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Abstract 

 
Large-scale and dynamically changing distributed 
systems such as the Grid, peer-to-peer overlays, etc., 
need to collect several kinds of global statistics in a 
decentralized manner. In this paper, we tackle a 
specific statistic collection problem called Group Size 
Estimation, for estimating the number of non-faulty 
processes present in the global group at any given point 
of time. We present two new decentralized algorithms 
for estimation in dynamic groups, analyze the 
algorithms, and experimentally evaluate them using 
real-life traces. One scheme is active: it spreads a 
gossip into the overlay first, and then samples the 
receipt times of this gossip at different processes. The 
second scheme is passive: it measures the density of 
processes when their identifiers are hashed into a real 
interval. Both schemes have low latency, scalable per-
process overheads, and provide high levels of 
probabilistic accuracy for the estimate. They are 
implemented as part of a size estimation utility called 
PeerCounter that can be incorporated modularly into 
standard peer-to-peer overlays. We present 
experimental results from both the simulations and 
PeerCounter, running on a cluster of 33 Linux servers. 

    
1. Introduction 

 
Distributed systems such as peer-to-peer overlays, 

sensor networks, Grid application overlays, etc., tend to 
be large-scale since they contain several thousands of 
processes. More importantly, however, they are also 
dynamic. Dynamism means that there is continuous 
arrival and departure activity through processes joining, 
crashing and voluntarily departing. At the same time, 
distributed applications often require an estimate of the 
number of non-faulty processes currently present in the 
group. We call this as the problem of Group Size 
Estimation. The problem is challenging not only due to 
the dynamism and scale involved, but also because the 
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above mentioned peer-to-peer overlays typically require 
each process to maintain only partial information 
concerning the group membership. 

Accurate estimates of the number of processes 
currently present in the overlay, i.e., the group size, are 
absolutely essential in order to enable several notions of 
run-time adaptivity in peer-to-peer applications. For 
example, in a Grid application, continuous estimates of 
the group size can be used to dynamically partition a 
distributed problem among participating clients. In 
peer-to-peer distributed hash tables such as Pastry [16] 
and Chord [17], the estimated value is required to set 
the routing table size and to set timeouts for queries – 
the number of virtual hops for routing a query depends 
on the group size. Other overlays, e.g., Kelips [9], use 
the notion of process subgroups whose size depends on 
the number of processes present in the system. 

The Group Size Estimation problem is 
representative of a large class of problems for collecting 
statistics about a large-scale distributed system, in a 
decentralized manner. Other problems in this class 
include aggregation, e.g., [3]. However, the specificity 
of the Group Size Estimation problem lends itself to 
solutions with the potential for much greater accuracy 
and scalability than that obtained by the straightforward 
application of aggregation algorithms. 

The Group Size Estimation problem has two flavors 
– one-shot and continuous. We formally define the one-
shot problem next – the continuous version is similar. 

Group Size Estimation Problem: Give a protocol 
that when initiated by one process, estimates the 
number of non-faulty processes in the overlay graph 
component containing the initiating process. 

Impossibility of Group Size Estimation in a 
Dynamic Group: This problem is impossible to solve 
accurately in a dynamic group. Notice that a group size 
estimation protocol will take non-zero time to run, and 
for any process p that is not the initiator, there will be a 
non-zero delay between p’s last message in the 
estimation protocol, and the initiator finalizing the 
estimate. In a run where process p fails during this 
interval, the estimate will be incorrect. 
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This motivates the design of algorithms for 
approximate estimation. One simple algorithm could be 
the following. The initiator process sends a multicast to 
the overlay through a dynamic spanning tree, and waits 
to receive back replies. The disadvantage of this 
scheme is that it is non-fault-tolerant – if a process fails 
after receiving the multicast and before replying to its 
parent in the spanning tree, the estimate will exclude all 
descendants of that process in the tree. 

