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Abstract— We propose a novel gossip-based technique
that allows each node in a system to estimate the distri-
bution of values held by other nodes. We observe that the
presence of duplicate values does not significantly affect the
distribution of values in samples collected through gossip,
and based on that explore different data synopsis tech-
niques that optimize space and time while allowing nodes
to accumulate information. Unlike previous aggregation
schemes, our approach focuses on allowing all nodes in the
system to compute an estimate of the entire distribution
in a decentralized and efficient manner. We evaluate our
approach through simulation, showing that it is simple
and scalable, and that it allows all nodes in the system to
converge to a satisfactory estimate of the distribution in a
small number of rounds.

I. INTRODUCTION

The knowledge of how one ranks relative to peers
can be put to a variety of uses. It allows outliers to be
detected, overall trends to be observed, and informed pre-
dictions to be made. A tool that allows nodes to maintain
an estimate of what values other peers hold for particular
properties can help systems be more resilient and self-
adapt in sophisticated ways. In this work, we propose an
approach where nodes build such estimates in a timely
and scalable manner. Our approach relies on gossip-style
exchange of data, and uses data synopsis techniques for
minimizing the amount of data exchanged between pairs
of nodes. Nodes maintain a fixed-size array of entries
and periodically exchange and accumulate information
obtained from other peers.

Previous work has focused on the diagnosis of indi-
vidual aggregate values, such as averages, sums, mini-
mum and maximum values of distributions. Tree-based
approaches compute aggregates hierarchically and under
no-failure scenarios allow exact values to be computed
[9], [10]. In the presence of node failures or nodes
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joining and leaving the system, decentralized gossip-
based techniques present a more resilient model, even
though computation of exact aggregates may not always
be possible [6], [5]. We do not attempt to present nodes
with exact distribution models since that would lead
to high costs without adding significant benefits, but
instead focus on providing a more expressive model
that provides nodes with an approximation of the entire
distribution rather than just individual aggregates.

To restrict the storage and communication costs,
we explore previous work on data synopsis from the
database community, originally for approximate query
answering in the context of large repositories. Typically,
the goal is that within a single pass through all the
data a concise representation be created which allows
queries to be answered within short delays of time.
Two main differences in using these techniques within
our gossiping context are that: (a) a large number of
duplicates are present in the sample; and (b) not all data
is available to every node. We will argue in the paper
that the presence of duplicates does not significantly
bias the estimated distributions, and that it is therefore
simpler and more efficient to leverage their presence in
the samples than attempting to remove them.

We evaluated our proposed gossip-based approach
through simulation when coupled with four data synopsis
techniques. We compared these in terms of quality of
the estimation, storage and bandwidth requirements, and
convergence time. All techniques were evaluated with a
diverse set of distributions, including uniform, normal,
heavy-tailed and bimodal distributions. By experiment-
ing with up to 100 K nodes, we have empirically
validated that a limited number of rounds and a constant
message throughput per node in each round is sufficient
to achieve an efficient and lightweight protocol.

II. D ESIGN

A. Problem Statement

We assume a system consisting ofN nodes with
identifiers1 to N . Each nodei holds a numerical value



xi that measures some variable of interest to the system.
The set of valuesX held by all nodes may follow any
arbitrary distribution. The main goal of our protocol
is that within a predetermined interval of time, every
node is able to produce a satisfactory estimate of the
distribution of valuesxi held by all nodes in the system.

The set of values held by nodes may vary with
time. The protocol executes in phases, which are in
turn subdivided into rounds. Within each phase, each
node converges to an estimate of the distribution. The
estimates produced at the end of each phase are an
approximation of the distribution of values held at the
beginning of the phase. When a new phase is started, old
values are discarded in favor of newer ones.

The notion of what is a satisfactory estimate of
the distribution is subjective, and may vary depending
on the purpose of the application using the estimated
distribution. Instead of attempting to achieve perfect
accuracy, we focus on the best balance between space
overhead and accuracy, also taking into account the time
complexity of the proposed solution.

B. Basic Protocol

Nodes execute in rounds and phases. A phase is the
larger time interval in which each node produces an
estimate of the distribution of values. Each phase is
composed of rounds of approximately fixed duration
δ (e.g. 1 second). Even though rounds have a fixed
duration, strict time synchronization among nodes is not
required since time is only used as a rough guideline for
nodes to be aware of when to proceed to the next step
of the protocol. Each node is responsible for advancing
rounds based on its local clock, and advancing phases
when it establishes some criteria that indicates that a
phase has completed. In this subsection we focus on the
steps followed by each node within a single phase.

We assume that nodes maintain a set of neighbors at
any given time, by using a decentralized membership
protocol such as the one proposed in [2]. Each node
maintains a local view (its set of neighbors), and peri-
odically updates it by randomly picking from the local
views of its neighbors and from other nodes that contact
it in the previous round. Nodes always remember a list
of at least as many live distinct nodes as the number of
rounds in a phase (usually between 15 and 20).

