
 1

Decentralized Schemes for Size Estimation in Large and Dynamic Groups*

Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta Ken Birman, Al Demers
Dept. of Computer Science Dept. of Computer Science

University of Illinois, Urbana-Champaign Cornell University
{kostoula, psaltoul, indy}@cs.uiuc.edu {ken, ademers}@cs.cornell.edu

Abstract

Large-scale and dynamically changing distributed
systems such as the Grid, peer-to-peer overlays, etc.,
need to collect several kinds of global statistics in a
decentralized manner. In this paper, we tackle a
specific statistic collection problem called Group Size
Estimation, for estimating the number of non-faulty
processes present in the global group at any given point
of time. We present two new decentralized algorithms
for estimation in dynamic groups, analyze the
algorithms, and experimentally evaluate them using
real-life traces. One scheme is active: it spreads a
gossip into the overlay first, and then samples the
receipt times of this gossip at different processes. The
second scheme is passive: it measures the density of
processes when their identifiers are hashed into a real
interval. Both schemes have low latency, scalable per-
process overheads, and provide high levels of
probabilistic accuracy for the estimate. They are
implemented as part of a size estimation utility called
PeerCounter that can be incorporated modularly into
standard peer-to-peer overlays. We present
experimental results from both the simulations and
PeerCounter, running on a cluster of 33 Linux servers.

1. Introduction

Distributed systems such as peer-to-peer overlays,

sensor networks, Grid application overlays, etc., tend to
be large-scale since they contain several thousands of
processes. More importantly, however, they are also
dynamic. Dynamism means that there is continuous
arrival and departure activity through processes joining,
crashing and voluntarily departing. At the same time,
distributed applications often require an estimate of the
number of non-faulty processes currently present in the
group. We call this as the problem of Group Size
Estimation. The problem is challenging not only due to
the dynamism and scale involved, but also because the

* This work was supported in part by NSF CAREER grant CNS-0448246.

above mentioned peer-to-peer overlays typically require
each process to maintain only partial information
concerning the group membership.

Accurate estimates of the number of processes
currently present in the overlay, i.e., the group size, are
absolutely essential in order to enable several notions of
run-time adaptivity in peer-to-peer applications. For
example, in a Grid application, continuous estimates of
the group size can be used to dynamically partition a
distributed problem among participating clients. In
peer-to-peer distributed hash tables such as Pastry [16]
and Chord [17], the estimated value is required to set
the routing table size and to set timeouts for queries –
the number of virtual hops for routing a query depends
on the group size. Other overlays, e.g., Kelips [9], use
the notion of process subgroups whose size depends on
the number of processes present in the system.

The Group Size Estimation problem is
representative of a large class of problems for collecting
statistics about a large-scale distributed system, in a
decentralized manner. Other problems in this class
include aggregation, e.g., [3]. However, the specificity
of the Group Size Estimation problem lends itself to
solutions with the potential for much greater accuracy
and scalability than that obtained by the straightforward
application of aggregation algorithms.

The Group Size Estimation problem has two flavors
– one-shot and continuous. We formally define the one-
shot problem next – the continuous version is similar.

Group Size Estimation Problem: Give a protocol
that when initiated by one process, estimates the
number of non-faulty processes in the overlay graph
component containing the initiating process.

Impossibility of Group Size Estimation in a
Dynamic Group: This problem is impossible to solve
accurately in a dynamic group. Notice that a group size
estimation protocol will take non-zero time to run, and
for any process p that is not the initiator, there will be a
non-zero delay between p’s last message in the
estimation protocol, and the initiator finalizing the
estimate. In a run where process p fails during this
interval, the estimate will be incorrect.

 2

This motivates the design of algorithms for
approximate estimation. One simple algorithm could be
the following. The initiator process sends a multicast to
the overlay through a dynamic spanning tree, and waits
to receive back replies. The disadvantage of this
scheme is that it is non-fault-tolerant – if a process fails
after receiving the multicast and before replying to its
parent in the spanning tree, the estimate will exclude all
descendants of that process in the tree.

