefore already correctly calculated and the attack is
profitable immediately.

However, if the mining power is static, the attack becomes
profitable only after the Bitcoin system has normalized the
revenues by adjusting difficulty. Before the adjustment, the
revenue of an attacking pool is reduced due to the reduction
in block generation of both the attacking and attacked pools.



ri = − m2
i + mix1,¬1 − (q − 1)x1,¬1((q − 1)x¬1,∗ + x1,¬1)

((q − 1)x1,¬1 + (q − 1)2x¬1,∗ − 1) ((mi + x1,¬1)(mi + (q − 1)x¬1,1)− (q − 1)x1,¬1x¬1,∗)
(19)

Figure 10. Expression for ri in a system with pools of equal size.

x̄1,¬1 = x̄¬1,1 = x̄¬1,∗ =
q −mi −

√
(mi − q)2 − 4(mi)2(q − 1)2q

2(q − 1)2q)

r̄1 = r̄¬1 =
2q

q −mi + 2miq +
√

(mi − q)2 − 4(mi)2(q − 1)2q

(20)

Figure 11. Symmetric equilibrium values for a system of q pools of equal sizes.

B. Pool Knowledge

In order to choose its optimal infiltration rate, a pool has to
know the rate at which it is attacked, and the revenue density
of potential victim pools. A pool can estimate the rate with
which it is attacked by comparing the rates of partial and full
proofs of work it receives from its miners, as explained in
Section II-C. In order to estimate the revenue densities of the
other pools, a pool can use one of two methods. First, pools
often publish this data to demonstrate their honesty to their
miners [28], [29], [30]. Second, a pool can infiltrate each of
the other pools with some nominal probing mining power
and measure the revenue density directly by monitoring the
probe’s rewards from the pool.

C. Block Withholding Recycling

We assume that the infiltrating miners are loyal to the
attacker. However, some of the pool’s members may be
disloyal infiltrators. When sending disloyal miners to per-
form block withholding at other pools, an attacker takes a
significant risk.

For example, pool 1 can use a loyal miner w to infiltrate
pool 2, and pool 2, thinking the miner is loyal to it, might
use it to attack pool 1. The miner m can perform honest
mining for pool 1, rather than withhold its blocks, and not
return any revenue to pool 2. Moreover, it will take its share
of pool 2’s revenues (which thinks the miner is loyal to it)
and deliver it back to pool 1.

To avoid such a risk, a pool needs a sufficient number
of verified miners — miners that it knows to be loyal. In
general, the optimal infiltration rate may be as high as 60%
of the pool size, but this is only in extreme cases when
pools are large. For practical pool sizes, as we saw, a pool
may need up to 25% of its mining power for infiltration. In
Bitcoin, pools typically have loyal mining power — either
run directly by the pool owners or sold as a service but run
on the pool owners’ hardware [31], [32]. However the size
of this mining power is considered a trade secret and is not
published.

D. Countermeasures

As in the case of classical block withholding explained in
Section II-C, a pool might detect that it is being attacked, but
cannot detect which of its miners is the attacker. Therefore
a pool cannot block or punish withholding miners.

Nevertheless, various techniques can be used to encourage
miners to submit full blocks. A pool can pay a bonus for sub-
mitting a full proof of work. This would increase the revenue
of the miner that found a block while reducing the revenue of
the other miners from this block. While the average revenue
of each miner would stay the same, small miners will suffer
from higher variance in revenue. Another approach is to
introduce a joining fee by paying new miners less for their
work until they have established a reputation with the pool.
Miners that seek flexibility may not accept this policy and
choose another pool. Finally, the pool can use a honeypot
trap by sending the miners tasks which it knows will result
in a full proof of work [10]. If a miner fails to submit the
full proof of work it is tagged as an attacker. To prevent
the attacker from learning them, the honeypot tasks have to
be regularly refreshed, consuming considerable resources.
Pools can also incorporate out of band mechanisms to deter
attacks, such as verifying the identity of miners or using
trusted computing technologies [33] that assure no block
withholding is taking place. This would require miners to
use specialized hardware and software, an overhead miners
may not accept.

In summary, there is no known silver bullet; all these
techniques reduce the pool’s attractiveness and deter miners.

