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Abstract
Wireless networks present unusual challenges for mobile file
system clients, since they are characterised by unpredictable
connectivity and widely-varying bandwidth. The traditional ap-
proach to adapting network communication to these conditions
is to write back file updates asynchronously when bandwidth is
low. Unfortunately, this can lead to underutilisation of band-
width and inconsistencies between clients. We describe a new
mobile file system, MAFS, that supports graceful degradation
of file system performance as bandwidth is reduced, as well as
rapid propagation of essential file updates. MAFS is able to
achieve 10-20% improvements in execution time for real-life
file system traces featuring read-write contention.

1 Introduction
Distributed file systems are a common feature of large com-
puting environments, since they simplify sharing data between
users, and can provide scalable and highly available file ac-
cess [4]. However, supporting mobile clients requires coping
with the atypical patterns of connectivity that characterise them.
While a desktop client is well-connected to a file server un-
der most circumstances, a mobile client frequently lacks the
bandwidth to perform all its file operations in a timely fashion.
Mobile file systems typically assume that a client is strongly-
connected like a desktop host, or weakly-connected and should
limit its bandwidth consumption to a minimum [5, 9]. If band-
width lies between these extremes, assuming weak connectivity
can be too conservative, since it delays sending updates to the
server in order to aggregate modifications.

This paper examines the effectiveness of MAFS, a mobile
file system that propagates file modifications asynchronously
at all bandwidth levels. Rather than delaying writes, MAFS
uses RPC priorities to reduce interference between read and
write traffic at low bandwidth. To ensure that file modifications
are rapidly propagated to the clients that need them, MAFS
also incorporates a new invalidation-based update propagation
scheme. Unlike previous mobile file systems, MAFS uses tech-
niques that are oblivious to the exact bandwidth level, and can
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therefore react to bandwidth variations in a fine-grained man-
ner. With real-life file system traffic featuring high read-write
contention, MAFS is able to achieve improvements in execu-
tion time of up to 10-20% at both low and high bandwidths.

2 Motivation
Mobile access to shared data is complicated by an unpredictable
computing environment: the network or a particular destination
may be unavailable, or the throughput may be substandard, as
shown in Figure 1. This graph shows results from packet-pair
measurements of available bandwidth between a mobile host
on a wireless network, and a wired host near the base station.
As the mobile host moves, factors such as the distance to the
base station and local interference cause the host’s network
card to switch to higher-redundancy, lower-bandwidth encod-
ings. Such switching causes available bandwidth to oscillate
greatly, even when the mobile host is stationary. If it is to en-
sure that clients’ file operations are executed in a timely way, a
file system must adapt to this variation.

Existing systems tailored to low-bandwidth clients differen-
tiate between types of file system communication, so that band-
width can be devoted to important, user-visible operations [5,
6, 9]. In particular, Coda [9] writes back changes to files asyn-
chronously, and Little Work [5] assigns lower priorities to asyn-
chronous operations at the IP level to reduce interference with
foreground operations.

However, adaptation by deferred transmission of file up-
dates has the disadvantage of increasing the delay before up-
dates are applied at the file server, and therefore reduces the de-
gree of consistency between clients’ cached copies. For its own
benefit, a low-bandwidth client may decide to delay sending a
file’s update to the file server, but this decision may also affect
other clients that would like to read the file. Optimistic concur-
rency control and reconciliation of conflicting updates are typ-
ically used to resolve inconsistencies [9, 11]. When bandwidth
is very low, this can be an acceptable price to pay for the abil-
ity to continue accessing a file server, but if bandwidth is less
constrained, better inter-client consistency is achievable. Coda-
like file systems therefore switch between a low-bandwidth,
asynchronous-writes mode and a synchronous-writes mode, ac-
cording to the available bandwidth. However, in a wireless
network, variations in bandwidth can occur without the user’s
knowledge, so that changing modes creates unexpected incon-
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Figure 1: Time series of wireless bandwidth.

sistencies [2]. Adaptation based on low- and high-bandwidth
modes can be ill-suited to situations where bandwidth is not
severely constrained, but insufficient for a client to ignore it
when deciding what to send over the network.

