
The Building Blocks of Consensus!

Yee Jiun Song1, Robbert van Renesse1, Fred B. Schneider1, and Danny Dolev2

1 Cornell University
2 The Hebrew University of Jerusalem

Abstract. Consensus is an important building block for building repli-
cated systems, and many consensus protocols have been proposed. In
this paper, we investigate the building blocks of consensus protocols and
use these building blocks to assemble a skeleton that can be configured
to produce, among others, three well-known consensus protocols: Paxos,
Chandra-Toueg, and Ben-Or. Although each of these protocols specifies
only one quorum system explicitly, all also employ a second quorum sys-
tem. We use the skeleton to implement a replicated service, allowing us
to compare the performance of these consensus protocols under various
workloads and failure scenarios.

1 Introduction

Computers will fail, and for many systems it is imperative that such failures
be tolerated. Replication, a general approach for supporting fault tolerance, re-
quires a protocol so replicas will agree on values and actions. The agreement
or consensus problem was originally proposed in [1]. Many variants and corre-
sponding solutions have followed (see [2] for a survey of just the first decade,
containing well over 100 references).

This paper focuses on protocols for Internet-like systems — systems in which
there are no real-time bounds on execution or message latency. Such systems
are often termed asynchronous. The well-known FLP impossibility [3] result
proved that consensus cannot be solved even if only one process can fail. Prac-
tical consensus algorithms sidestep this limitation using one of two approaches:
i) leader-based algorithms use a failure detector that captures eventual timing
assumptions, and ii) randomized algorithms solve a non-deterministic version of
consensus and eventually decide with probability 1.

Guerraoui and Raynal [4] point out similarities between different consensus
protocols. They provide a generic framework for consensus algorithms and show
that differences between the various algorithms can be factored out into a func-
tion called Lambda. Each consensus algorithm employs rather different imple-
mentations of Lambda. Later, Guerraoui and Raynal [5] show that leader-based

! This work is supported by AFOSR grants FA8750-06-2-0060, FA9550-06-1-0019,
FA9550-06-1-0244, the National Science Foundation under grants 0424422, 0430161
and CCF-0424422 (TRUST), a gift from Microsoft Corporation, and ISF, ISOC, and
CCR. Any opinions expressed in this publication are those of the authors and do
not necessarily reflect the views of the funding agencies.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 54–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Building Blocks of Consensus 55

algorithms can be factored into an Omega module and an Alpha module, where
all differences are captured by differences in Omega.

This paper is a next step in unifying consensus algorithms. By breaking down
consensus algorithms into building blocks, we show that different consensus al-
gorithms can be instantiated from a single skeletal algorithm:

– Going beyond the work reported in [5], we present the building blocks of con-
sensus algorithms and how they can be used to build a skeletal consensus
algorithm. The skeletal algorithm provides insight into how consensus pro-
tocols work, and we show that consensus requires not one but two separate
quorum systems;

– We show that both leader-based and randomized algorithms can be instan-
tiated from our skeletal algorithm by configuring the two quorums systems
that are used and the way instances are started. This approach can be used
to instantiate three well-known consensus protocols: Paxos [6], Chandra-
Toueg [7], and Ben-Or [8];

– The skeleton provides a natural platform for implementation of multiple
consensus protocols from a single code base;

– And we present a performance comparison of these protocols under varying
workload and crash failures. The implementation reveals interesting trade-
offs between various design choices in consensus algorithms.

The rest of this paper is organized as follows. Section 2 describes the con-
sensus problem and proposes terminology. Next, we present the building blocks
of consensus protocols in Section 3; these building blocks are used to build a
skeletal consensus algorithm in Section 4. Section 5 illustrates the instantiation
of particular consensus algorithms using the skeletal algorithm. Section 6 de-
scribes the implementation of the skeleton and compares the performance of
three well-known consensus protocols. Section 7 concludes.

2 The Consensus Problem

Computers that run programs – nodes – are either honest, executing programs
faithfully, or Byzantine [9], exhibiting arbitrary behavior. We will also use the
terms correct and faulty, but not as alternatives to honest and Byzantine. A
correct node is an honest node that always eventually makes progress. A faulty
node is a Byzantine node or an honest node that has crashed or will eventually
crash. Note that honest and Byzantine are mutually exclusive, as are correct and
faulty. However, a node can be both honest and faulty.