Contributions of the Paper: This paper proposes 
practical, decentralized, efficient, and fault-tolerant 
estimation algorithms with a probabilistic output. 
Specifically, we study two algorithms, both based on 
variants of sampling. The first algorithm is active: 
called the Hops Sampling Algorithm, it initiates a 
gossip into the group, and samples, based on hop 
distance, the times at which the gossip is received by 
different processes. The second approach is passive: 
called the Interval Density Approach, it samples the 
density of processes that lie in a given real interval, 
when the process identifiers are hashed. 

Both algorithms can be run either in a one-shot 
manner or on a continuous basis (the latter variant is 
preferable for long-running applications such as peer-
to-peer overlays). When used in a one-shot manner, 
they have running times that grow logarithmically with 
group size, and impose a small sublinear overhead on 
each process in order to achieve an estimate that is 
accurate with high probability (w.h.p.). In the 
continuous version, the time taken for a given process 
arrival/failure/departure to affect the group size 
estimate, grows logarithmically with the group size. 

We present experimental evaluation of the two 
algorithms. The first set of experimental results is from 
a simulation, and includes micro-benchmarks and trace-
based experiments. The second set of experiments uses 
PeerCounter, our open-source implementation of the 
size estimation algorithms. Using PeerCounter allows 
our simulations to be run on a cluster of up to 33 Linux 
servers, each with multiple processes. PeerCounter is 
open-source and can be easily incorporated into a 
variety of peer-to-peer substrates, e.g., Pastry, Chord, 
Kelips [9, 16, 17], etc., thus providing them with the 
capability to estimate the number of non-faulty 
processes present in the group. More details and 
evaluation results for our algorithms may be found in 
an extended technical report version of the paper [12]. 

System Model: We assume a group of processes 
with unique identifiers, communicating through an 
asynchronous network, and connected in an overlay. 
Messages can be sent from a process u to any other 
process v whose identifier is known by u at its local 
membership list – these membership entries are nothing 
but the links in the peer-to-peer overlay. Membership 
entries are assumed to be maintained by a 

complementary membership protocol already running 
within the overlay. The only requirement from the 
membership component is that the overlay graph 
formed by it be connected. This admits overlays 
constructed by distributed hash tables (e.g. Pastry, 
Chord, etc.), unstructured overlays (e.g. Gnutella), as 
well as overlays in Grid applications. Moreover, the 
membership protocol needs to be only weakly 
consistent, i.e., detect failures eventually. It is not 
required to provide strong guarantees such as virtual 
synchrony. We detail other requirements from the 
membership protocol where needed.  

The number of non-faulty processes is N, and is an 
unknown quantity. Our protocols operate in rounds at 
each process, with the round duration fixed across the 
group. Processes are not required to have synchronized 
clocks. However, since the duration of a round is 
O(seconds), processes can be assumed to have 
negligible clock drifts. Processes can undergo crash-
stop failures – crash-recovery failures can be supported 
by having a process rejoin the group with an identifier 
that is unique and unused previously. 

The rest of this paper is organized as follows. 
Section 2 discusses related work. Sections 3 and 4 
describe the Hops Sampling algorithm and the Interval 
Density approach respectively. Sections 5 and 6 give 
experimental results from our implementations. We 
summarize in Section 7. 

 
2. Related Work 

 
Several efforts have been made to provide 

decentralized solutions to the group size estimation 
problem. Unfortunately, most of these approaches 
either do not apply to dynamic groups, or make 
unreasonable assumptions. Ref. [3] presents several 
mechanisms for aggregation and group size estimation. 
One algorithm has an estimation message sent along a 
random walk within the group. When the estimation 
message hits a process for the second time, the protocol 
stops and the number of hops traversed so far can be 
used to estimate the group size – according to the 
birthday paradox, it takes )( NΘ  hops for a random 
walk message to encounter a process a second time. 
However, the latency of this algorithm is )( NΘ , and 
this is impractical in groups that have processes joining 
and leaving at high rates. Our schemes have a latency 
that increases only logarithmically with N. 