3 File system overview
MAFS (Adaptive Mobile File System) is a distributed file sys-
tem designed to support efficient access to a remote file server
by mobile clients that must cope with variations in available
bandwidth. The MAFS design and terminology are similar to
the Andrew File System [4] and Coda [9].

3.1 File access model
MAFS clients use whole-file caching: when a file is accessed
for the first time, a client fetches the entire file from the file
server and caches it. MAFS only sends the server the contents
of a modified file when it is closed by an application: this is
referred to as writeback-on-close. Directory operations cache
directory contents and apply changes locally, as well as mak-
ing an RPC to apply the changes to the server’s copy. Whole
file caching is effective if a client’s connectivity is uncertain,
since the client can always use cached copies of files instead
of incrementally fetching them from the server. MAFS sup-
ports this type of disconnected operation [9], but not to the ex-
tent of automatic reconciliation of update conflicts [11]. On
the other hand, block-level caching reduces the delay incurred
when an application opens a file, and, as has been shown in
the Low-Bandwidth File System [10], it is possible to use a
content-based division of files into blocks as the basis for re-
ducing client-server network traffic. However, reducing client-
server traffic does not eliminate the fundamental problem of
contention for insufficient bandwidth.

3.2 Inter-client cache consistency
When a client fetches a file, the file server grants it permis-
sion to cache the file for a limited period, and adds it to a list
of clients that cache the file. If the client modifies and then
closes the file, it transmits the new contents to the server, which
makes a callback RPC to any other clients on the list. A client
that receives a callback RPC discards its cached copy of the file.
However, if an application has the file open when its client re-
ceives the callback, the file is discarded once it is closed. When

several clients concurrently modify a file, the final contents de-
pend on the client that closed it last. A client can lock a file
to synchronise accesses: the server grants the client a lease [3]
that is renewed each time the client communicates with the file
server.

3.3 Adaptive Remote Procedure Call
MAFS uses Adaptive Remote Procedure Call for client-server
communication. Adaptive RPC is based on our earlier work in
network-aware communication adaptation [1], and differs from
a typical RPC system in allowing applications to control how
concurrent RPCs are transmitted, and special handling for fail-
ures due to insufficient bandwidth. Adaptive RPC requests and
replies can contain an arbitrary amount of data. A sender also
attaches a priority and timeout to the send operation. Like a
Rover Queued RPC [6], an Adaptive RPC can be asynchronous,
so that an application need not block waiting for the result: in-
stead, the library makes an upcall when the reply arrives.

Since an application can perform multiple RPCs concur-
rently, Adaptive RPC schedules their transmission: this corre-
sponds to allocating bandwidth among the competing RPCs.
Attaching priorities to RPCs allows applications to control this
scheduling policy. A programmer divides RPCs into classes
based on the importance of their results to the user, and then
assigns priorities to the classes. The library schedules RPCs
based on priorities whenever there is insufficient bandwidth to
transmit competing RPCs without a noticeable delay. RPCs
from higher-priority classes are performed first, and RPCs of
equal priority are performed in parallel. This ensures that the
application adapts itself to the available bandwidth gracefully,
since lower bandwidth translates into longer delays for lower-
priority RPCs. RPC timeouts allow the application to prevent
low-priority RPCs being silently starved. Using priorities al-
lows a programmer to write an adaptive application without
having to take account of the actual bandwidth or current mix
of RPCs at runtime, and avoid having to specify thresholds at
which it should switch communication modes.

An RPC whose results are urgently required should be as-
signed the highest priority, particularly if the RPC contains out-
of-band communication. Larger, but still important RPCs can
use intermediate levels, while the lowest levels are useful for
RPCs that can be arbitrarily delayed, such as speculative activ-
ities like prefetching and transferring archival data. If the ini-
tial assumption regarding the correct priority level for an RPC
proves incorrect, a call to the library can be made to assign a
new priority.