Contributions of the Paper: This paper proposes
practical, decentralized, efficient, and fault-tolerant
estimation algorithms with a probabilistic output.
Specifically, we study two algorithms, both based on
variants of sampling. The first algorithm is active:
called the Hops Sampling Algorithm, it initiates a
gossip into the group, and samples, based on hop
distance, the times at which the gossip is received by
different processes. The second approach is passive:
called the Interval Density Approach, it samples the
density of processes that lie in a given real interval,
when the process identifiers are hashed.

Both algorithms can be run either in a one-shot
manner or on a continuous basis (the latter variant is
preferable for long-running applications such as peer-
to-peer overlays). When used in a one-shot manner,
they have running times that grow logarithmically with
group size, and impose a small sublinear overhead on
each process in order to achieve an estimate that is
accurate with high probability (w.h.p.). In the
continuous version, the time taken for a given process
arrival/failure/departure to affect the group size
estimate, grows logarithmically with the group size.

We present experimental evaluation of the two
algorithms. The first set of experimental results is from
a simulation, and includes micro-benchmarks and trace-
based experiments. The second set of experiments uses
PeerCounter, our open-source implementation of the
size estimation algorithms. Using PeerCounter allows
our simulations to be run on a cluster of up to 33 Linux
servers, each with multiple processes. PeerCounter is
open-source and can be easily incorporated into a
variety of peer-to-peer substrates, e.g., Pastry, Chord,
Kelips [9, 16, 17], etc., thus providing them with the
capability to estimate the number of non-faulty
processes present in the group. More details and
evaluation results for our algorithms may be found in
an extended technical report version of the paper [12].

System Model: We assume a group of processes
with unique identifiers, communicating through an
asynchronous network, and connected in an overlay.
Messages can be sent from a process u to any other
process v whose identifier is known by u at its local
membership list – these membership entries are nothing
but the links in the peer-to-peer overlay. Membership
entries are assumed to be maintained by a

complementary membership protocol already running
within the overlay. The only requirement from the
membership component is that the overlay graph
formed by it be connected. This admits overlays
constructed by distributed hash tables (e.g. Pastry,
Chord, etc.), unstructured overlays (e.g. Gnutella), as
well as overlays in Grid applications. Moreover, the
membership protocol needs to be only weakly
consistent, i.e., detect failures eventually. It is not
required to provide strong guarantees such as virtual
synchrony. We detail other requirements from the
membership protocol where needed.

The number of non-faulty processes is N, and is an
unknown quantity. Our protocols operate in rounds at
each process, with the round duration fixed across the
group. Processes are not required to have synchronized
clocks. However, since the duration of a round is
O(seconds), processes can be assumed to have
negligible clock drifts. Processes can undergo crash-
stop failures – crash-recovery failures can be supported
by having a process rejoin the group with an identifier
that is unique and unused previously.

The rest of this paper is organized as follows.
Section 2 discusses related work. Sections 3 and 4
describe the Hops Sampling algorithm and the Interval
Density approach respectively. Sections 5 and 6 give
experimental results from our implementations. We
summarize in Section 7.

2. Related Work

Several efforts have been made to provide

decentralized solutions to the group size estimation
problem. Unfortunately, most of these approaches
either do not apply to dynamic groups, or make
unreasonable assumptions. Ref. [3] presents several
mechanisms for aggregation and group size estimation.
One algorithm has an estimation message sent along a
random walk within the group. When the estimation
message hits a process for the second time, the protocol
stops and the number of hops traversed so far can be
used to estimate the group size – according to the
birthday paradox, it takes)(NΘ hops for a random
walk message to encounter a process a second time.
However, the latency of this algorithm is)(NΘ , and
this is impractical in groups that have processes joining
and leaving at high rates. Our schemes have a latency
that increases only logarithmically with N.

Our Interval Density algorithm bears resemblance to
the approach in [1], but there are significant differences.
Ref. [1] uses a hash function to assign process IDs in
the real interval [0,1] and decomposes the [0,1] interval
into a hierarchy of subintervals, each holding identifiers
from processes that run on the same region. A recursive
algorithm is used, starting from the peer’s home region

 3

and continuing upwards until an estimate for the [0,1]
interval is achieved. In comparison, our Interval
Density approach does not depend on the way process
identifiers are assigned in the group. Further, the
algorithm of [1] could suffer from message implosion at
the initiator process, while the Interval Density
algorithm imposes no extra message complexity since it
is a passive approach.