E. Block Withholding in Practice

Long term block withholding attacks are difficult to hide,
since miners using an attacked pool would notice the re-
duced revenue density. Nevertheless, such attacks are rarely
reported, and we can therefore conclude that they are indeed
rare. A recent exception is an attack on the Eligius pool
performed in May and June 2014 [34]. The pool lost 300
Bitcoin before detecting the attack, at which point payouts
to the attackers were blocked. The attackers continued the



attack, accumulating 200 more Bitcoin before realizing they
were not receiving their payout.

The reasons the attack was so easily subverted is the
limited efforts of the attackers to hide themselves. They have
only used two payout addresses to collect their payouts, and
so it was possible for the alert pool manager to cluster the
attacking miners and obtain a statistically significant proof
of their wrongdoing.

It is unknown whether this was a classical block withhold-
ing attack, with the goal of sabotage, or a more elaborate
scheme. To verify the effectiveness of block withholding for
profit, Luu et al. [35] implemented an experimental Bitcoin
test network and demonstrated the practicality of the attack.

IX. DISCUSSION

A. Bitcoin’s Health

Large pools hinder Bitcoin’s distributed nature as they put
a lot of mining power in the hands of a few pool managers.
This has been mostly addressed by community pressure on
miners to avoid forming large pools [21]. However such
recommendations had only had limited success, and mining
is still dominated by a small number of large pools. As a
characteristic example, in the period of November 2–8, 2014,
three pools generated over 50% of the proofs of work [36].

The fact that block withholding attacks are rarely observed
may indicate that the active pools have reached an implicit
or explicit agreement not to attack one another. However, an
attacked pool cannot detect which of its miners are attacking
it, let alone which pool controls the miners. At some point
a pool might miscalculate and decide to try to increase its
revenue. One pool might be enough to break the agreement,
possibly leading to a constant rate of attacks among pools
and a reduced revenue.

If open pools reach a state where their revenue density is
reduced due to attacks, miners will leave them in favor of
other available options: miners of sufficient size can mine
solo; smaller miners can form private pools with closed
access, limited to trusted participants.

Such a change may be in favor of Bitcoin as a whole.
Since they require such intimate trust, private pools are likely
to be smaller, and form a fine grained distribution of mining
power with many small pools and solo miners.

B. Miners and Pools

1) Direct Pool Competition: A pool may engage in an
attack against another pool not to increase its absolute rev-
enue, but rather to attract miners by temporarily increasing
its revenue relative to a competing pool.

Recent work has investigated the motivation of pools
to utilize part of their resources towards sabotage attacks
against each other [37], [38]. The model of those works is
different from the pool game model in two major ways —
a sabotage attack does not transfer revenue from victim to
attacker, and migrating miners switch to less attacked pools,

changing pool sizes and hence revenues until convergence.
The model is parametrized by the cost of the attack and by
the mobility of the miners, and the analysis demonstrates
that when considering only sabotage attacks there are regions
where no-attack is the best strategy. The miner’s dilemma is
therefore not manifested in that model.

Pool competition for miners is an incentive in and of its
own for mutual attacks, and a pool may therefore choose
to perform block withholding even if its revenue would
increase only after the next difficult adjustment. The two
models are therefore complementary; the analysis of their
combination is left for future work.

2) Pool Fees: We assumed in our analysis that pools do
not charge fees from their members since such fees are
typically nominal (0 – 3% of a pool’s revenue [39]). The
model can be extended to include pools fees. Fees would add
a friction element to the flow of revenue among infiltrated
and infiltrating pools. Specifically, Equation 4 would change
to take into account a pool fee of f

ri(t) =
Ri(t) +

∑p
j=1 xi,j(t)(1− f)rj(t)

mi +
∑p

j=1 xj,i(t)
. (21)

A pool with a fee of f is a less attractive target for
block withholding, since the attacker’s revenue is reduced
by f . However it is also less attractive for miners in general.
Trading off the two for best protection is left for future work,
as part of the treatment of the miner-pool interplay.