3.4 Implementation
MAFS is implemented in C on FreeBSD. The client is a user-
level process that stores cached files in a local filesystem. The
server also stores its copies of files in a local filesystem. File
system operations from applications are redirected to user level
through a kernel module at the client.
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CONTROL (highest) fetch file attributes, callback, pull file update
FETCH fetch file data, store file data (if forced)

PREFETCH prefetch file data
METADATA lock a file, invalidate file, most metadata RPCs

STORE store file data, unlink file

Table 1: Priorities for MAFS remote procedure calls.

Remote procedure calls between a client and the file server
are divided into several types depending on their function. RPCs
to fetch and store data are self-explanatory. Metadata opera-
tions include fetching and setting file attributes, and directory
operations such as creating and unlinking files. Control RPCs
include locking files and the server’s callback to invalidate a
client’s cached copy of a file.

4 Communication adaptation
To reduce its network communication when bandwidth is low,
a mobile file system client can automatically adapt its commu-
nication strategy to the available bandwidth. Sometimes appli-
cations transfer a large volume of data that the user is unlikely
to require immediately, consuming bandwidth that can be used
for important tasks. For instance, consider an application that
fetches images from a file server, processes each in turn, dis-
plays the resulting image, and writes it to the server. If the user
wants to see the processed images, but no-one else wants to im-
mediately read them, writing the output back will interfere with
fetching the next image, and slow down the application.

Interference due to write traffic is often solved by writing
back updates asynchronously: the application in our example
can start reading another image without waiting for the previ-
ous output to be sent to the file server. Asynchronous writeback
allows I/O and CPU processing to be overlapped, reducing ex-
ecution time and utilising bandwidth more efficiently. How-
ever, if bandwidth is low, contention arises when files are being
fetched at the same time as updates are written back. This con-
tention can be mitigated by prioritising file fetch RPCs above
writeback RPCs to ensure that they will be preferentially allo-
cated bandwidth.

In this section, we assess the effectiveness of asynchronous
writeback and RPC priorities in MAFS under different levels
of bandwidth availability. In particular, we examine the degree
to which a file system client that avoids switching modes in re-
sponse to bandwidth changes is able to adapt to both insufficient
bandwidth, and conditions under which bandwidth is plentiful.

4.1 Asynchronous writeback
MAFS asynchronous writeback is based on similar mechanisms
found in many mobile file systems [5, 9]. Rather than making
an RPC when an application performs a metadata update or file
write, the operation is logged and replayed to the file server af-
ter a delay. This scheme reduces bandwidth utilisation because
some logged operations may be superceded by later ones [5],

such as deleting a modified file. Such optimisations can be ef-
fective at low bandwidth, when there is a natural delay, but at
high bandwidth, an artificial delay in writing back updates in-
troduces inconsistencies between the client and the file server.
This can be acceptable at low bandwidths, when the user may
be grateful to be able to use the file system at all, but should be
avoided when bandwidth is unconstrained [2].

MAFS avoids the need for modes by using asynchronous
writeback at all bandwidth levels, and incorporates a new up-
date propagation algorithm to reduce the possibility of inconsis-
tencies (see section 5). As new operations are added to the tail
of the log, the client flushes operations serially from the head of
the log. Client-server traffic consists of a variety of foreground
RPCs for control operations and fetching file data, and a stream
of background RPCs for logged operations. When bandwidth
is high, replayed logged operations complete quickly, with little
extra delay. When bandwidth is low, logged operations are de-
layed in proportion to the foreground RPC traffic and the avail-
able bandwidth.

4.2 RPC priorities
MAFS uses priorities to reduce contention between foreground
activities and deferrable background activities: Adaptive RPC
preferentially allocates bandwidth to foreground RPCs. Unlike
Little Work [5], which assigns a lower priority to writeback in
low-bandwidth mode, MAFS has a finer-grained differentiation
between RPCs, and uses priorities at all bandwidths. This al-
lows control over bandwidth allocation at the level of individ-
ual RPCs, without requiring that an MAFS client is aware of
the precise bandwidth.