We assume that each pair of nodes is connected by a link, which is a bi-
directional reliable virtual circuit and therefore messages sent on this link are
delivered, eventually, and in the order in which they were sent (i.e., an honest
sender keeps retransmitting a message until it receives an acknowledgment or
crashes). A receiver can tell who sent a message (e.g., using MACs), so a Byzan-
tine node cannot forge a message so it is indistinguishable from a message sent
by an honest node.

56 Y.J. Song et al.

Because our model is asynchronous, we do not assume timing bounds on
execution of programs or on latency of communication. We also do not assume
that a node on one side of a link can determine whether the node on the other
side of the link is correct or faulty. Timeouts cannot reliably detect faulty nodes
in an asynchronous system, even if only crash failures are allowed.

In the consensus problem nodes run actors that are either proposers, each of
which proposes a proposal, or deciders, each of which decides one of the proposals.
Assuming there exists at least one correct proposer (i.e., a proposer on a correct
node), the goal of a consensus protocol is to ensure each correct decider decides
the same proposal, even in the face of faulty proposers. A node may run both
a proposer and a decider—in practice a proposer often would like to learn the
outcome of the agreement.

Why is the consensus problem hard? Consider the following strawman proto-
col: each decider collects proposals from all proposers, determines the minimum
proposal from among the proposals it receives (in case it received multiple pro-
posals), and decides on that one. If no nodes were faulty, such a protocol would
work, albeit limited in speed by the slowest node or link.

Unfortunately, even if only crash failures are possible, deciders do not know
how long to wait for proposers. If deciders use time-outs, then each might time-
out on different sets of proposers, so these deciders could decide different propos-
als. Thus, each decider has no choice but to wait until it has received a proposal
from all proposers. But if one of the proposers is faulty, such a decider will wait
forever and never decide.

In an asynchronous system with crash failures (Byzantine failures include
crash failures), there exists no deterministic protocol in which correct deciders
are guaranteed to decide eventually [3]. We might circumvent this limitation by
allowing some correct deciders not to decide. Instead, we will embrace a slightly
stronger requirement: that the consensus protocol never reach a state in which
some correct decider can never decide. Since the strawman protocol of deciding
the minimum proposal can reach a state in which deciders wait indefinitely for a
faulty proposer, it is not a consensus protocol, even with respect to the relaxed
requirement.

Formally, a protocol that solves the consensus problem must satisfy:

Definition 1. Agreement. If two honest deciders decide, then they decide the
same proposal.

Definition 2. Unanimity. If all honest proposers propose the same proposal v,
then an honest decider that decides must decide v.

Definition 3. Validity. If a honest decider decides v, then v was proposed by
some proposer.

Definition 4. Non-Blocking. For any run of the protocol that reaches a state in
which a particular correct decider has not yet decided, there exists a continuation
of the run in which that decider does decide on a proposal.

The Building Blocks of Consensus 57

Agreement is a safety property that captures what is informally meant by
“consensus;” Unanimity and Validity are non-triviality properties; and Non-
Blocking is a weaker version of the non-triviality requirement that all correct
deciders eventually decide. Non-Blocking makes consensus solvable without
trivializing the problem. Such a weakening of the problem is present in all algo-
rithms that “solve” the consensus problem, since there cannot exist a solution
to consensus with a strong liveness requirement [3].

3 Building Blocks

The strawman (viz., decide the minimum proposal) protocol presented in Sec-
tion 2 is not a solution to the consensus problem because a faulty proposer can
cause correct deciders to wait indefinitely, violating Non-Blocking. To remedy
this, a consensus protocol might invoke multiple instances, where an instance is
an execution of a sub-protocol that itself might not decide. Such instances have
also been called rounds, phases, or ballots. Ensuring consistency among decisions
made by multiple instances is central to the design of consensus protocols. In
this section, we give building blocks in common to different consensus protocols;
in the next section, we show how these building blocks can be combined to create
full consensus protocols.

3.1 Instances

Instances may run in parallel with other instances. An instance decides a pro-
posal if an honest decider in that instance decides a proposal. All honest deciders
that decide in an instance must be guaranteed to decide the same proposal. An
instance may not necessarily decide any proposals. If multiple instances decide,
they must decide the same proposal.