Our Interval Density algorithm bears resemblance to 
the approach in [1], but there are significant differences. 
Ref. [1] uses a hash function to assign process IDs in 
the real interval [0,1] and decomposes the [0,1] interval 
into a hierarchy of subintervals, each holding identifiers 
from processes that run on the same region. A recursive 
algorithm is used, starting from the peer’s home region 
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and continuing upwards until an estimate for the [0,1] 
interval is achieved. In comparison, our Interval 
Density approach does not depend on the way process 
identifiers are assigned in the group. Further, the 
algorithm of [1] could suffer from message implosion at 
the initiator process, while the Interval Density 
algorithm imposes no extra message complexity since it 
is a passive approach.  

Kermarrec et al also discuss practical estimation 
schemes in [13], but at the time of writing this paper, 
they have not been evaluated. Ref. [10] presents a 
sampling-based size estimation scheme. Nevertheless, 
the accuracy of the method depends on assumptions on 
the independence of samples from different processes. 
The algorithms proposed in this paper do not assume 
independence of membership views at each process. In 
addition, a ring-based algorithm for group size 
estimation is discussed in [14]; however, the estimated 
group size can have a large error – it can be between 
N/2 and N2, where N is the actual group size. The 
required logical ring may not be present in all overlays, 
e.g., Grid overlays. Our schemes in this paper do not 
require such a fixed minimal overlay, and can be run on 
a large range of overlays. 

Epidemic algorithms were discussed by Demers et 
al in [6], Eugster et al in [7], Karp et al in [11], and 
originate from the Mathematical study of epidemics [2]. 
Birman et al [5] use gossip to design a probabilistically 
reliable multicast protocol. 

 
3. Active Approach - Hops Sampling 
Algorithm 

 
In this section, we present the Hops Sampling 

algorithm. Pseudocode of the algorithm can be found in 
[12]. To present the algorithm, we make the assumption 
that it operates in protocol periods (also called rounds). 
The duration of a round is fixed and a round starts at 
the same time at all processes. The estimation is started 
by one process called the initiator, but the rest of the 
protocol operates in a decentralized manner throughout 
the group.  

The initiator sends an initiating message at the start 
of the protocol. Once a process has received the 
initiating message, at the beginning of each subsequent 
round, it selects gossipTo other processes as targets 
and sends them gossip messages containing the 
initiating message. A process stops gossiping once 
either gossipFor rounds have expired since receipt 
of the initiating message, or gossipUntil gossip 
messages have been received by the process. All 
gossip* parameters mentioned above are a priori 
fixed integer constants. Besides the local membership 
list, each process p also maintains a list, fromList, 
of some other processes that it knows to have already 

been infected – these are simply the processes that have 
sent gossip messages to process p. The selection of 
gossip targets by a process is done uniformly at random 
from the membership list, but by excluding the 
elements that appear in fromList.  

Since the membership protocol is weakly consistent, 
the membership list may be out of date. In order to 
maintain the gossipTo parameter, gossip messages 
need to be acknowledged, and a gossiping node retries 
each message with different target until acknowledged. 

In order to enable estimation, each of the above 
gossip messages also carries an integer field 
hopNumber, which indicates the number of nodes the 
message has traversed since the initiator. Before 
forwarding a gossip, the process stores this hop count in 
a local variable called myHopCount. For multiple 
received gossip messages, the lowest received 
hopNumber value is remembered. All outgoing gossip 
messages have their hopNumber set to 
(myHopCount+1). 

The initiating process waits for gossipResult 
rounds to elapse before sampling gossipSample 
other processes selected uniformly at random from its 
membership list. Each sampled process replies with its 
myHopCount value. The average of these values is 
returned by the algorithm as an estimate of log(N), 
where the logarithm’s base depends on parameter 
settings. 