When choosing priorities, automatic assignment and fine
granularity are preferable, to avoid the need for user interven-
tion and provide the maximum degree of differentiation among
priority levels. Scheduling RPCs based on priorities is only
effective if concurrent RPCs usually end up with different pri-
orities, but processes are too coarse-grained for this purpose.
File-based priorities provide some more detail, but the impor-
tance of a file can be hard to determine automatically [8], and
files can be too numerous for the user to manually assign pri-
orities. RPCs are more numerous, but priorities can be auto-
matically assigned to them according to the operation the RPC
corresponds to, as shown in Table 1. Small RPCs, or RPCs
that the user has to wait for, have high priority; large RPCs, or
RPCs whose results can be delayed, such as writing back data
or prefetching, have lower priority. Prefetching is an example
of speculative communication: performing a low-priority RPC
whose results can improve performance if bandwidth is high,
but can be safely omitted if bandwidth is low. For most RPCs,
the initial priority is never modified, but the file server some-
times requests an increase in the priority of an RPC to transmit
data.
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Figure 2: Workloads with contention between priority levels. The grep workload consists of validating cached files.
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Figure 3: Compiling MAFS on top of MAFS.

4.3 Experimental evaluation
Two questions are of particular interest in evaluating the perfor-
mance of MAFS communication adaptation:

(i) Do priorities improve performance by reducing RPC con-
tention?

(ii) Is it possible to combine the benefit of asynchronous write-
back at low bandwidth with acceptable performance at
higher bandwidths?

We compare MAFS to alternative approaches in two sets of
experiments: microbenchmarks to measure execution time
speedup for simple workloads, and traces of actual Windows
NT file system (NTFS) traffic. The NTFS traces were gathered
in the Cornell University Computer Science Department, and
contain access to local and remote file systems by clients in a
local-area network [12].

Microbenchmarks

Our first microbenchmark compiles MAFS from 1.20 MB of
source code stored in an MAFS filesystem, storing the 7.21 MB
of output in the same filesystem. Figure 3 compares the exe-
cution time speedup for the benchmark under differing asyn-
chronous writeback and priority schemes, as bandwidth is var-
ied.

The dominant feature of Figure 3 is that asynchronous write-
back is beneficial at all bandwidths until 1 MB/s. There is less
improvement at 32 KB/s, where throughput is so low that con-
trol traffic and the delay in fetching files become dominating

Mostly Mostly Heavy
Writes Reads Traffic

duration (s) 106 31 26
distinct processes 15 47 30
distinct files 276 726 227
total of file sizes (MB) 16.51 12.18 17.65
read traffic (MB) 9.17 10.11 17.61
write traffic (MB) 32.39 2.35 5.42
average b/w (KB/s) 401.5 411.6 907.0

Table 2: NTFS trace parameters. Traffic numbers are for
synchronous writeback.

factors. At 1 MB/s, bandwidth is high enough to eliminate dif-
ferences between writeback schemes. At intermediate band-
widths, asynchronous writeback is clearly beneficial, and prior-
ities are advantageous in reducing contention between reading
and writing, which is not possible when synchronous writeback
is used.

The second microbenchmark evaluates a workload that con-
tains explicit contention between different types of RPC traf-
fic. In Figure 2(a), one process performs a grep on a set of
cached files that need to be validated before they can be opened
(via a small, high-priority RPC). Another process either writes
data to files rapidly (Grep-write), or compiles MAFS (Grep-
compile). In Figure 2(b), one process reads files at the same
time as another is writing files. Figure 2(a) shows that priori-
ties are beneficial for the small validation RPCs when the back-
ground traffic is heavy. With the sporadic background traffic
of compiling MAFS, improvements are confined to low band-
width levels. Figure 2(b) demonstrates that priorities can im-
prove higher-priority read performance with only a small over-
head for writes.

