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ABSTRACT

In smart power grids it is possible to match supply and de-
mand by applying control mechanisms that are based on fine-
grained load prediction. A crucial component of every control
mechanism is monitoring, that is, executing queries over the
network of smart meters. However, smart meters can learn
so much about our lives that if we are to use such methods,
it becomes imperative to protect privacy. Recent proposals
recommend restricting the provider to differentially private
queries, however the practicality of such approaches has not
been settled. Here, we tackle an important problem with
such approaches: even if queries at different points in time
over statistically independent data are implemented in a dif-
ferentially private way, the parameters of the distribution of
the query might still reveal sensitive personal information.
Protecting these parameters is hard if we allow for contin-
uous monitoring, a natural requirement in the smart grid.
We propose novel differentially private mechanisms that solve
this problem for sum queries. We evaluate our methods and
assumptions using a theoretical analysis as well as publicly
available measurement data and show that the extra noise
needed to protect distribution parameters is small.

1. INTRODUCTION
By deploying smart meters within individual homes and

offices, it becomes possible to continuously measure, predict,
and even control the consumption of power by the house-
hold. This could save money for consumers and for power
producers, while also reducing unnecessary generation. An
important component of any complete control solution that
employs a network of smart meters is to monitor aggregate
(predicted) consumption. Monitoring creates a challenge,
however: we also need to ensure the privacy of the data,
which can reveal the individual habits of the inhabitants of
a home, reveal times when there is no one at home, the lo-
cation of individuals within the home, or in extreme cases
even very fine grained information such as which show is be-
ing watched on TV [1]. Our premise in this paper is that in
an ideal system, personal data should be protected not only
from eavesdroppers, but even from the utility itself.

The privacy protection problem has been well studied. The
essential requirement is to calculate aggregation queries with-
out revealing any individual records. Achieving this is non-
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trivial if the measurements are distributed: the meters should
not trust one-another with sensitive data, nor can the net-
work be trusted [2]. In addition, we must also make sure that
the computed query results do not leak too much informa-
tion about individual measurements either. The intent of the
differential privacy model is to address this problem [3]. Dif-
ferentially private query results contain a carefully designed
amount of noise that masks the influence of any individual
data record.

Unfortunately, supporting an unlimited number of queries
introduces a further complication. Even if we implement a
distributed differentially private mechanism, the stream of
the query results still has a potential to leak information
about the constant parameters of the distribution of the mea-
surements in an individual home. That is, existing techniques
do not prevent information leakage about static properties of
the household, despite the fact that those static properties
indirectly influence individual readings. This is a problem,
because static properties that might be teased out over a pe-
riod of time could still reveal sensitive information. Examples
include the number of inhabitants, behavioral patterns and
habits, the list of devices in the home, and so on.

In this paper we focus on solving the problem of protect-
ing the privacy of distribution parameters even when an un-
limited number of queries are allowed. Our main contribu-
tion takes the form of novel distributed differentially private
mechanisms for sum queries that protect not only the in-
dividual records but also the parameters of individual en-
ergy consumption patterns. We evaluate our methods and
assumptions using a theoretical analysis and publicly avail-
able measurement data. We believe ours is the first solution
in which it is possible to monitor the network for an unlimited
time while still achieving provable guarantees of differential
privacy that extend to static aspects of personal information.

2. BACKGROUND AND RELATED WORK
It is possible to control energy consumption using smart

devices with approaches ranging from purely local scheduling
methods [4], to central control schemes that do nothing to
protect privacy, to global self-organization without central
control [5]. We are interested in the latter style of solutions.
These typically start with a global aggregation component,
and then use the output from the aggregation step as input
to a control loop or a decision mechanism. As our global
aggregation function, we focus on the sum function, which
turns out to be a surprisingly powerful primitive both in and
of itself, and for calculating more complex statistics [6,7].

Preserving privacy in this context has been studied ex-
tensively. Cryptographic techniques have been proposed to
perform computations in individual homes [8], for example,
for the purposes of policy based billing. Our area of inter-
est, aggregate computing, has also been addressed. One part
of the problem is to be able to collaboratively compute the



sum of a set of values distributed over a network without any
node revealing its value to any other node. Techniques for
achieving this are known [2], and have typically been based
on secret sharing schemes [9,10].