Kermarrec et al also discuss practical estimation
schemes in [13], but at the time of writing this paper,
they have not been evaluated. Ref. [10] presents a
sampling-based size estimation scheme. Nevertheless,
the accuracy of the method depends on assumptions on
the independence of samples from different processes.
The algorithms proposed in this paper do not assume
independence of membership views at each process. In
addition, a ring-based algorithm for group size
estimation is discussed in [14]; however, the estimated
group size can have a large error – it can be between
N/2 and N2, where N is the actual group size. The
required logical ring may not be present in all overlays,
e.g., Grid overlays. Our schemes in this paper do not
require such a fixed minimal overlay, and can be run on
a large range of overlays.

Epidemic algorithms were discussed by Demers et
al in [6], Eugster et al in [7], Karp et al in [11], and
originate from the Mathematical study of epidemics [2].
Birman et al [5] use gossip to design a probabilistically
reliable multicast protocol.

3. Active Approach - Hops Sampling
Algorithm

In this section, we present the Hops Sampling

algorithm. Pseudocode of the algorithm can be found in
[12]. To present the algorithm, we make the assumption
that it operates in protocol periods (also called rounds).
The duration of a round is fixed and a round starts at
the same time at all processes. The estimation is started
by one process called the initiator, but the rest of the
protocol operates in a decentralized manner throughout
the group.

The initiator sends an initiating message at the start
of the protocol. Once a process has received the
initiating message, at the beginning of each subsequent
round, it selects gossipTo other processes as targets
and sends them gossip messages containing the
initiating message. A process stops gossiping once
either gossipFor rounds have expired since receipt
of the initiating message, or gossipUntil gossip
messages have been received by the process. All
gossip* parameters mentioned above are a priori
fixed integer constants. Besides the local membership
list, each process p also maintains a list, fromList,
of some other processes that it knows to have already

been infected – these are simply the processes that have
sent gossip messages to process p. The selection of
gossip targets by a process is done uniformly at random
from the membership list, but by excluding the
elements that appear in fromList.

Since the membership protocol is weakly consistent,
the membership list may be out of date. In order to
maintain the gossipTo parameter, gossip messages
need to be acknowledged, and a gossiping node retries
each message with different target until acknowledged.

In order to enable estimation, each of the above
gossip messages also carries an integer field
hopNumber, which indicates the number of nodes the
message has traversed since the initiator. Before
forwarding a gossip, the process stores this hop count in
a local variable called myHopCount. For multiple
received gossip messages, the lowest received
hopNumber value is remembered. All outgoing gossip
messages have their hopNumber set to
(myHopCount+1).

The initiating process waits for gossipResult
rounds to elapse before sampling gossipSample
other processes selected uniformly at random from its
membership list. Each sampled process replies with its
myHopCount value. The average of these values is
returned by the algorithm as an estimate of log(N),
where the logarithm’s base depends on parameter
settings.

Instead of the initiator sampling the group size, an
alternative sampling technique we use in our
implementation has the gossip recipients themselves
send their hop count values back to the initiator.
However, in order to reduce message implosion, the
initiating message contains a fixed value
minHopsReporting specified by the initiator.
When a process stops gossiping (if it ever gossips), it
sends its myHopCount automatically to the initiator
(i) with probability 1 if myHopCount <
minHopsReporting, and (ii) with probability
(1/gossipTo(myHopCount-minHopsReporting)) otherwise.
Thus, only a small fraction of all hop count values will
be received.

Although our protocol description and analysis
assume clocks are synchronized to protocol periods, our
implementation (Section 6) eliminates this requirement
by setting at each process gossipFor to 1. This
means each process gossips only once (to gossipTo
targets), and this happens as soon as it receives the
initiating message. A second modification in the
implementation is that the initiator waits for a large,
fixed time interval (usually several minutes) before
sampling the group for hop counts – this eliminates the
need to set gossipResult.

 4

3.1. Analysis of the Hops Sampling Algorithm

For tractability of analysis, we assume that

processes in the group have O(log(N)) membership list
sizes and these are sampled uniformly at random.