To summarise, these microbenchmarks show that asyn-
chronous writeback improves performance even at compara-
tively high bandwidths, and priorities are effective in mitigating
contention between different classes of RPCS.

Macrobenchmarks

We evaluated MAFS at a larger scale using the NTFS-derived
traces summarised in Table 2. Although the original execution
times of these traces were short on Windows NT, they execute
slowly on MAFS due to high bandwidth requirements.

Figure 4 shows execution times under four combinations
of writeback scheme and priorities. Asynchronous writeback
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Figure 4: NTFS-derived benchmarks. Trace duration for asynchronous writes is until completion of the last read.

is beneficial in the Mostly Writes trace, which has high read-
write contention. At 512 KB/s bandwidth, it is less effective
than synchronous writeback, due to increased contention, but
this effect is mitigated by using priorities (this is clearer in the
graph for time spent on fetch RPCs). At the timescales in the
NTFS traces, the improvements are less dramatic than in the
microbenchmarks, but they demonstrate that MAFS can im-
prove the performance of large-scale mixed workloads.

Analysis

Both experiments confirm the benefits of asynchronous write-
back, even at bandwidths where a typical mobile file system
performs all RPCs synchronously. Asynchronous writeback
avoids the need to switch operation into a distinct low-bandwidth
mode, and choosing a bandwidth threshold at which to switch.
When used by themselves, priorities do not always result in
improved performance, since they are only effective if concur-
rent RPCs have different priorities. However, they reduce user-
visible delay and contention that is introduced by asynchronous
writeback.

5 Update propagation
Using asynchronous writeback at all bandwidths delays send-
ing updates to the file server. In this section, we evaluate the
effectiveness of an update propagation scheme to reduce this
delay. MAFS allows a client to delay transmitting updates, but
the file server forces file updates to be written back when an-
other client must read an up-to-date copy of the file.

5.1 Origin of inconsistencies
Since asynchronous writeback decouples modifying a file from
notifying the server that a change has occurred, it can generate
inconsistencies between cached copies. Figure 5 illustrates the
potential for inconsistency: during the writeback window, an-
other client accessing a cached copy, or fetching the file from
the file server, will not read up-to-date data. From the server’s
perspective, there is no inconsistency, since it is unaware of the
new update. However, from a global perspective, the second

store RPC
complete

store RPC
received

open file
for writing

close file,
log update

st
or

e−
da

ta
 R

PC

store−data reply

Server

Client

time

replay log

writeback window

store RPC

commit window

begins to arrive

Figure 5: Timeline of a file update. Time advances from left
to right.

client will access stale data. Due to network latency, the write-
back window can never be eliminated, but adding an additional
delay before writing back the update increases the scope for in-
consistency. Figure 6(a) illustrates how this inconsistency can
arise.

In a Coda-like file system such as MAFS, a different type
of inconsistency is introduced between a client and the server
when a file is modified, since the change is hidden from the
server until the file is closed. For the purposes of this investi-
gation we assume that the open-close interval for a file is small
relative to the network latency and writeback delay. The update
propagation techniques we describe can be applied equally well
to individual file writes as to writeback-on-close.

5.2 Techniques for update propagation
Although Coda-like file systems can generate inconsistencies
between clients, they were designed to permit a client to func-
tion at low bandwidth, rather than for rapid update propagation.
Since it is impractical to lock files if clients are permitted to
modify the filesystem while they are disconnected, Coda sup-
ports stronger consistency through optimistic replication [11].

An alternative approach is to allow a client to use asyn-
chronous writeback, but require that it alerts the file server when
a file is modified, by sending an invalidation RPC. This informs
the server that the update exists before the new file contents ar-
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Figure 6: Asynchronous writeback. A client’s update is logged when the file is closed. While it is in the log, other clients
see the server’s stale version. An invalidation RPC allows the server to invalidate other clients’ cached copies.

rive, so that it can prevent inconsistencies by inhibiting access
to the file by other clients, as shown in Figure 6(b). Invalida-
tions are used in Fluid Replication [7] to allow clients to avoid
sending data across a wide-area network: instead, the server
only asks the client for a file’s data if another client requests it.