The other part of the problem is to make sure that the
computed aggregate query cannot be used to infer much in-
formation about individual records. Differential privacy (see
also Section 5) is a framework for protecting data, whereby
noise is judiciously introduced to the query result to mask
the contribution and hence content of individual records [3].
Distributed implementations have been proposed that—on
top of some secret sharing scheme for secure multi-party
computations—also implement noise generation in a distrib-
uted way [11, 12]. We build on this work in that we will
assume that an implementation of a distributed differentially
private mechanism is available for computing sum queries
and for generating Gaussian and Laplacian noise, and we
will use these as black box components to implement our
distributional differentially private schemes.

Our main focus here is on the problems that arise from the
repeated computation of the sum query (as opposed to the
single-shot approach of previous techniques). In fact there
has been prior work on very closely related questions [13,14].
However, previously proposed approaches make very different
kinds of assumptions than we do both about how the data is
generated and exactly what needs to be protected. We revisit
previous work in this area in Section 5.

3. PROBLEM STATEMENT
Let us assume that we have n smart meters. At a given

time t, let the database containing the readings of the smart
meters be D(t) = (x1(t), . . . , xn(t)). These readings can
correspond to actual power consumption at time t, aggre-
gated power consumption in a short time interval before t,
or predicted consumption in a short time interval after t.
Since all these cases result in similar distributions, our dis-
cussion covers all these cases. Let us consider the series of
databases D1, D2, . . ., where Dj = D(t0 + j · δ). That is,
the databases are defined as snapshots taken at regular time
intervals starting at time t0. Let us introduce the notation
Dj = (x1j , . . . , xnj).

The database Dj is distributed in that the smart meters
do not upload their output to a central location. For the
present paper, details of the distributed communication are
irrelevant to the analysis: instead, we assume that there is
a secure privacy preserving mechanism in place to compute
the sum query of the readings, such as those discussed in [11,
12]. These mechanisms can deal not only with computing
the sum query, but also with adding the necessary noise to
it to achieve differential privacy in a fully distributed way.
With this in mind, for the remainder of the treatment we
will build on the primitives of summation and the addition
of certain noise terms, noting that the actual implementation
is intended to be fully distributed.

We assume that the databases are generated by some prob-
ability distribution, that is, we model each measurement xij

as a random variable. We elaborate on this model in Sec-
tion 4. The utility wishes to carry out a series of queries
Mj(Dj), with j = 1, 2, . . .. Although the answers should
become available to the utility in a timely manner, the com-
putation must not reveal any of the individual values xij . In
addition, the utility should not learn about the parameters
of the underlying probabilistic models. As mentioned before,
we focus on the sum query Mj =

∑n

i=1 xij .

4. A GENERATIVE PROBABILISTIC MODEL
Our model is shown in Figure 1(a). Variable Mj is the

query result that is obtained over databaseDj . In this model,
we assume that the distribution of the variables xij depends

on a set of global external parameters φj for all databases
j = 1, 2, . . ., and a set of internal smart meter parameters θi
for all smart meters 1 ≤ i ≤ n.

Parameters φj are common to all meters but depend on the
time when the snapshot was taken. These include weather
conditions, the day of week, public holidays, and the time
of day as well. We assume that parameters φj are publicly
known, and also that within a database Di the values xij

depend on each other only through the common parameters
φj . This means that if the common parameters are known
(as we have just assumed) then within any database Dj all
variables xij are independent. Note that here we introduced
a simplification by not considering any further structure, such
as geography, that could result in parameters that are shared
by a subset of meters. Every parameter is either fully local
to a meter, or common to all meters.

Parameters θi are internal to smart meter i. As expressed
by the plate model, these parameters are static during the
observation of the meters. That is, these parameters are
constant, but unknown. They describe, for example, the set
of appliances in the home, and the stable habits, behavioral
patterns, and preferences (that is, the personal profile) of the
inhabitants. We want to make sure that the static parameters
θi are also protected by a differentially private mechanism,
in addition to the individual readings in the databases.