Instances are identified by instance identifiers r, ... from a totally ordered
set N̄ (which can be, but does not have to be, the set N on naturals). Instance
identifiers induce an ordering on instances, and we say that one instance is before
or after another instance, even though instances may execute concurrently.

We name proposals v, w, Within an instance, proposals are paired with
instance identifiers. A pair (r, v) is called a suggestion, if v is a proposal and r
an instance identifier. A special suggestion ⊥ is used to indicate the absence of
a specific proposal.

3.2 Actors

We employ two new types of actors in addition to proposers and deciders:
archivers and selectors.1 A proposer sends its proposal to the selectors. Selec-
tors and archivers exchange messages and occasionally archivers inform deciders
about potential values for decision. Deciders apply a filter to reach a decision.
1 A node may run multiple actors, although each node can run at most one archiver

and at most one selector.

58 Y.J. Song et al.

Selectors select proposals, and archivers archive suggestions. Each archiver re-
members the last suggestion that it has archived. The initial archived suggestion
of an archiver is ⊥.

The objective of selectors is to reach a decision within an instance, while the
objective of archivers is to maintain a collective memory that ensures decisions
are remembered across instances and therefore conflicting decisions are avoided.

At any point in time, a selector or archiver executes within a single instance; it
sends and receives messages that are part of the instance execution. Selectors can
lose their state on a crash and subsequently join any instance upon recovery, even
a prior one. Archivers can switch instances but must progress to later instances,
and therefore keep their state on non-volatile storage.

3.3 Extended Quorum Systems

In order to ensure consistency in decisions, actors in a consensus protocol use
quorums. An extended quorum system is a quadruple (P , M, Q, G). P is a set
of nodes called the participants. M, Q, and G are each a collection of subsets of
participants (that is, each is a subset of 2P). M is the collection of maximal-wait
sets, Q the collection of quorum sets, and G the collection of guarded sets. Each
is defined below.

Crashed or Byzantine participants might never respond to requests. In an
instance, an actor tries to collect as many responses to a broadcast request as
possible; it stops awaiting responses when it is in danger of waiting indefinitely.
M characterizes this — it is a set of subsets of P , none contained in another,
such that some M ∈ M contains all the correct nodes.2 An actor stops waiting
for responses after receiving replies from all participants in M .

A quorum set is a subset of P such that the intersection of any two quorum
sets must contain at least one correct node. A subset of P is a guarded set if
and only if it is guaranteed to contain at least one honest participant. Note, a
guarded set may consist of a single participant that could be crashed but is not
Byzantine.

An extended quorum system must satisfy the follow properties:

Definition 5. Consistency. The intersection of any two quorum sets (including
a quorum set with itself) is guaranteed to contain a correct participant.

Definition 6. Opaqueness. Each maximal-wait set contains a quorum consist-
ing entirely of honest participants.

The simplest example of extended quorum system are threshold quorum systems;
Table 1 summarizes requirements for P , M, Q, and G in (n, t)-threshold systems.
Other quorum systems may be more appropriate for particular applications.
See [11] and [10] for advantages and disadvantages of various quorum systems
for crash and arbitrary failure models respectively.
2 For those familiar with Byzantine Quorum Systems [10], M is the set of complements

of the fail-prone system B. For the purposes of this paper, it is often more convenient
to talk about maximal-wait sets.

The Building Blocks of Consensus 59

Table 1. Size requirements for Threshold Quorum Systems
that satisfy consistency and opaqueness

Crash Byzantine
guarded set (in G) > 0 > t
quorum set (in Q) > n/2 > (n + t)/2
maximal-wait set (in M) = n − t = n − t
set of participants (P) > 2t > 5t

One degenerate
extended quorum
system, used in
some well-known
consensus protocols,
is a leader extended
quorum system: it
involves one partic-
ipant (the leader),
and that partici-
pant by itself forms the only maximal-wait set in M, quorum in Q, and guarded
set in G. Because quorum sets have to satisfy consistency, the leader has to be
honest.