Property: Consider a group where the local
membership list maintained at each process is
O(log(N)), with each entry selected uniformly at
random from across the group. Then, the expected time
(after gossip initiation) at which a process receives the
gossip varies as))(log(NΘ .

Explanation: At the core of the Hops Sampling
algorithm is a push gossip protocol, the properties of
which are well studied. Bailey [2] and Eugster et al [7]
showed the following results for push gossips in a
group where processes have partial membership lists
chosen uniformly at random from across the group: (i)
if the quantity (gossipTo*gossipFor) is
O(log(N)), the gossip spreads to all processes with high
probability; (ii) the expected number of rounds for the
gossip spread to complete is))(log(NΘ ; (iii) gossip
spread in a group with complete membership lists is the
same as in a group with partial membership lists of size
O(log(N)).

For the purpose of our protocol, we are interested in
the average time that it takes for the gossip to reach a
given process in the group. Clearly (ii) above says it
can be no larger than))(log(NΘ . For the lower
bound, notice that, during each round, the total number
of gossip recipients cannot grow by a factor larger than
gossipTo. This is a branching process with degree
gossipTo and the height of the generated tree is
O(log(N)). This is the lower bound. Thus, the average
measured hop count in our algorithm is))(log(NΘ .

We detail how to determine the value of the
logarithm base in the average gossip latency when
discussing experiments in Sections 5 and 6.

3.2. Continuous Version of the Hops Sampling
Algorithm

A long-running peer-to-peer application may need

to continuously monitor the variation of group size. The
continuous variant of the Hops Sampling algorithm can
provide this service. It works as follows. The initiator
periodically initiates a new one-shot protocol run, each
with a unique run identifier. A parameter
gossipsAccounted gives the number of recent
one-shot estimates to be considered for the continuous
estimate. Of these estimates, gossipsDropped of
the highest and gossipsDropped of the lowest
estimates are dropped before taking the mean of the
remaining estimates. The network traffic in this

continuous version is bounded since each run
terminates w.h.p. in a logarithmic number of rounds.

4. Passive Approach - Interval Density
Approach

While the Hops Sampling approach was an active

probing approach to group size estimation, the Interval
Density approach is passive. This approach works by
measuring the density of the process identifier space,
i.e., the number of processes that have (unique)
identifiers lying within an interval of this space. As a
first cut, directly sampling the space of process
identifiers (e.g., IP addresses + port number) may prove
to be inaccurate. For example, if the group were located
on a small collection of subnets, the process identifiers
would be correlated, resulting in a great likelihood of
error in the group size estimate.

A second approach is to randomize the process
identifiers by using a good hash function to map each
process identifier to a point in the real interval [0,1].
Cryptographic hash functions such as SHA-1 [8] (or
MD-5) can be used: the input is arbitrary length binary
strings, and the output is a hash of length 160 bits (or
128 bits respectively for MD-5). The hashes can be
normalized by dividing with 2160 – 1 (or 2128 – 1
respectively). This is convenient to do in P2P routing
substrates such as Pastry [16] and Chord [17], where
virtual “nodeIDs” are assigned to processes by hashing
their identifiers using SHA-1 or MD-5.

The Interval Density approach requires the
“initiator” process to passively collect information
about the process identifiers that lie in an interval I that
is a subset of the interval [0,1]. Suppose X is the actual
number of processes that the initiator finds falling in the
interval. Then the estimate for the group size is simply
returned as X/I. The passive collection of such process
identifier information can be achieved by snooping on
the complementary membership protocol running in the
overlay – details will be provided.

Notice that this lends itself easily to both a one-shot
run and a continuous run – the latter can be provided by
simply maintaining information about the processes
(that lie in the interval I) over a long period of time.
Multiple initiators can be supported by selecting the
interval specified by the initiator with the lowest
identifier, and participating in only that initiator’s
protocol run.

Below, we first analyze the accuracy of the
estimate, then describe adaptive variants of the
protocol, and finally discuss the snooping on the
membership protocol.

 5

4.1. Analysis of the Interval Density Approach

The assumption on uniform sampling of

membership lists used in analysis of the Hops Sampling
scheme is not required in the case of the analysis of the
Interval Density scheme.