Every node maintains an array ofk numerical values.
At the beginning of each phase, allk values in the array
are set to the valuexi, originally held by the node. In
each round, a nodei randomly chooses a partnerj and
requests the set of values stored by the partner. Once
it receives the array of values fromj, node i has 2k

values, which get merged into an array of sizek. In
the simplest protocol, hereafter calledSwap, merging
consists of randomly pickingk of these values and
discarding the others.

With the Swap protocol, nodes randomly discard data
previously available to them, therefore loosing impor-
tant information when estimating the distribution of
values. Data synopsis techniques allow peers to store
data previously seen with limited loss of information
and consume less space. We next consider three such
synopsis construction techniques.

1) Concise Counting: The first technique we consid-
ered is an adaptation of thecounting samples approach
proposed in [4] for compressing data in large dataware-
houses. In the original approach, values appearing more
than once in the sample are represented as a value and a
count pair. Given that we are dealing with floating point
numbers and have fixed storage space, the following
adaptations were made: all entries in our array are tuples
of <value, counter>. Whenever new values are added to
the sample, the tuples are sorted based on their values,
and the closest values in the sample are merged together,
so that only a fixed number of tuples are in the sample at
any given time. Merging two tuples consists of randomly
picking one of the two values and adding their respective
counters.

2) Equi-Width Histograms: A straightforward his-
togram technique consists in breaking the range of
possible values into equal sized bins, and maintaining
counters for each bin. One difficulty with thisEqui-
width approach occurs when nodes are not aware of
what the extreme values of the distribution are. In our
implementation, each nodei initially considers the set of
values to range from 0 to the value they hold (xi), and
later resizes the bins dynamically in case new values
beyond the extremities are found. When resizing, each
old bin is mapped to a larger new bin, based on the
middle value of the old bin, and the ranges of the new
resized bins. The counter of each old bin is added to the
new bin to which it is mapped. The main advantage of
the Equi-width approach when compared to theConcise
approach is that since bins have equal width, only the
extreme values of the whole distribution and counters for
each bin need to be stored, reducing the amount of data
stored and transferred.

3) Equi-Depth Histograms: Dividing the range of
values into equi-width partitions may lead to very inac-
curate estimations depending on the original distribution
of values. Another choice consists in using equi-depth
bins, where each bin contains an approximately equal
number of points. In our implementation of theEqui-
depth histogram approach, each nodei initially divides



the range [0,xi] into fixed sized bins, each represented
by a pair of<value, counter>. A simple protocol is used
to later merge or split bins based on their counters as new
data is inserted. After exchanging data with another peer,
each node orders all collected pairs of<value, counter>
and computes which consecutive bins, when merged,
yield the smallest combined bin. The identified bins
are merged (their counters are added and the weighted
arithmetic mean of their values is used as the value of
the new bin) and the process is repeated until only the
desired number of bins are left. The main goal of this
process is to minimize the disparity across all bins.

III. E VALUATION

We built a round-based simulator to evaluate our pro-
posed gossip-based approach and to compare its behavior
when coupled with the four data synopsis techniques.
Unless otherwise stated, we ran experiments simulating
10 K nodes with partial connectivity. Nodes held ar-
rays containing 50 values, which were simultaneously
updated only at the end of each round.

We used the Kolmogorov-Smirnov distance as the
quality metric of a distribution estimate relative to the
original distribution. The KS-distance measures the max-
imum vertical distance between the actual cumulative
distribution and the cumulative estimated distribution.
In practical terms, it measures the maximum disparity
between the real and estimated percentages of nodes that
hold more or less than any particular value. For instance,
a KS-distance of 0.1 implies that the estimated percent-
age of nodes larger and smaller than some particular
value might be off by up to 10%.

Therefore, the KS-distance is a general metric for
evaluating the quality of the estimations for calculat-
ing percentiles. We always present themaximum KS-
distance across all nodes in the system, which represents
the worst-case estimation, since we aim for a protocol
that allows all nodes to compute satisfactory estimates.
Even though of interest, due to limited space individual
aggregates such as mean, medium, min/max and others
are omitted given that they are less general than the KS-
distance when evaluating estimated distributions.

A. Effect of Duplicates

In our first experiment we explore the effect of dupli-
cate values in the data samples accumulated by nodes.
To estimate the time and data required in an optimal
data collection scenario, we considered an unpractical
protocol where nodes use gossip to exchange vectors
that accumulate all data received from peers (Gossip
with Duplicates). Nodes exchange larger arrays as rounds
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Fig. 1. Effect of removing duplicates from collected sample

progress, and arrays contain duplicate values. Next, we
considered a similar setting, but in which duplicates
were removed (Gossip with Duplicates Removed). Our
goal with these experiments was to analyze the penalty
incurred by keeping duplicates in the collected samples.