Instead of the initiator sampling the group size, an 
alternative sampling technique we use in our 
implementation has the gossip recipients themselves 
send their hop count values back to the initiator. 
However, in order to reduce message implosion, the 
initiating message contains a fixed value 
minHopsReporting specified by the initiator. 
When a process stops gossiping (if it ever gossips), it 
sends its myHopCount automatically to the initiator 
(i) with probability 1 if myHopCount < 
minHopsReporting, and (ii) with probability 
(1/gossipTo(myHopCount-minHopsReporting)) otherwise. 
Thus, only a small fraction of all hop count values will 
be received. 

Although our protocol description and analysis 
assume clocks are synchronized to protocol periods, our 
implementation (Section 6) eliminates this requirement 
by setting at each process gossipFor to 1. This 
means each process gossips only once (to gossipTo 
targets), and this happens as soon as it receives the 
initiating message. A second modification in the 
implementation is that the initiator waits for a large, 
fixed time interval (usually several minutes) before 
sampling the group for hop counts – this eliminates the 
need to set gossipResult. 
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3.1. Analysis of the Hops Sampling Algorithm 
 
For tractability of analysis, we assume that 

processes in the group have O(log(N)) membership list 
sizes and these are sampled uniformly at random. 

Property: Consider a group where the local 
membership list maintained at each process is 
O(log(N)), with each entry selected uniformly at 
random from across the group. Then, the expected time 
(after gossip initiation) at which a process receives the 
gossip varies as ))(log( NΘ . 

Explanation: At the core of the Hops Sampling 
algorithm is a push gossip protocol, the properties of 
which are well studied. Bailey [2] and Eugster et al [7] 
showed the following results for push gossips in a 
group where processes have partial membership lists 
chosen uniformly at random from across the group: (i) 
if the quantity (gossipTo*gossipFor) is 
O(log(N)), the gossip spreads to all processes with high 
probability; (ii) the expected number of rounds for the 
gossip spread to complete is ))(log( NΘ ; (iii) gossip 
spread in a group with complete membership lists is the 
same as in a group with partial membership lists of size 
O(log(N)). 

For the purpose of our protocol, we are interested in 
the average time that it takes for the gossip to reach a 
given process in the group. Clearly (ii) above says it 
can be no larger than ))(log( NΘ . For the lower 
bound, notice that, during each round, the total number 
of gossip recipients cannot grow by a factor larger than 
gossipTo. This is a branching process with degree 
gossipTo and the height of the generated tree is 
O(log(N)). This is the lower bound. Thus, the average 
measured hop count in our algorithm is ))(log( NΘ .  

We detail how to determine the value of the 
logarithm base in the average gossip latency when 
discussing experiments in Sections 5 and 6. 

 
3.2. Continuous Version of the Hops Sampling 
Algorithm 

 
A long-running peer-to-peer application may need 

to continuously monitor the variation of group size. The 
continuous variant of the Hops Sampling algorithm can 
provide this service. It works as follows. The initiator 
periodically initiates a new one-shot protocol run, each 
with a unique run identifier. A parameter 
gossipsAccounted gives the number of recent 
one-shot estimates to be considered for the continuous 
estimate. Of these estimates, gossipsDropped of 
the highest and gossipsDropped of the lowest 
estimates are dropped before taking the mean of the 
remaining estimates. The network traffic in this 

continuous version is bounded since each run 
terminates w.h.p. in a logarithmic number of rounds. 

 
4. Passive Approach - Interval Density 
Approach 

 
While the Hops Sampling approach was an active 

probing approach to group size estimation, the Interval 
Density approach is passive. This approach works by 
measuring the density of the process identifier space, 
i.e., the number of processes that have (unique) 
identifiers lying within an interval of this space. As a 
first cut, directly sampling the space of process 
identifiers (e.g., IP addresses + port number) may prove 
to be inaccurate. For example, if the group were located 
on a small collection of subnets, the process identifiers 
would be correlated, resulting in a great likelihood of 
error in the group size estimate.  