Property: With a good (i.e., uniform) hash
function, an interval size I that varies as

))/()(log(2 NNO ×δ suffices to obtain an estimate that is
accurate within a factor of δ with high probability,
where N be the actual number of non-faulty processes
in the group.

Explanation: The expected number of processes
that fall in the interval I would be I * N, where the size
of the interval is notated simply as I. Call δ the
accuracy of the protocol, defined as the multiplicative
error in the group size. The likelihood that the estimate
for the group size is off by a factor of at most δ2 from
the mean is:
Pr[| / |] 1 Pr[/ (1)] Pr[/ (1)]X I N N X I N X I Nδ δ δ− < = − < − − > +
If 12 −< eδ , Chernoff bounds can be used on the
latter terms, giving:

2 2 / 2 / 41 Pr[(1)] Pr[(1)] 1 I N I NX I N X I N e eδ δδ δ − −− < − − > + ≥ − −
If I >clog(N)/N, then the probability that the estimate is
accurate would be bounded from below by:

2 2

2 2
log() / 2 log() / 4

 / 2 / 4

1 1(1) 1

c N c N
c c

e e
N N

δ δ
δ δ

− −− + ≅ − −

Choosing c larger than 2/1 δ , suffices to reduce
this error asymptotically to zero, as N is increased.
Thus, to obtain an estimate that is accurate within a
constant factor (i.e.,δ is a constant) w.h.p., it suffices
if I is of length))/()(log(2 NNO ×δ .

Better accuracy can be obtained by using larger

interval sizes. If I were of length O(N /N), the above
analysis gives us that the estimate is accurate with
probability 2 2 / 2 / 4(1)c N c Ne eδ δ− −− + . This value

asymptotically approaches 1 if 4/1/)log(NN=δ ,
which gives a better accuracy than by using a
logarithmic interval size.

Practically, of course, it is difficult to set the size of
the interval as O(N /N), without a prior estimate of
N. One alternative could be the following. Since the
value of (N /N) decreases as N is increased, if a
lower bound for N is known, the interval can be chosen
to be large enough to guarantee a required level of
reliability. However, for larger N, a very large number
of processes fall inside this interval, thus requiring
memory usage at the initiator to grow linearly with
group size. Alternatively, this drawback can be
addressed by using strategies that adaptively set the

interval size. These adaptive strategies also adjust to a
bad choice for the location of the interval. They are
described next.

The discussion in the remainder of this section
applies to only the continuous flavor of the Interval
Density approach.

4.2. Adapting the Size of the Interval

An interval I is defined by its center point and its

size. The initiator needs to select a center point for the
interval, but the size of this interval itself can be
implicit, rather than explicit. More specifically, the
interval size is determined by remembering a number of
process identifiers that hash close to the center point.
This number is initially set to a small value, but is
increased over successive runs until (a) either a
predefined threshold of MAXMEMORY processes is
reached, or (b) the estimates of group size obtained for
successive values of interval length are within a small
fraction (e.g., 5%) of each other. Notice that the passive
nature of the protocol means that the initiator only
selects the interval, but does not communicate it to any
other process.

4.3. Adapting Interval Location, and Using
Multiple Estimation Runs for better Accuracy

Choosing a good center point for the interval can

affect the accuracy of the estimate, especially if process
identifiers hash in a rather non-uniform manner into the
interval [0,1]. Although process identifiers are initially
randomized using a cryptographic hash function, this
behavior may manifest over a long term due to process
arrivals and departures. We describe three approaches
for choosing a good interval center:
1. Random selection. This is the simplest approach

where the initiator randomly selects the center point
from the interval [0,1], and then uses this value for all
subsequent estimation runs.

2. Periodically changing selection. The initiator
periodically (e.g., after a few runs) changes the center
point of the interval. This could be done either
independent of, or dependent on, previously chosen
center points. We call the latter method self-adjusting
interval selection.

A good self-adjusting interval selection approach
is the following. At every stage, history data for the
results of a few recent estimation runs is maintained
(say the recent 8 runs), along with the intervals that
were used for them. The average estimate returned by
these recent runs is calculated, and the center point of
the run that returned an estimate closest to the average
is used in next run.