Note that—to simplify our discussion—we made the as-
sumption that at any point in time the system follows some
single underlying probabilistic model, but that the variables
at different points in time are independent if the static pa-
rameters of the model are known. As it will be evident later,
our approach to protect the static parameters θi is completely
insensitive to this assumption but, in the lack of extra mea-
sures, the privacy of the individual readings xij could weaken
if consecutive readings are correlated.

To characterize autocorrelation, we examined the publicly
available SMART∗ dataset [15]. The dataset contains power
consumption measurements in five second intervals in three
homes that are called home A, B and C. The interval covered
by the dataset spans from the 15th of April until the 5th of
July, 2012. Due to the relatively limited amount of data that
covers a relatively short amount of time, we considered only
the time of day as a global parameter. Based on the available
data, we tested the assumption of independence by extracting
several time series that correspond to the same value of the
global parameter, namely the time of day. More precisely,
we divided the time into 30 minute intervals and aggregated
the consumption in them. We then created a series using the
values corresponding to the same time of day in the series
of days that are covered in the dataset. Let such a series
be denoted by xt

ij where i ∈ {A,B,C} selects the home, j
selects the day, and t defines the time of day.

Figure 2 shows autocorrelation plots for the series (xAj)
88
j=1,

with t ∈ {midnight, 7am, 6pm} (for homes B and C the plots
are similar). The choice of t is arbitrary, but other values re-
sult in similar results. The data covers 88 consecutive days.
We used 50 samples to calculate the approximation for each
time lag to make sure the variance of the approximations is
the same. Patterns in these graphs would indicate signifi-
cant autocorrelation. None are evident, but notice that the
confidence band is far from perfect, in that the underlying
distribution is not normal (see Section 6.2).

While proposing a full control strategy is outside the scope
of this paper, note that the above observation does not mean
that control mechanisms that operate with a control period
shorter than one day are impossible. Recall that we tar-
get communities with large numbers of consumers. In such
a setting, we could introduce an increased amount of noise
carefully calculated based on the observed correlations so as
to protect xij . As we will see, the noise we need to add to
each query has a small expected value independent of network



Figure 1: Probabilistic models of smart meter data and privacy mechanisms using plate notation. The shaded
variables are known. The rest of the variables need privacy protection. a: our model of smart meters; b:
model when xij is normally distributed; c: xij is not normally distributed and x̂ij is normally distributed; d:
arbitrarily distributed xij and x̌ij ∼ Bernoulli(xij).
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Figure 2: Autocorrelation plot of the time series of
30 minute measurement intervals at the same time
of day during the days covered by the data. The
95% confidence interval assuming random data with
normal distribution is shown.

size; but in a large network an increased (but still constant)
amount of noise is still suitable. Also, to stabilize control, the
provider might choose to sample the large network with each
query. This also reduces correlation as a side-effect through
the increased period of reading a particular meter. Moreover,
sampling itself fits into our model, as taking a random subset
simply introduces another private parameter: the probability
whether the given meter is included or not.

5. DISTRIBUTIONAL PRIVACY
Let us now introduce the notion of differential privacy for

general queries [16]. Let M be an algorithm producing an
answer to a query issued on any possible database D ∈ D.
While operating on a fixed database D, algorithm M will
also introduce random noise, thereby randomizing its output.
That is, for a fixed database D, M(D) will be a random
variable. Let the distance function d : D×D 7→ N be defined
as the number of records in which two given databases differ.
Without loss of generality, we assume that all the databases
contain the same number of records.

Definition 1. (ε-differential privacy) Let M be a random-
ized mechanism acting on databases. M is ε-differentially
private iff for any two fixed databases D and D′ such that
d(D,D′) = 1, and for any output M , we have

P (D|M) ≤ P (D′|M) · exp(ε). (1)

We expressed the traditional definition in a Bayesian style.
This definition is equivalent to the usual definition [16] if the
prior distribution over the databases is uniform (any possible
database is equally likely, that is, P (D) = P (D′)).

One possible way to achieve differential privacy of the sum
query in a database Di is by adding noise to the output of the
query calibrated according to the sensitivity of the query [17].