5.3 Selective invalidation with reader pull
MAFS incorporates SIRP, a new algorithm for maintaining inter-
client consistency, which combines asynchronous writeback with
invalidations and expedited transmission of updates for files
that other clients are attempting to read.

Selective invalidation. Using an invalidation RPC to alert the
file server to the existence of a new update improves cache
consistency, but consumes additional bandwidth. If writeback
traffic is low enough for the server to start receiving an update
immediately after it receives the invalidation, the invalidation
is superfluous. SIRP avoids this overhead by performing selec-
tive invalidation: when a client adds an update to the writeback
queue, it only sends an invalidation if the queue is not empty.
If the queue is empty, the invalidation is piggybacked onto the
update.

Reader pull. When the server receives an invalidation from a
client, it makes callbacks to all the other clients that cache the
file, to tell them to discard their copies. If several clients modify
the same file, modifications are serialised in the order of their
invalidations. Normally, the client that made the update only
transmits it when it reaches the head of the writeback queue.
If another client attempts to fetch the file during the update’s
writeback window, the server blocks that client until the update
has arrived. The server also makes a pull RPC to the client that
modified the file, instructing it to expedite sending the update.
When it receives the pull RPC, the client begins sending back
the update at the same priority as an RPC to fetch file data, so
that it will be preferentially allocated bandwidth. If the update
was already being written back, the client increases its priority.

In principle, a client that modifies a file could save bandwidth
by not sending it to the file server at all, unless the server pulls
it to supply it to another client. MAFS clients push updates to
the server in the background, to reduce the delay incurred when
fetching an invalidated file: pushing updates can result in the
server having received some, or all of the update by the time
another client accesses it.

The effect of selective invalidation and reader pull is that
SIRP behaves similarly to synchronous writeback if a client
concurrently fetches a file, but behaves like asynchronous write-
back when there are no concurrent fetches. Like synchronous
writeback, SIRP sends an RPC to the server as soon as an ap-
plication closes a modified file, but it can defer transmitting the
actual contents until they are needed.

5.4 Experimental evaluation
We conclude this section with an experiment that compares the
effectiveness of SIRP to three alternatives. Synchronous write-
back transmits an update as soon as a file is closed, and asyn-
chronous writeback puts the update in a queue and transmits it
as soon as it reaches the front of the queue. We also compare
SIRP against a policy we refer to as SIRP-C, which only differs
from SIRP in performing compulsory invalidations: every up-
date results in an invalidation RPC to the server. Two questions
are of particular interest in this comparison: First, how stale
are the files readers read? Second, how is the performance of
readers and writers affected by stronger consistency?

Experimental setup

Experiments were conducted in a network of five hosts: one
file server, one writer client that was responsible for modifying
a collection of files, and three reader clients that only read the
files. The bandwidth between the writer client and the server
was set to 32, 128 or 512 KB/s, and the reader client-to-server
bandwidth was always set to 1 MB/s.
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Figure 7: Staleness of reader file accesses. Cumulative distributions for the staleness of all accesses to files by the three
readers are shown. Higher curves represent less staleness.
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Figure 8: Execution times for concurrent access trace. Reader execution times are averages for the three readers.

The files shared between the clients were divided into 20 file
sets of 8 files each. File lengths were randomised, with an aver-
age length of 128 KB, to prevent the clients falling into lockstep
in the course of fetching and writing back the files. Clients per-
formed 50 file set operations, consisting of selecting a random
file set and performing a sequence of reads or writes on files in
it. The writer performed a file set operation of 8-20 accesses
every 2-10 seconds, with each access being equally likely to
open a file for reading or writing. Readers performed a file set
operation of 2-20 reads every 1-5 seconds. The first 5 file sets
were treated as “hot”, meaning that 90% of the file set opera-
tions were directed to those file sets.