Thus, the center of the interval would

 6

continuously move right and left in the [0,1] interval
after each round depending on the results of the
estimations made on the last rounds. This algorithm
will work well if the group size does not change
dramatically between two successive estimation runs.

3. Multiple selections and estimation by mean value.
Instead of changing the center of the interval over
time, each estimation run includes multiple runs, each
with the interval centered at a different point in [0,1].
The mean value of the multiple results is then
returned as the estimate.

In Section 5, we refer to results for the self–
adjusting approach. More results, showing the relative
performance of all approaches, can be found in [12].

4.4. Snooping on a Membership Maintenance
Protocol

We will describe now how the initiator passively

collects information about process identifiers that lie
inside the selected interval I by snooping on the
membership protocol. Below, we explain how this
snooping operates on a well-known class of
membership protocols called heartbeat-style
membership.

In a heartbeat-style membership protocol, e.g., [15],
each process p periodically multicasts a heartbeat
message (incremented sequence numbers) to all other
processes in the group. These heartbeats are used to
proactively learn about new prospective neighbors in
the overlay, as well as for failure detection. The latter is
achieved by timing out on the time since the last
heartbeat was received by process p from a neighbor
process q – this results in p deleting q from its
membership list.

At the initiator, the received heartbeat messages can
be used to continuously learn about previously
unknown processes whose hashed identifiers lie within
the interval I being used for estimation, as well as to
drop known processes (lying within interval I) that have
not responded with an updated heartbeat for a while.
Hence, this keeps a running estimate of the number of
process identifiers lying within I, and estimates the
group size.

Heartbeat-style membership protocols also come in
different flavors. We describe in detail how to
incorporate the Interval Density approach into the
popular gossip-style membership protocol detailed by
van Renesse et al [15]. The basic gossip-style
membership protocol has each process p periodically
(a) increment its own heartbeat counter; (b) select some
of its neighbors (defined by the membership list at p),
and send to each of these a membership gossip message
containing its entire membership list, along with
heartbeats. Each process receiving the message merges

heartbeat values in the received message with its own
membership list. In the modified version of this
protocol, used by the Interval Density approach for
snooping, a process receiving such a gossip message
additionally hashes each previously unknown process
identifier appearing in the message, and remembers it
only if it lies in the interval I. Notice that the above
incorporation is non-intrusive, i.e., it does not affect the
normal working of the heartbeat-style membership
protocol itself.

The time required for the algorithm to complete is
O(log(N)), if gossip messages are allowed to carry up to
N heartbeats and identifiers. If the gossip message
length is restricted, the time complexity is O(I N logN).

5. Experimental Results

We evaluate the performance of the Interval Density

and the Hops Sampling approaches under two
simulation scenarios: (i) Micro-benchmarks, with a
static group of a fixed size, and (ii) Trace-based
experiments, using trace-log data from Overnet file-
sharing network [4] to simulate a dynamic and open
group. Our discussion replaces the previous notation
“process” with “node”.

The traces from the Overnet network [4] measure
the availability of nodes in a 3,000-sized subset of hosts
in the deployed Overnet peer-to-peer system. In these
traces, the number of hosts that are present in the
system changes by as much as 10% - 25% every hour.
We present individual studies for each of the Hops
Sampling algorithm and Interval Density approach. A
comparison of the two schemes can be found in [12].

Experiments do not use any assumptions for the
membership protocol and are done under realistic
conditions, as described in section 1.

5.1. Hops Sampling Approach

Micro-benchmarks. By plotting the average

number of hops measured in a static network with N
nodes versus log2N for different group sizes [12], we
find that the estimated group size is calculated
as)3.1*9895.0(2 += avHopsSizeEst . Here, we use as
parameters gossipTo=2 and gossipFor=1, as
explained in [12].

Figure 1 shows the continuous protocol version for
a static group of size 100; the parameters used are
gossipsAccounted=10, gossipsDropped=2. A
comparison between the continuous and the one-shot
version can be found in [12]. It is shown that the
estimation is mostly within 10% of actual group size.