In other words, we can return

Mj = M(Dj) = Yj +

n
∑

i=1

xij , (2)

where Yj is an appropriate random variable. A common
choice for the distribution of Yj is Yj ∼ Laplace(0, Z/ε),
where Z is a constant representing the global sensitivity of
the sum function [3,17]:

Definition 2. (global sensitivity [17]) The global sensitivity
Zf of f : D 7→ R is given by

Zf = max
D,D′: d(D,D′)=1

|f(D) − f(D′)| (3)

We can apply this approach if there is a global upper bound
on the values xij , since the global sensitivity of the sum is
bounded by the maximal value of any addend. Such a bound
can be assumed to exist in our application domain.

Now, we can turn to our goal, that is, to release Mj ,
j = 1, 2, . . .. One possible approach would be to follow the
work of Dwork et al [13], where the notion of event level pri-
vacy in growing databases is defined. Roughly speaking, the
idea there is that two series are adjacent if they differ in one
element. This is almost the same notion as the adjacency
of databases, except that the static databases are now re-
placed by data streams. With this in mind, we could define
a notion of adjacency of two series of databases by requiring
that exactly one pair of databases is adjacent, and the rest of
the pairs are identical (where identical time points define the
pairs). We could then release Mj , j = 1, 2, . . ., if the series
is differentially private in terms of this adjacency definition.
Indeed, the series Mj , j = 1, 2, . . . is ε-differentially private
if all queries Mj are because of the parallel composition [18]
of the queries (each query is run on a separate subset of the
union of the available data).

As noted in the introduction, however, this form of pro-
tection is inadequate because it overlooks a potentially im-
portant form of leakage. Intuitively, even if all individual
queries Mj are protected by adding noise, the parameters θi
are still not protected if we can observe an unlimited number
of query results. To see this, consider that if the global pa-
rameters φj are in fact constant (do not depend on j), then
all variables Mj will have an identical distribution that can
be recovered with an arbitrary precision after performing a
sufficient number of measurements. This is because (as evi-
dent from Figure 1(a)) in this case all variables xij will have
the same distribution for all j. In the case of the sum query,
and if the sensitivity mechanism is applied, this distribution
can be determined from equation (2). Since Z and ε are
known, as are the φj , the unknown parameters are θi. This
means that approximating the query distribution could lead
to information leakage about the private parameters θi of the
smart meters.



If the global external parameters φj are time-varying, then
the parameters θi would be more secure, since in that case
the shape of the distribution of the queries will be more com-
plex (it will become a mixture distribution determined by the
distribution of φj). An adversary interested in θi will there-
fore attempt to limit itself to considering only subsets of the
readings that share the same external parameters, since that
way approximating θi is easier. In other words, a constant
φj is the worst case for privacy. The considerations above
motivate the following definition of adjacency.

Definition 3. (distributional adjacency) Let us assume the
probabilistic model in Figure 1(a). Consider two series of
databases (Dj)

∞

j=1 and
(

D′

j

)

∞

j=1
that were generated by the

model. The two series are distributionally adjacent iff θi = θ′i
for all but one index 1 ≤ k ≤ n, for which θk 6= θ′k, and all
the other variables that do not depend on θk are the same.

The intuition behind the definition is simple. When mon-
itoring smart meters, distributional adjacency captures the
situation when we are collecting smart metering data in a
set of homes that differs in exactly one element (we replace
one home with another one), but otherwise everything re-
mains exactly the same including all the readings in the rest
of the homes. Based on this notion of adjacency, we define
distributional differential privacy.

Definition 4. (distributional ε-differential privacy) Let M
be a randomized mechanism acting on databases. Let us
assume the probabilistic model in Figure 1(a). M is distri-
butionally ε-differentially private iff for any two fixed and
distributionally adjacent database series (Dj)

∞

j=1 with pa-

rameters θ = (θ1, . . . , θn) and
(

D′

j

)

∞

j=1
with parameters θ′ =

(θ′1, . . . , θ
′

n), and for any query output series (Mj)
∞

j=1

P (θ| (Mj)
∞

j=1) ≤ P (θ′| (Mj)
∞

j=1) · exp(ε). (4)

6. ACHIEVING DISTRIBUTIONAL PRIVACY
Here, we provide techniques to achieve distributional pri-

vacy that differ in their assumptions about the available knowl-
edge and the distribution of xij . First, let us ignore the pa-
rameter φj in the model in Figure 1(a). As we argued before,
this is the worst case from the point of view of privacy, since
the adversary has a noise-free sample of the distribution of
the query. Besides, in a real system an adversary can collect
samples that belong to the same value of φj ; recall that the
value of φj is known publicly.