A second approach is to randomize the process 
identifiers by using a good hash function to map each 
process identifier to a point in the real interval [0,1]. 
Cryptographic hash functions such as SHA-1 [8] (or 
MD-5) can be used: the input is arbitrary length binary 
strings, and the output is a hash of length 160 bits (or 
128 bits respectively for MD-5). The hashes can be 
normalized by dividing with 2160 – 1 (or 2128 – 1 
respectively). This is convenient to do in P2P routing 
substrates such as Pastry [16] and Chord [17], where 
virtual “nodeIDs” are assigned to processes by hashing 
their identifiers using SHA-1 or MD-5.  

The Interval Density approach requires the 
“initiator” process to passively collect information 
about the process identifiers that lie in an interval I that 
is a subset of the interval [0,1]. Suppose X is the actual 
number of processes that the initiator finds falling in the 
interval. Then the estimate for the group size is simply 
returned as X/I. The passive collection of such process 
identifier information can be achieved by snooping on 
the complementary membership protocol running in the 
overlay – details will be provided.  

Notice that this lends itself easily to both a one-shot 
run and a continuous run – the latter can be provided by 
simply maintaining information about the processes 
(that lie in the interval I) over a long period of time. 
Multiple initiators can be supported by selecting the 
interval specified by the initiator with the lowest 
identifier, and participating in only that initiator’s 
protocol run.  

Below, we first analyze the accuracy of the 
estimate, then describe adaptive variants of the 
protocol, and finally discuss the snooping on the 
membership protocol. 
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4.1. Analysis of the Interval Density Approach 
 
The assumption on uniform sampling of 

membership lists used in analysis of the Hops Sampling 
scheme is not required in the case of the analysis of the 
Interval Density scheme. 

Property: With a good (i.e., uniform) hash 
function, an interval size I that varies as 

))/()(log( 2 NNO ×δ suffices to obtain an estimate that is 
accurate within a factor of δ  with high probability, 
where N be the actual number of non-faulty processes 
in the group. 

Explanation: The expected number of processes 
that fall in the interval I would be I * N, where the size 
of the interval is notated simply as I. Call δ  the 
accuracy of the protocol, defined as the multiplicative 
error in the group size. The likelihood that the estimate 
for the group size is off by a factor of at most δ2  from 
the mean is:  
Pr[| / | ] 1 Pr[ / (1 ) ] Pr[ / (1 ) ]X I N N X I N X I Nδ δ δ− < = − < − − > +
If 12 −< eδ , Chernoff bounds can be used on the 
latter terms, giving: 

2 2  / 2   / 41 Pr[ (1 ) ] Pr[ (1 ) ] 1 I N I NX I N X I N e eδ δδ δ − −− < − − > + ≥ − −
If I >clog(N)/N, then the probability that the estimate is 
accurate would be bounded from below by: 

2 2

2 2
log( ) / 2 log( ) / 4

 / 2  / 4

1 1(1 ) 1
  

c N c N
c c

e e
N N

δ δ
δ δ

− −− + ≅ − −
 

Choosing c larger than 2/1 δ , suffices to reduce 
this error asymptotically to zero, as N is increased. 
Thus, to obtain an estimate that is accurate within a 
constant factor (i.e.,δ  is a constant) w.h.p., it suffices 
if I is of length ))/()(log( 2 NNO ×δ . 

Better accuracy can be obtained by using larger 

interval sizes. If I were of length O( N /N), the above 
analysis gives us that the estimate is accurate with 
probability 2 2  / 2   / 4(1 )c N c Ne eδ δ− −− + . This value 

asymptotically approaches 1 if 4/1/)log( NN=δ , 
which gives a better accuracy than by using a 
logarithmic interval size. 

Practically, of course, it is difficult to set the size of 
the interval as O( N /N), without a prior estimate of 
N. One alternative could be the following. Since the 
value of ( N /N) decreases as N is increased, if a 
lower bound for N is known, the interval can be chosen 
to be large enough to guarantee a required level of 
reliability. However, for larger N, a very large number 
of processes fall inside this interval, thus requiring 
memory usage at the initiator to grow linearly with 
group size. Alternatively, this drawback can be 
addressed by using strategies that adaptively set the 

interval size. These adaptive strategies also adjust to a 
bad choice for the location of the interval. They are 
described next.  