Trace-based Simulations. The hourly Overnet
traces are injected into the simulator at time intervals of
40 timeslots. By “injection”, we mean that the status of

 7

the system nodes is updated (as “up” or “down”) at the
timeslot we use an Overnet trace. Each time unit of the
above plot corresponds to 40 timeslots. The continuous
protocol is used, with same gossip parameters as earlier.
Figure 2 shows the variation, over time, of the
estimated group size. A close look reveals that although
the estimate is off by a constant factor (due to a smaller
exponent value), it appears to follow and mirror, over
time, the variation of the actual system size.

Figure 1. Size estimation for static group of 100

nodes.

Figure 2. Size Estimation for Overnet network.

5.2. Interval Density Approach

Interval Density messages are piggybacked on a

gossip-style membership protocol, as described earlier
in this paper. Similar to [15], entries for processes lying
within the interval time out and are marked for deletion
if updated heartbeats have not been received for Tdown
time units. Marked entries are deleted after another
Tdown time units.

Micro-benchmark. Figure 3 shows the variation,
over time, of the estimate in a static sized group with
10,000 nodes, when Tdown=infinity and
MAXMEMORY=60. In [12], we present an interesting
property of the Interval Density approach: when
membership timeouts (Tdown) are finite, the estimate is
likely to be below the real group size, since some
membership entries that lie in the interval are not
considered (as they expire); however, at large or infinite
values of Tdown, the estimate can be offset by the local
density of hashed node identifiers in the chosen
interval. The random approach has 5% accuracy; for
better accuracy, the “multiple selections estimation by
mean value” approach should be used.

Trace-based Simulations. Figure 4 shows the
behavior, over Overnet traces, of self-adjusting method,
for Tdown=10 and MAXMEMORY=60. Ref. [12]
demonstrates results for all adaptive methods, presented

in section 4.3. Furthermore, in [12], we modify the
Overnet traces so that an additional set of arrivals and
departures is added, and provide results for estimations.

2 4 6 8 10 12 14 16 18 20

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Time

N
et

w
or

k
si

ze

Estimated network size for a fixed size network of 10000 nodes / Tdown = INF

Estimated network size

Figure 3. Size estimation for a static network of

10,000 nodes.

Figure 4. Estimate calculated by the self-adjusting
interval selection approach for Overnet network.

6. PeerCounter: A Size Estimation Utility

In this section, we introduce PeerCounter; a generic

module containing both algorithms presented in this
paper which can be incorporated into an arbitrary peer-
to-peer overlay. We briefly describe PeerCounter and
then demonstrate evaluation results obtained by
applying this prototype implementation of our
estimation schemes on a cluster of 33 Linux servers
located in the University of Illinois. Any
synchronization assumptions made in our analysis or
simulations are relaxed here since PeerCounter does not
require any synchronization among processes.

PeerCounter is a command line application
implemented in Java. It takes as parameters the server
port to run, a symbol indicating which algorithm, Hops
Sampling or Interval Density, is used for estimation and
the membership list of the calling process. The
membership list can be generated using a topology
generator utility or, in case PeerCounter is incorporated
into a standard overlay, it may be provided by the
underlying application. PeerCounter’s API can be used
to let applications layered under it utilize its estimation
schemes. PeerCounter’s API is described in [12].

Figure 5 demonstrates results for the continuous
flavor of the Hops Sampling approach for static groups
with sizes of 6430 nodes. Estimates are found to lie on

 8

average within 10% of the actual group size. We test
both the standard estimation scheme and the alternative
sampling scheme. The equation used for the first case
is)75.1(2 += berOfHopsaverageNumsize . This is very close to the
one extracted by using our simulations in Section 5,
with only a small difference in the constant factor.

Figure 6 shows results for the continuous flavor of
the Interval Density approach with random interval
selection. As shown in Section 5, the accuracy of
estimations is expected to be better when adaptive
methods or multiple selections and estimation by mean
value are applied in order to choose the interval
location. More evaluation results can be found in [12].

Figure 5. PeerCounter estimates for Hops Sampling

scheme on groups of 6430 nodes (gossipTo=2,
gossipFor=1, minHopsReporting=4,

gossipsAccounted=5, gossipsDropped=1).