6.1 Readings with Gaussian distributions
We provide an example where distributional ε-differential

privacy can be achieved. Let us assume that measurement
xij has a Gaussian distribution: xij ∼ N (θi) for all j, where
θi = (µi, σ

2
i ). In this case, assuming the model in Figure 1(a)

(without φj), we know that
∑n

i=1 xij ∼ N (
∑n

i=1 µi,
∑n

i=1 σ
2
i ).

In other words, the sum query that we are interested in has a
Gaussian distribution as well. Many other distributions have
a similar property, for example, the binomial or the Pois-
son distributions. The class of stable distributions also has
this property. This class covers many practical distributions
including normal and power-law distributions [19]. Most im-
portantly, in this case the distribution of the query is simple
and it has only a few parameters that depend on the param-
eters of the distributions of the individual measurements.

Observe that by returning an infinite series of query results
the mechanism essentially returns the sum query over the
parameters of the distributions θi. We never obtain the exact
parameter set of the query distribution (the sum of θi), but
instead we can draw an unlimited number of samples from
this distribution. Even so, let us make the very conservative

assumption that eventually the adversary learns the exact
parameters in this case; doing so only makes it harder to
achieve distributional privacy.

To make the solution distributionally private, we can ap-
ply, among other options, a sensitivity-based approach to the
parameter space. That is, we can add independent noise
Nj ∼ N (ζµ, ζσ2), which results in the query distribution

Nj +
n
∑

i=1

xij ∼ N (ζµ +
n
∑

i=1

µi, ζσ2 +
n
∑

i=1

σ2
i ), (5)

where ζµ and ζσ2 are constants that are drawn from the distri-
bution Laplace(0, Zµ/ε) and Laplace(0, Zσ2/ε), respectively,
where Zµ and Zσ2 are the global sensitivities of the sum
queries

∑n

i=1 µi and
∑n

i=1 σ
2
i , respectively. Constants ζµ and

ζσ2 are drawn at the beginning of collecting the query results
and are not changed later. This, similarly to traditional dif-
ferential privacy, results in a noisy result; but this time this
noise will be applied to the parameters of the distributions,
and not the data.

Indeed—under the assumption that the adversary will even-
tually learn from the infinite series of query results the exact
parameters (

∑n

i=1 µi,
∑n

i=1 σ
2
i )—distributional privacy (Def-

inition 4) becomes simply an instance of differential privacy
(Definition 1) with the database being the distribution pa-
rameters (µi, σ

2
i ), i = 1, . . . , n over which a differentially pri-

vate sum query is run. This proves that the mechanism in
equation (5) is distributionally ε-differentially private.

Finally, to also achieve the differential privacy of the data
in each individual database in time, we introduce the usual
noise term, as mentioned previously in equation (2):

Mj = Nj + Yj +
n
∑

i=1

xij , (6)

where Yj ∼ Laplace(0, Z/ε) and Z is the global sensitivity of
the sum query. This will not change distributional differential
privacy, since adding additional independent noise will never
weaken the privacy of any scheme. Also, note that Z ≥ Zµ.
The resulting model is illustrated in Figure 1(b).

We stress that in this example we assumed that an unlim-
ited number of samples are available from the same query
distribution, and so the parameters of the query distribution
can be recovered to an arbitrary precision. Nonetheless, we
were able to achieve distributional differential privacy due to
the special property of Gaussian distributions.

6.2 Realistic distributions
The distribution of the readings is not normal (and not

even stable) in practice. Indeed, Figure 3 (left) illustrates the
probability density of power consumption as a function of the
time of day in home A in the SMART∗ dataset [15]. For this
plot we aggregated the consumption in 5 minute intervals and
produced a scatterplot based on the days that are covered in
the dataset. These plots (and related work [20]) suggest that
the distribution of power consumption at a certain time of
day is a mixture distribution. In a mixture distribution the
variables that select the components of the mixture are those
internal variables that are not constant during the observa-
tion period (for example, whether the owner is on a holiday
or not, whether there are guests in the home, whether the air
conditioning is on, etc.).