The discussion in the remainder of this section 
applies to only the continuous flavor of the Interval 
Density approach. 

 
4.2. Adapting the Size of the Interval 

 
An interval I is defined by its center point and its 

size. The initiator needs to select a center point for the 
interval, but the size of this interval itself can be 
implicit, rather than explicit. More specifically, the 
interval size is determined by remembering a number of 
process identifiers that hash close to the center point. 
This number is initially set to a small value, but is 
increased over successive runs until (a) either a 
predefined threshold of MAXMEMORY processes is 
reached, or (b) the estimates of group size obtained for 
successive values of interval length are within a small 
fraction (e.g., 5%) of each other. Notice that the passive 
nature of the protocol means that the initiator only 
selects the interval, but does not communicate it to any 
other process. 

 
4.3. Adapting Interval Location, and Using 
Multiple Estimation Runs for better Accuracy 

 
Choosing a good center point for the interval can 

affect the accuracy of the estimate, especially if process 
identifiers hash in a rather non-uniform manner into the 
interval [0,1]. Although process identifiers are initially 
randomized using a cryptographic hash function, this 
behavior may manifest over a long term due to process 
arrivals and departures. We describe three approaches 
for choosing a good interval center: 
1. Random selection. This is the simplest approach 

where the initiator randomly selects the center point 
from the interval [0,1], and then uses this value for all 
subsequent estimation runs. 

2. Periodically changing selection. The initiator 
periodically (e.g., after a few runs) changes the center 
point of the interval. This could be done either 
independent of, or dependent on, previously chosen 
center points. We call the latter method self-adjusting 
interval selection.  

A good self-adjusting interval selection approach 
is the following. At every stage, history data for the 
results of a few recent estimation runs is maintained 
(say the recent 8 runs), along with the intervals that 
were used for them. The average estimate returned by 
these recent runs is calculated, and the center point of 
the run that returned an estimate closest to the average 
is used in next run. 

Thus, the center of the interval would 
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continuously move right and left in the [0,1] interval 
after each round depending on the results of the 
estimations made on the last rounds. This algorithm 
will work well if the group size does not change 
dramatically between two successive estimation runs.  

3. Multiple selections and estimation by mean value. 
Instead of changing the center of the interval over 
time, each estimation run includes multiple runs, each 
with the interval centered at a different point in [0,1]. 
The mean value of the multiple results is then 
returned as the estimate. 

In Section 5, we refer to results for the self–
adjusting approach. More results, showing the relative 
performance of all approaches, can be found in [12]. 

 
4.4. Snooping on a Membership Maintenance 
Protocol 

 
We will describe now how the initiator passively 

collects information about process identifiers that lie 
inside the selected interval I by snooping on the 
membership protocol. Below, we explain how this 
snooping operates on a well-known class of 
membership protocols called heartbeat-style 
membership. 

In a heartbeat-style membership protocol, e.g., [15], 
each process p periodically multicasts a heartbeat 
message (incremented sequence numbers) to all other 
processes in the group. These heartbeats are used to 
proactively learn about new prospective neighbors in 
the overlay, as well as for failure detection. The latter is 
achieved by timing out on the time since the last 
heartbeat was received by process p from a neighbor 
process q – this results in p deleting q from its 
membership list.  

At the initiator, the received heartbeat messages can 
be used to continuously learn about previously 
unknown processes whose hashed identifiers lie within 
the interval I being used for estimation, as well as to 
drop known processes (lying within interval I) that have 
not responded with an updated heartbeat for a while. 
Hence, this keeps a running estimate of the number of 
process identifiers lying within I, and estimates the 
group size. 