In Figure 1, a comparison of the two experiments
is presented over increasing numbers of rounds. In the
presented example the set of values held by nodes
followed an exponential distribution; the results for other
distributions were similar or better and are omitted from
the paper. The curve for the setting where duplicates
are removed shows that all nodes converge to the ideal
distribution around the 15th round (the lines show the
metrics for the worst-case node at any round). When
duplicates are not removed, nodes converge to a maxi-
mum KS-distance of approximately 0.06, again around
the 15th round. This difference in quality of the estimates
is the tradeoff for the simplicity of not having to remove
duplicates from the samples. All data summarization
techniques we evaluate can perform at best as well as
the curve forGossip with Duplicates.

B. Sample Distributions

We compared the performance of the four data sum-
marization techniques when combined with the gossip
protocol in terms of quality of the estimates under a
diverse set of distributions. We considered uniform, nor-
mal, exponential, Pareto, chi-square, lognormal, Weibull
and multimodal distributions, all with varying parameter
values. Due to our limited space, we only present graphs
for four representative distributions: uniform, exponen-
tial (λ = 1.5), Pareto (k = 5, xm = 1), and one
bimodal distribution composed by adding two normal
distributions (with parametersµ1 = 5, σ1 = 1, and
µ2 = 8, σ2 = 0.5).

Among the distributions considered, uniform was the
easiest to estimate, as observed in Figure 2(a). While the
Swap technique falls behind with a large KS-distance,
the three other summarization techniques perform well,
with KS-distances always smaller than 0.1. This obviates



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

K
S

-D
is

ta
nc

e

Rounds

Swap
Concise

EquiWidth
EquiDepth

(a) Uniform Distribution
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(b) Exponential Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

K
S

-D
is

ta
nc

e

Rounds

Swap
Concise

EquiWidth
EquiDepth

(c) Pareto Distribution
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Fig. 2. Maximum KS-distance across all nodes under different distributions.

the importance of accumulating enough values to make
adequate predictions. It is worth mentioning that in the
Swap approach some nodes are able to estimate the dis-
tribution as well as nodes in the other three approaches
(not shown in the graph). However, as previously stated,
we use the worst node’s estimate as a metric since we
expect all nodes to achieve satisfactory knowledge.

Next, we considered an exponential distribution,
which as observed, affected the performance of theCon-
cise technique (Figure 2(b)). The main reason for this
technique’s poor performance is that it maintains a fixed
number of<value,counter> pairs, and merges the pairs
with closest values whenever needed. In distributions
where data is not evenly distributed, the approach uses
most space storing dispersed values which represent a
minority of the values in the system.

The Equi-Width histogram approach suffers from the
same problem as theConcise approach since it divides
the space of values into equal-sized bins. While the
Equi-Width approach worked well with most of the
distributions we considered, it failed to do so with
heavy-tailed distributions such as the Pareto distribution
considered for the experiment in Figure 2(c). In this
distribution, most nodes hold small values that do not
get differentiated into separate bins, which leads to
poor computation of percentiles and large KS-distance
metrics.

The bimodal distribution did not present further chal-
lenges when compared to the previous distributions

despite the presence of two modes. A more detailed
analysis confirmed that it is possible to compute the
mean, median, and other percentiles accurately with the
three later synopsis techniques.

As evidenced from the graphs for these four distri-
butions, theEqui-Depth approach consistently performs
well, maintaining the worst-case KS-distance metric
around 0.07. This behavior was maintained when we
experimented with several other distributions and pa-
rameters not presented in this paper. TheEqui-Width
technique also performed satisfactorily for most of the
distributions, but as observed, significantly degrades un-
der severely skewed distributions. The advantage of the
Equi-Width technique lies on the fact that it requires only
approximately half the space required by theEqui-Depth
approach since only the extremity values and the bin size
need to be stored.

Another approach to evaluate the different data sum-
marization techniques consists in using the estimated
distributions computed by the nodes to estimate the
parameters of the original distributions (known a priori in
a controlled setting). We show in Figure 3 how well the
techniques perform in terms of estimating the parameters
of exponential and Pareto distributions. On the x-axis we
varied the value of the parameter used to generate the
distribution of values across the nodes, and on the y-axis
we present the actual worst-case estimates computed by
the nodes at the end of 15 rounds.

A perfect estimation of values would be represented
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Fig. 3. Estimation of distribution parameters based on the data accumulated through different synopsis techniques
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Fig. 4. Effect of array size in the quality of estimations

by the identity function. These curves validate the ob-
servations that theEqui-Depth approach yields the most
accurate results, and shows how theEqui-Width and
the Concise approach can lead to completely erroneous
estimates of the original parameters of the distribution
for heavy-tailed applications. Even though theSwap
technique does not yield accurate distribution estimates,
it is interesting to note that it performs consistently on
all distributions.