In the case of mixture distributions, the number of pa-
rameters of the distribution of the query will grow with the
number of readings used to answer the query, unlike in the
case of stable distributions mentioned in Section 6.1. This
creates a new challenge to distributional privacy, particularly
given our assumption that the adversary can recover the ex-
act parameters of the query distribution using the unlimited
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Figure 3: Left: scatter plot to illustrate the observed
probability density of energy consumption as a func-
tion of time of day, based on 5 minute intervals dur-
ing the days covered by the data. Right: probability
density for modeling power consumption prediction.
This is a lognormal mixture distribution over the [0, 1]
interval.

number of query samples. In practice an additional source
of uncertainty regarding the parameters of the distribution
is the limited number of samples available; a topic we do not
exploit in this paper.

6.3 Transformation to Gaussian distributions
Our first approach to tackling arbitrary distributions con-

verts the meter readings’ distributions to Gaussian. The
main advantage of this approach is that we can theoretically
guarantee distributional privacy for arbitrary distributions
for the case of the sum query, while introducing negligible
extra noise. However, we need to assume that the local pa-
rameters θi are known locally by meter i. This assumption
is reasonable, since the local meter has full access to local
consumption data and hence can easily approximate the dis-
tribution. Further, if we aggregate predicted consumption,
then the parameters are fully determined by the local meter.

The idea is that, based on the knowledge of θi and xij , the
local meter i will generate a variable x̂ij that has a Gaussian
distribution with the same expectation and standard devia-
tion as xij and is maximally correlated with xij . After this,
the query is calculated using x̂ij instead of xij using the same
noise variables as in equation (6):

M̂j = Nj + Yj +

n
∑

i=1

x̂ij , (7)

while keeping xij private. Applying the same reasoning as
in Section 6.1, it is clear that the method is distributionally
differentially private. Instead of a Gaussian distribution, any
other stable distribution can be used, as mentioned in Sec-
tion 6.1, depending on the shape of the distribution to be
approximated.

The resulting probabilistic model is illustrated in Figure 1(c).
Let us elaborate on how x̂ij is computed. Let (µi, σ

2
i ) be the

expectation and variance of xij , and let X (x) = P (xij ≤ x)
be the distribution function of xij . We know that X (·) and
(µi, σ

2
i ) are known locally. Let

x̂ij = N−1(X (xij);µi, σ
2
i ), (8)

in other words, we compute x̂ij in such a way that it corre-
sponds to the same quantile according to N (·;µi, σ

2
i ) as xij

according to X (·). (To simplify the discussion, without loss
of generality, we assumed that X (·) is continuous.)

It is obvious that the expectation and variance of Mj and

M̂j are the same since xij and x̂ij have the same expecta-
tion and variance by design for all (i, j), the readings xij are
independent (and hence the transformed readings x̂ij are in-

dependent as well), and Mj and M̂j are defined by the same
linear function of the readings. Furthermore, the distribu-
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Figure 4: Q-Q plot (left) and scatter plot (right)
based on 10,000 observations. The correlation co-
efficient is 0.7.

tions of Mj and M̂j will be very similar. This is because M̂j

is normally distributed, while Mj is the sum of many similar
variables, so it is also likely to be normally distributed.

To examine the distribution of (Mj , M̂j) empirically, we
model the distribution of xij at time j for all i using the
mixture distribution in Figure 3 (right). This distribution
is an approximation of the distribution in home A at noon
(Figure 3 (left)). We assume that there are 1000 meters (i.e.,
i = 1, . . . , 1000). We empirically generate 10,000 indepen-

dent samples of (Mj , M̂j). The quantile-quantile (Q-Q) plot
in Figure 4 clearly shows that Mj is almost exactly normal.
In addition, the scatter plot in Figure 4 shows a high cor-
relation. Overall, we can conclude that in a realistic setting
the proposed transformation preserves most of the original
information while providing full distributional privacy.

6.4 Transformation to Bernoulli distributions
Our second approach to tackle arbitrary distributions is

based on converting the meter readings’ distributions to a
Bernoulli distribution. The main advantage of this approach
is that we will not assume that the local parameters θi are
known locally by meter i. Also, we will theoretically prove
that this approach will protect the privacy of θi, with the
exception of the expected value E(xij). The approach is also
very simple to implement. However, this approach introduces
a higher level of noise, as we will see.