X. RELATED WORK

A. The Block Withholding Attack

The danger of a block withholding attack is as old as
Bitcoin pools. The attack was described by Rosenfeld [10] as
early as 2011, as pools were becoming a dominant player in
the Bitcoin world. The paper described the standard attack,
used by a miner to sabotage a pool at the cost of reducing
its own revenue. A more general view of fairness in proof
of work schemes was discussed in 2002 by Adam Back [40]
in the context of the HashCash system [41]. Early work did
not address the possibility of pools infiltrating other pools
for block withholding.

In concurrent work, Luu et al. [35] experimentally demon-
strate that block withholding can increase the attacker’s
revenue. They do not address the question of mutual attacks.
Courtois and Bahack [42] have recently noted that a pool
can increase its overall revenue with block withholding if all
other mining is performed by honest pools. We consider the
general case where not all mining is performed through pub-
lic pools, and analyze situations where pools can attack one
another. The discrepancy between the calculations of [42]
for the special case analyzed there and our results can be
explained by the strong approximations in that work. For
example, we calculate exactly how infiltrating miners reduce
the revenue density of the infiltrated pool.



B. Temporary Block Withholding

In the block withholding attack discussed in this work the
withheld blocks are never published. However, blocks can
be withheld temporarily, not following the Bitcoin protocol,
to improve an attacker’s revenue.

A miner or a pool can perform a selfish mining attack [23].
With selfish mining the attacker increases its revenue by
temporarily withholding its blocks and publishing them in
response to block publication by other pools and miners.
This attack is independent of the block withholding attack
we discuss here and the two can be performed in concert.

An attacker can also perform a double spending attack
as follows [10]. He intentionally generates two conflicting
transactions, places one in a block it withholds, and pub-
lishes the other transaction. After the recipient sees the pub-
lished transaction, the attacker publishes the withheld block
to revoke the former transaction. This attack is performed by
miners or pools against service providers that accept Bitcoin,
and it not directly related to this work.

C. Block Withholding Defense

Most crypto-currencies use a proof-of-work architecture
similar to Bitcoin, where finding proof of work is the result
of solution guessing and checking. All of the algorithms we
are aware of are susceptible to the block withholding attack,
as in all of them the miner can check whether she found
a full or a partial proof of work. Prominent examples are
Litecoin [5], Dogecoin [6] and Permacoin [7].

It is possible to use an alternative proof of work mech-
anism in which miners would not be able to distinguish
partial from full proofs of work [40], [10], [43]. Such
a solution could reduce or remove the danger of block
withholding. However, making such a change may not be
in the interest of the community: Pool block withholding,
or even its potential, could lead to a reduction of pool sizes,
as explained in Section IX-A.

D. Decentralized Pools

Although most pools use a centralized manager, a promi-
nent exception is P2Pool – a distributed pool architecture
with no central manager [19]. But the question of whether a
pool is run by a centralized manager or with a decentralized
architecture is almost immaterial for the attack we describe.
An open P2Pool group can be infiltrated and attacked, and
the P2Pool code can be changed to support attacks against
other pools.

On the other hand, P2Pool can be used by groups of
miners to easily form closed pools. These do not accept
untrusted miners, and are therefore protected against block
withholding.

XI. CONCLUSION

We explored a block withholding attack among Bitcoin
mining pools — an attack that is possible in any similar

system that rewards for proof of work. Such systems are
gaining popularity, running most digital currencies and re-
lated services.

We observe that no-pool-attacks is not a Nash equilibrium:
If none of the other pools attack, a pool can increase its
revenue by attacking the others.

When two pools can attack each other, they face a version
of the Prisoner’s Dilemma. If one pool chooses to attack, the
victim’s revenue is reduced, and it can retaliate by attacking
and increase its revenue. However, when both attack, at Nash
equilibrium both earn less than they would have if neither
attacked. With multiple pools of equal size a similar situation
arises with a symmetric equilibrium.

The fact that block withholding is not common may be
explained by modeling the attack decisions as an iterative
prisoner’s dilemma. However, we argue that the situation
is unstable since the attack can be done anonymously.
Eventually, one pool may decide to increase its revenue and
drag the others to attack as well, ending with a reduced
revenue for all. The inferior revenue would push miners
to join private pools, which can verify that their registered
miners do not withhold blocks. This would lead to smaller
pools, and so ultimately to a better environment for Bitcoin
as a whole.
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