Heartbeat-style membership protocols also come in 
different flavors. We describe in detail how to 
incorporate the Interval Density approach into the 
popular gossip-style membership protocol detailed by 
van Renesse et al [15]. The basic gossip-style 
membership protocol has each process p periodically 
(a) increment its own heartbeat counter; (b) select some 
of its neighbors (defined by the membership list at p), 
and send to each of these a membership gossip message 
containing its entire membership list, along with 
heartbeats. Each process receiving the message merges 

heartbeat values in the received message with its own 
membership list. In the modified version of this 
protocol, used by the Interval Density approach for 
snooping, a process receiving such a gossip message 
additionally hashes each previously unknown process 
identifier appearing in the message, and remembers it 
only if it lies in the interval I. Notice that the above 
incorporation is non-intrusive, i.e., it does not affect the 
normal working of the heartbeat-style membership 
protocol itself. 

The time required for the algorithm to complete is 
O(log(N)), if gossip messages are allowed to carry up to 
N heartbeats and identifiers. If the gossip message 
length is restricted, the time complexity is O(I N logN).  

 
5. Experimental Results 

 
We evaluate the performance of the Interval Density 

and the Hops Sampling approaches under two 
simulation scenarios: (i) Micro-benchmarks, with a 
static group of a fixed size, and (ii) Trace-based 
experiments, using trace-log data from Overnet file-
sharing network [4] to simulate a dynamic and open 
group. Our discussion replaces the previous notation 
“process” with “node”. 

The traces from the Overnet network [4] measure 
the availability of nodes in a 3,000-sized subset of hosts 
in the deployed Overnet peer-to-peer system. In these 
traces, the number of hosts that are present in the 
system changes by as much as 10% - 25% every hour. 
We present individual studies for each of the Hops 
Sampling algorithm and Interval Density approach. A 
comparison of the two schemes can be found in [12]. 

Experiments do not use any assumptions for the 
membership protocol and are done under realistic 
conditions, as described in section 1. 

 
5.1. Hops Sampling Approach 

 
Micro-benchmarks. By plotting the average 

number of hops measured in a static network with N 
nodes versus log2N for different group sizes [12], we 
find that the estimated group size is calculated 
as )3.1*9895.0(2 += avHopsSizeEst . Here, we use as 
parameters gossipTo=2 and gossipFor=1, as 
explained in [12]. 

Figure 1 shows the continuous protocol version for 
a static group of size 100; the parameters used are 
gossipsAccounted=10, gossipsDropped=2. A 
comparison between the continuous and the one-shot 
version can be found in [12]. It is shown that the 
estimation is mostly within 10% of actual group size. 

Trace-based Simulations. The hourly Overnet 
traces are injected into the simulator at time intervals of 
40 timeslots. By “injection”, we mean that the status of 
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the system nodes is updated (as “up” or “down”) at the 
timeslot we use an Overnet trace. Each time unit of the 
above plot corresponds to 40 timeslots. The continuous 
protocol is used, with same gossip parameters as earlier. 
Figure 2 shows the variation, over time, of the 
estimated group size. A close look reveals that although 
the estimate is off by a constant factor (due to a smaller 
exponent value), it appears to follow and mirror, over 
time, the variation of the actual system size. 

 
Figure 1. Size estimation for static group of 100 

nodes. 

 
Figure 2. Size Estimation for Overnet network. 

 
5.2. Interval Density Approach 

 
Interval Density messages are piggybacked on a 

gossip-style membership protocol, as described earlier 
in this paper. Similar to [15], entries for processes lying 
within the interval time out and are marked for deletion 
if updated heartbeats have not been received for Tdown 
time units. Marked entries are deleted after another 
Tdown time units. 

Micro-benchmark. Figure 3 shows the variation, 
over time, of the estimate in a static sized group with 
10,000 nodes, when Tdown=infinity and 
MAXMEMORY=60. In [12], we present an interesting 
property of the Interval Density approach: when 
membership timeouts (Tdown) are finite, the estimate is 
likely to be below the real group size, since some 
membership entries that lie in the interval are not 
considered (as they expire); however, at large or infinite 
values of Tdown, the estimate can be offset by the local 
density of hashed node identifiers in the chosen 
interval. The random approach has 5% accuracy; for 
better accuracy, the “multiple selections estimation by 
mean value” approach should be used. 