Let us assume that the distribution of the reading xij is
arbitrary, but the values are bounded. Without loss of gen-
erality, let 0 ≤ xij ≤ 1. Let us introduce a new variable x̌ij

for all readings xij where x̌ij ∼ Bernoulli(xij).
We calculate the query over the new variables x̌ij while

the variables xij are kept private. Since E(x̌ij |xij) = xij , we
know that E(x̌ij) = E(E(x̌ij |xij)) = E(xij), which means
that, due to the linearity of expectation and the construction
of x̌ij , E

[
∑n

i=1 x̌ij

]

= E
[
∑n

i=1 xij

]

. That is, using variables
x̌ij results in the same expected query value for the sum
query and, in fact, for any linear query. The same observa-
tions hold also if we consider index j and fix i. Further, and
most importantly, the series (x̌ij)

∞

j=1 carries no information
about the parameters of the distribution of xij other than
the expected value, since all the values are 0 or 1, and they
are drawn independently.

As a practical technique, we propose to return the query

M̌j = Yj +
n
∑

i=1

x̌ij . (9)

Here—as before—Yj ∼ Laplace(0, Z/ε) and Z is the global
sensitivity of

∑n

i=1 x̌ij . Clearly, due to the Bernoulli distri-
bution of x̌ij we have Z = 1. Since the authors are not aware
of any closed form for the convolution of multiple Bernoulli
distributions with different parameters, the Bernoulli vari-
ables are not made distributionally private here. However,
since these variables only reveal the expectation of the com-



mon distribution of the masked variables xij , we protect most
of the fine structure of the local distribution. The resulting
probabilistic model is illustrated in Figure 1(d).

Let us examine exactly how much noise we introduced.
Our first intuition is that in a usual setting this noise is in the
same order of magnitude as the noise introduced by sampling
xij using parameters θi. Additionally, this noise will also
decrease in a relative sense as the number of smart meters
increases. More precisely, the variance of the distribution
Bernoulli(p) is p(1 − p). This is maximal if p = 0.5. Now,
under the probabilistic model we work with this means that

stdev

[

n
∑

i=1

x̌ij

]

=

√

√

√

√

n
∑

i=1

xij(1− xij) ≤
√
n

2
(10)

since the variables are independent. The worst case of
√
n/2

is given when xij = 0.5 for all i.
This noise, however, is not necessarily extra noise from

the point of the view of the application. For example, if
the variables xij are statistical predictions then the ques-
tion is the ratio of the expected noise that originates from
the uncertainty in the prediction and the extra noise due to
converting the variables. To examine this case, as in Sec-
tion 6.3, we again model the distribution of the prediction
using the mixture distribution in Figure 3. As before, the
consumption values are normalized to the interval [0, 1]. Set-

ting n = 1000 and taking 10,000 samples of
∑1000

i=1 x̌ij we
find the empirical standard deviation to be 9.15. At the
same time, stdev(

∑1000
i=1 xij) = 4.82, which gives the ratio

of 1.9. This ratio is constant as a function of n, and both
standard deviations are O(

√
n). For the sake of complete-

ness, for n = 1000, the upper bound of standard deviation is√
1000/2 = 15.81. We achieve a variance of 9.15 due to the

strong asymmetry of the original distribution.

7. CONCLUSIONS
We proposed novel techniques to implement distributed

sum queries in a privacy preserving way. We believe that our
work is the first to offer practical options for achieving full
privacy covering both individual readings and hidden static
parameters. The key insight was that if the individual meter
readings (or predictions) are normally distributed then the
sum query will also be normally distributed. This allows us
to apply differentially private techniques on the distribution
parameters. Since normality is not always satisfied, we pro-
posed techniques to transform the distributions. We argued
that the extra noise due to these techniques is small. In a full
practical implementation of our distributed sum queries the
noise terms we identified and the sum itself can be computed
in a distributed and private way, a problem known to be
tractable [11,12]. A full control solution based on the moni-
toring approach described here is the subject of our ongoing
research.
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