Read staleness

Comparing update propagation schemes requires a criterion for
measuring the staleness of file reads. We identified updates to
files by associating a version number with each file, and incre-
menting it every time the file was modified. Reads were la-
belled with the version number of the file at the time the read
occurred. The staleness of a particular read was determined
according to an ideal version number derived from executing
the experiment with all participants running on a single host.
In a real execution, the difference between the version num-
ber a read returns and the optimal version number determines
how stale the read is. Figure 7 shows cumulative distributions
for the staleness of reads at different writer-server bandwidths.
Improved consistency results in fewer stale reads, and this is
reflected by a curve that is higher on the left side of the graph.

Overall, higher bandwidth results in less staleness, since
writes can be sent to the file server faster. At 32 KB/s band-
width, SIRP is most effective at reducing staleness: though
many reads return out-of-date file contents when compared to
the optimal version, 5% more SIRP reads are up-to-date, com-
pared to synchronous or asynchronous writeback. Allowing
higher degrees of staleness, 9% more reads performed with
SIRP are within 3 versions of the optimal. With this band-
width level, synchronous and asynchronous writeback coincide
in performance, since they are constrained by the bandwidth
bottleneck and send updates in the same order. By suppressing
unnecessary invalidations, SIRP reduces its bandwidth usage
and achieves a small improvement over SIRP-C, since devot-
ing less bandwidth to invalidations results in data reaching the
server faster.

At higher bandwidths, asynchronous writeback performs as
well as SIRP, but surprisingly, synchronous writeback contin-
ues to underperform. This is because the progress of writers
using asynchronous writeback schemes is less constrained by
the bandwidth, and they can overlap computation and fetching
file contents with writeback. Rather than simply being a self-
interested optimisation by writers to improve their own perfor-
mance, asynchronous writeback therefore benefits both writers
and readers.

Consistency maintenance cost

The overhead of the update propagation schemes can be com-
pared by referring to the reader and writer execution times, as

7



shown in Figure 8 (reader execution time is the average for all
three readers).

For the writer, the reduced staleness achievable by SIRP
has little or no cost compared to asynchronous writeback with
no invalidations. Since the writer is up to 14% slower when us-
ing SIRP-C compared to SIRP, selective invalidation is clearly
beneficial. For readers, SIRP has the highest average execution
time, but this is because it provides the best consistency of all
the schemes. If a reader reads more up-to-date file versions,
then it transfers more data: in fact, the reader execution time
for each case is proportional to the amount of data transferred
between the reader and server, though lack of space precludes
showing this in a graph.

Summary

This experiment demonstrates that SIRP is preferable to asyn-
chronous writeback at low bandwidth, and adds little additional
overhead. At higher bandwidths, the difference between asyn-
chronous schemes is minimal, but any scheme improves over
synchronous writeback. For the same reasons that it improves
performance, asynchronous writeback reduces staleness, and
SIRP makes it an acceptable choice at low bandwidth.

6 Conclusion
This paper has described MAFS, a new file system for mobile
clients that is tailored for wireless networks by incorporating
automatic adaptation to the available bandwidth. MAFS differs
from previous designs in making use of asynchronous write-
back at all bandwidth levels, rather than switching from syn-
chronous to asynchronous writeback when bandwidth is insuf-
ficient. RPC priorities and a new update propagation algorithm,
SIRP, reduce a client’s contention for wireless bandwidth, and
permit a degree of consistency that is equivalent to instanta-
neous propagation of updates. Experiments demonstrate that
these techniques allow MAFS to achieve performance that is
at least equal to, and in most cases superior to that achievable
by conventional file system designs that switch between low-
and high-bandwidth modes according to thresholds. MAFS is
therefore able to make efficient use of the network and provide
predictable file system semantics, regardless of the available
bandwidth.
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