Fact-based Inter-Process Communication Primitives for

Programming Distributed Systems

Robbert van Renesse, Department of Computer Science Cornell University

Category: Representation

The following position paper describes a new Inter-
Process Communication (IPC) primitive that is de-
signed to make it easier to program distributed algo-
rithms. It is largely based on my experience in im-
plementing algorithms such as distributed consensus,
leader election protocols, replication protocols, and
so on. Subject to your evaluation of my proposal, I
would be happy to present this idea at the workshop.

IPC allows processes to share information and to
synchronize actions. Essentially, there are two classes
of IPC: message channels (MC) and shared memory
(SM). MC has processes communicate send and re-
ceive messages, while SM allows processes to share
data directly while synchronizing using such prim-
itives as mutexes and condition variables. In dis-
tributed systems, where processes are physically sep-
arated, MC is dominant as efforts to support the SM
paradigm have not been successful. Examples of SM
include TCP connections, RPC, and pub/sub. The
MC and SM paradigms are duals in that one can be
implememted using the other, but they also each have
their advantages and disadvantages when compared
with one another.

It is useful to consider how distributed algorithms
such as replication, leader election, parallel algo-
rithms, apply IPC. Typically it has much to do with
progress: in order for some process to be able to make
a transition, it needs to know that one or more other
processes have reached a particular milestone, and
some data associated with that milestone. For ex-
ample, a new leader in Paxos needs to know that a
quorum of acceptors have progressed to its proposed
ballot and it needs to know what the highest accepted
proposals from those acceptors are. Many if not all

distributed algorithms can be cleanly expressed this
way: as a collection of transition specifications that
specify under which conditions they are enabled and
what state they need from other processes. Note the
similarity to knowledge-based programming.

While the SM paradigm seems the best fit for this
model of distributed algorithms, the paradigm is hard
to make efficient, secure, and scalable in a physi-
cally distributed system. Also, it is notoriously error-
prone as programmers are having difficulty utilizing
the synchronization primitives correctly. The MC
paradigm can be used instead but is awkward and
error-prone as well—it requires the programmer to
figure out which processes should send which data to
which destinations at which times in order to ensure
that recipients of this data can make progress. Some-
times messages are lost if the receiver starts execution
after the sender has started sending messages to it.
(The familiar “send-and-pray” semantics of connec-
tionless or non-blocking messaging primitives is one
example.) Often needless information is sent as more
recent information makes old messages obsolete. Us-
ing Paxos again as an example: in the stream of val-
ues that acceptors accept, only the most recent one
is of interest. But most MC implementations will
carefully deliver each and every one, delaying deliv-
ery of the important information until all obsoleted
information has been delivered as well. This leads to
wasting resources, potential deadlock situations due
to flow control leading to deadly embrace, and also
obfuscates how the algorithms work.

We propose Fact-Based IPC, a new class of IPC,
that that tries to combine the best features of SM and
MC. From SM it inherits direct access to and synchro-



nization on state rather than providing a stream of
state updates, while from MC it inherits an efficient
implementation over the existing physical infrastruc-
ture. The concept is that processes publish facts,
which are information about milestones they have
reached, and subscribe to new facts. The IPC in-
terface is similar to topic-based pub/sub-based mes-
saging, but there are several important semantic dif-
ferences. The (familiar) interface is as follows:

e publish(topic, fact)
e subscribe(topic, upcall)

The interface requires that the fact type for a par-
ticular topic is totally ordered, and those facts will
be delivered in order. (Any data can be made to-
tally ordered by tagging it with a sequence number,
but often times facts such as ballots are totally or-
dered already.) Given a stream of facts on some topic,
only the highest, most recent fact need be delivered
eventually, while older facts can be dropped. Also
different from pub/sub messaging, if no more facts
are published but some process later subscribes, it
will eventually receive the most recent fact (assum-
ing both publisher and subscriber are correct). These
semantics are similar to the anti-entropy style of gos-
sip protocols, but the underlying implementation can
be anything.

There is also a control interface that controls rout-
ing of facts for a particular topic. For example, Paxos
acceptors subscribe to ballots and to new proposals
from leaders. When the leader publishes one of these,
it is transmitted to all subscribers, and the underly-
ing communication layer will continue retransmission
until either acknowledged or another fact renders it
obsolete.

For some topics, it will be the publishers that ac-
tively try to push new facts to the subscribers. For
example, Paxos leaders publish new ballots and push
these to acceptors as acceptors do not necessarily
know what the set of leaders is. Old ballots are
automatically dropped from the transmission queue.
For other topics, it will be the subscribers that ac-
tively poll the publishers. For example, leaders and
learners both subscribe to acceptors accepting pval-
ues and poll for these facts. New subscribers, as well
as subscribers that suffered communication loss due
to a network partition or having been temporarily
shutdown (e.g., due to a user closing a laptop), will
continue to poll publishers to receive facts they have
missed. All this is invisible to the core application
programmer, but can be managed through the con-
trol API.

The hope is that Fact-based IPC will simplify dis-
tributed programming and make it easier to reason
about safety and liveness. The argument for this is
that the paradigm allows the programmer to clearly
specify transitions and under which conditions they
are enabled without having to worry much about how
these conditions are discovered.