Figure 6. PeerCounter estimates for Interval Density

scheme on groups of 1,000 nodes
(MAXMEMORY=100, Tdown= infinity).

7. Conclusions

Estimating the size of a decentralized group of

processes connected within an overlay is a difficult
problem, especially when the group is dynamic and
contains thousands of processes. Previous solutions to
the problem make assumptions that may be unscalable
or limit applicability. In this paper, we have proposed
two new approaches for estimation – an active approach
called Hops Sampling and a passive approach called
Interval Density. The only requirements for these
algorithms are the existence of complementary
membership protocols, which are already present as a
part of most overlays. Both approaches only require the
overlay graph among all processes in the system to be
connected. Micro-benchmarks and trace-based
simulations have shown that both above approaches are
able to obtain an estimate within a few percentage

points of the actual group size. Both algorithms appear
at http://kepler.cs.uiuc.edu/~psaltoul/peerCounter/ as an
open-source size estimation utility called PeerCounter
that can be incorporated into any peer-to-peer overlay.

8. References

[1] B. Awerbuch and C. Scheideler, “Robust Distributed Name
Service”, In Proc. 3rd International Workshop on Peer-to-Peer
Systems (IPTPS), La Jolla, CA, USA, February 2004.
[2] N. T. J. Bailey, “Epidemic Theory of Infectious Diseases and
its Applications”, Journal, Hafner Press, 2nd Edition, 1975.
[3] M. Bawa, H. Garcia-Molina, A. Gionis and R. Motwani,
“Estimating aggregates on a peer-to-peer network”, Technical
Report, Dept. of Computer Science, Stanford University, 2003.
[4] R. Bhagwan, Overnet availability traces:
http://ramp.ucsd.edu/projects/recall/download.html.
[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu and
Y. Minsky, “Bimodal Multicast”, Journal, ACM Transactions on
Computer Systems, Vol. 17, No. 2, pp. 41-88, May 1999.
[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart and D. Terry, “Epidemic
algorithms for replicated database maintenance”, In Proc. 6th
ACM Symposium on Principles of Distributed Computing
(PODC), Vancouver, British Columbia, Canada, August 1987.
[7] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, A.M.
Kermarrec and P. Kouznetsov, “Lightweight probabilistic
broadcast”, Journal, ACM Transactions on Computer Systems,
Vol. 21, No. 4, pp. 341-374, November 2003.
[8] FIPS 180-1, "Secure Hash Standard", NIST, US Department
of Commerce, Washington D.C., April 1995.
[9] I. Gupta, K. Birman, P. Linga, A. Demers and R. van Renesse,
“Kelips: building an efficient and stable P2P DHT through
increased memory and background overhead”, In Proc. 2nd
International Workshop on Peer-to-peer Systems, Springer
LNCS, Vol. 2735, pp. 160-169, 2003.
[10] M. Jelasity and M. Preuss, “On Obtaining Global
Information in a Peer-to-Peer Fully Distributed Environment”,
Springer LNCS, Vol. 2400, pp. 573-577, 2002.
[11] R. M. Karp, C. Schindelhauer, S. Shenker and B. Vocking,
“Randomized rumor spreading”, IEEE Symposium on
Foundations of Computer Science, pp. 565-574, 2000.
[12] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman and A.
Demers, “Decentralized Schemes for Size Estimation in Large
and Dynamic Groups”, Technical Report, UIUCDCS-R-2005-
2524, Dept. of Computer Science, University of Illinois, Urbana-
Champaign, February 2005
[13] A.M. Kermarrec and L. Massoulie, Private communication,
2003.
[14] D. Malkhi and K. Horowitz, “Estimating network size from
local information”, Journal, ACM Information Processing
Letters, Vol. 88, Issue 5, pp. 237-243, December 2003.
[15] R. van Renesse, Y. Minsky and M. Hayden, "A gossip-style
failure detection service", Middleware '98, Lancaster, England,
September 1998.
[16] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer Systems",
In Proc. IFIP / ACM Middleware, pp. 329-350, November 2001.
[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup service for
Internet applications”, ACM SIGCOMM Conference, San Diego,
CA, USA, August 2001.