Trace-based Simulations. Figure 4 shows the 
behavior, over Overnet traces, of self-adjusting method, 
for Tdown=10 and MAXMEMORY=60. Ref. [12] 
demonstrates results for all adaptive methods, presented 

in section 4.3. Furthermore, in [12], we modify the 
Overnet traces so that an additional set of arrivals and 
departures is added, and provide results for estimations. 
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Figure 3. Size estimation for a static network of 

10,000 nodes. 

 
Figure 4. Estimate calculated by the self-adjusting 
interval selection approach for Overnet network. 

 
6. PeerCounter: A Size Estimation Utility 

 
In this section, we introduce PeerCounter; a generic 

module containing both algorithms presented in this 
paper which can be incorporated into an arbitrary peer-
to-peer overlay. We briefly describe PeerCounter and 
then demonstrate evaluation results obtained by 
applying this prototype implementation of our 
estimation schemes on a cluster of 33 Linux servers 
located in the University of Illinois. Any 
synchronization assumptions made in our analysis or 
simulations are relaxed here since PeerCounter does not 
require any synchronization among processes. 

PeerCounter is a command line application 
implemented in Java. It takes as parameters the server 
port to run, a symbol indicating which algorithm, Hops 
Sampling or Interval Density, is used for estimation and 
the membership list of the calling process. The 
membership list can be generated using a topology 
generator utility or, in case PeerCounter is incorporated 
into a standard overlay, it may be provided by the 
underlying application. PeerCounter’s API can be used 
to let applications layered under it utilize its estimation 
schemes. PeerCounter’s API is described in [12]. 

Figure 5 demonstrates results for the continuous 
flavor of the Hops Sampling approach for static groups 
with sizes of 6430 nodes. Estimates are found to lie on 
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average within 10% of the actual group size. We test 
both the standard estimation scheme and the alternative 
sampling scheme. The equation used for the first case 
is )75.1(2 += berOfHopsaverageNumsize . This is very close to the 
one extracted by using our simulations in Section 5, 
with only a small difference in the constant factor. 

Figure 6 shows results for the continuous flavor of 
the Interval Density approach with random interval 
selection. As shown in Section 5, the accuracy of 
estimations is expected to be better when adaptive 
methods or multiple selections and estimation by mean 
value are applied in order to choose the interval 
location. More evaluation results can be found in [12]. 

 
Figure 5. PeerCounter estimates for Hops Sampling 

scheme on groups of 6430 nodes (gossipTo=2, 
gossipFor=1, minHopsReporting=4, 

gossipsAccounted=5, gossipsDropped=1). 

 
Figure 6. PeerCounter estimates for Interval Density 

scheme on groups of 1,000 nodes 
(MAXMEMORY=100, Tdown= infinity). 

 
7. Conclusions 

 
Estimating the size of a decentralized group of 

processes connected within an overlay is a difficult 
problem, especially when the group is dynamic and 
contains thousands of processes. Previous solutions to 
the problem make assumptions that may be unscalable 
or limit applicability. In this paper, we have proposed 
two new approaches for estimation – an active approach 
called Hops Sampling and a passive approach called 
Interval Density. The only requirements for these 
algorithms are the existence of complementary 
membership protocols, which are already present as a 
part of most overlays. Both approaches only require the 
overlay graph among all processes in the system to be 
connected. Micro-benchmarks and trace-based 
simulations have shown that both above approaches are 
able to obtain an estimate within a few percentage 

points of the actual group size. Both algorithms appear 
at http://kepler.cs.uiuc.edu/~psaltoul/peerCounter/ as an 
open-source size estimation utility called PeerCounter 
that can be incorporated into any peer-to-peer overlay. 
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