We also performed experiments with larger numbers
of nodes to study how the number of rounds varies with
larger systems. We experimented with up to 100 K nodes
using theEqui-Depth technique. One interesting thing
that was observed was that the number of rounds for
convergence remained 15, even when experimenting with
100 K nodes. While further analysis would be required
to estimate the number of rounds for larger networks,
the observed results are a positive indication on the time
complexity of the protocol.

One particular property of our gossip-based approach
is that it is able to capture the general distribution
of values with satisfactory accuracy, but it does not
necessarily register the effect of individual values. This
means that extreme values are not accurately recorded
by nodes, and in situations where a very small number
of nodes significantly affects particular aggregate values,
nodes may not be able to accurately estimate these. This

problem may be alleviated by pairing our approach with
previously proposed approaches to compute individual
aggregates. Further work is required to study whether an
efficient solution combining benefits of both approaches
is feasible.

C. Array Size

One important parameter to consider in our approach
is the size of the arrays used to store and exchange
data. In all previous experiments we employed arrays
with 50 elements. The types of elements in each array
vary with each approach: floating point values for the
Swap technique, integers for theEquiWidth approach,
and pairs of<float, integer> for the Concise andEqui-
Depth approaches. Storage-wise, theSwap and Equi-
Width approaches were more efficient in the previous
experiments. To confirm that adding further storage
space to these techniques would not lead to different
outcomes, we evaluated the effect the array-size has on
the estimations.

In Figure 4, we present how the maximum KS-
distance among nodes at the end of the 15th round varies
with increasing array-sizes. We again present results for
the exponential and Pareto distributions. Increasing the
array-size did lead to improved results in most cases, as
expected, but even with arrays of 100 elements, none of
the three techniques is able to outperform theEquiDepth



technique with 50 elements. Another important point to
notice is that theEquiDepth approach does not benefit
significantly from using arrays containing more than 40
or 50 elements. Depending on the bandwidth require-
ments of applications, even 20 or 30 elements may
produce satisfactory estimates.

IV. RELATED WORK

In [3] a tree-based solution and some variants to the
aggregation problem in P2P systems are proposed, with
focus on queries issued by a single peer. In their basic
scheme, the querying peer broadcasts the query to the
network, and a spanning tree is constructed during the
dissemination of the message. In the second phase of
the protocol, the answer to the query is computed in a
bottom-up fashion. Unlike our scheme, in the proposed
model the peer issuing the query is the only one that
obtains the information at the end of the aggregation
process.

Astrolabe [9] and SDIMS [10] are management sys-
tems that hierarchically aggregate information about
large-scale networked systems. Nodes are organized into
a hierarchy and continuously compute aggregate values
of the nodes immediately below them. Despite its de-
centralized nature, tree-based approaches are vulnerable
to node failures and costs related to building and main-
taining the tree-based hierarchy.

The idea of exchanging vectors containing multiple
values for computing aggregate values was previously
explored in the Newscast protocol [5]. In each round
peers randomly select another peer to exchange all cache
entries they currently hold. The choice of which cache
entries are kept after the new entries are received is based
on the age of the entries. Only the youngest entries are
maintained, and the set of peers associated with each
entry constitute the set of neighbors known by the owner
of the cache. The use of the proposed solution was shown
for computing extreme values and the mean of values.

A thorough survey of synopsis construction techniques
for data streams is presented in [1]. The need for efficient
synopsis techniques in the context of database systems
has led to the proposal of a variety of techniques. Even
though the general problem specification is different,
many previously proposed techniques, with modifica-
tions, can be employed in the context of estimating
distributions of values in P2P systems.

Work on gossip-based aggregation has also been done
in the context of sensor networks, where energy and
constant loss of communication are important factors
to be considered. TAG [7] proposes a tree topology
to compute aggregates without spending much energy,
and avoiding duplicate information. [8] proposes the

diffusion of synopsis, but focuses on finding solutions
that avoid double-counting. By proposing techniques that
are duplicate-insensitive, different topologies can be used
for collecting information, and redundant paths can be
explored to avoid loss of data when nodes fail.

V. CONCLUSION

In this paper we proposed and evaluated a scalable
gossip-based technique that allows nodes to estimate
distributions of values held by other peers. Unlike ap-
proaches which attempt to compute individual aggre-
gates of values, our approach aims at complementing
this information with knowledge about how any value
ranks relative to others. We compared different synopsis
techniques for compressing data that is gossiped among
nodes, thereby saving space required for storing and
exchanging data. We observed that the data synopsis
technique adopted can severely impact the quality of the
estimates collected, and that theEqui-depth histogram
technique provides a good balance between space re-
quirements and quality of estimation.
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