3.4 Guarded Proposal

Selectors in some instance r must be careful about selecting proposals that can
conflict with decisions of instances earlier than r. Before selecting a proposal in
an instance, a selector obtains a set L of suggestions from each participant in a
maximal-wait set of archivers. A proposal v is considered a potential-proposal if L
contains suggestions containing v from a guarded set and, therefore, at least one
honest archiver sent a suggestion containing v. The selector identifies a guarded
proposal of L, if any, as follows:

1. Consider each potential-proposal v separately:
(a) Consider all subsets of suggestions containing v from guarded sets of

archivers. The minimum instance identifier in a subset is called a guarded-
instance-identifier ;

(b) The maximum among the guarded-instance-identifiers for v is called
the associated-instance-identifier of v. (Note, because v is a potential-
proposal, at least one guarded-instance-identifier exists and thus the
maximum is well-defined.) The support-sets for v are those subsets of
suggestions for which the guarded-instance-identifier is the associated-
instance-identifier;

2. Among the potential-proposals, select all proposals with the maximal
associated-instance-identifier. If there is exactly one such potential-proposal
v′, and v′ $= ⊥, then this is the guarded proposal. Otherwise there is no
guarded proposal.

If a decider obtains suggestions (r, v) from a quorum of archivers (and conse-
quently decides), then any honest selectors in instances at least r are guaranteed
to compute a guarded proposal v′ such that v′ = v (unless they crash). If a
selector fails to compute a guarded proposal in a particular instance, then this
is both evidence that no prior instance can have decided and a guarantee that
no prior instance will ever decide. However, the reverse is not true. If a selector
computes a guarded proposal v′, it is not guaranteed that v′ is or will be decided.

60 Y.J. Song et al.

4 Assembling the Pieces

The building blocks described in the previous section can be used to populate
a skeletal algorithm, which in turn can be instantiated to obtain particular con-
sensus algorithms. The skeletal algorithm specifies the interaction between the
actors. It does not, however, define the quorums that are used, the mechanisms
for invoking new instances, or other protocol-specific details. A consensus pro-
tocol must specify these details, and some options are described in Section 5.

4.1 The Skeletal Algorithm

The skeletal algorithm defines actions by actors in each instance. Figure 1 shows
the behavior of each actor.

Each selector, archiver, and decider participates in an extended quorum sys-
tem and exchanges messages of the form

〈message-type, instance, source, suggestion〉

An extended quorum system E = (P , M, Q, G) has the following interface:

- E .broadcast(m): send message m to all participants in P ;
- E .wait(pattern): wait for messages matching the given pattern (specifies, for

example, the message type and instance number). When the sources of the
collected messages form an element or a superset of an element of M, return
the set of collected messages;

- E .uni-quorum(set of messages): if the set of messages contains the same sug-
gestion from a quorum, then return that suggestion.3 Otherwise, return ⊥;

- E .guarded-proposal(set of messages): return the guarded proposal among
these messages, or ⊥ if there is none.

The skeletal algorithm uses two separate extended quorum systems. Archivers
form an extended quorum system A that is the same for all instances; selectors
use A to find the guarded proposal, preventing selection of proposals that conflict
with decisions in earlier instances. Selectors form a second extended quorum
system Sr , which may be different for each instance r; archivers in instance r
use quorums of Sr to prevent two archivers from archiving different suggestions
in the same instance.

Deciders, although technically not part of an instance, try to obtain the same
suggestion from a quorum of archivers in each instance. For simplicity of presen-
tation, we associate deciders with instances and have them form a third extended
quorum system, D.

Returning to Figure 1, archivers start a new instance by sending their cur-
rently archived suggestion ci to the selectors (A.1). Each selector awaits select
messages from a maximal wait set (S.1) and determines if one of the suggestions
it receives could have been decided in a previous instance (S.2). If so, it selects
3 Quorum consistency ensures at most one such suggestion.

The Building Blocks of Consensus 61

the corresponding proposal. If not, it selects one of the proposals issued by the
proposers (S.3). The selector composes a suggestion from the selected proposal
using the current instance identifier, and sends that suggestion to the archivers
(S.4).

At the start of instance r, each archiver i executes:

(A.1) send ci to all participants (selectors) in Sr:
Sr.broadcast(〈select, r, i, ci〉)

Each selector j in Sr executes:

(S.1) wait for select messages from archivers:
Lr

j := A.wait(〈select, r, ∗, ∗〉);
(S.2) see if there is a guarded proposal:

vr
j := A.guarded-proposal(Lr

j);
(S.3) if not, select from received proposals instead:

if vr
j = ⊥ then vr

j := Pj .pick(r) fi;
(S.4) send a suggestion to all archivers:

A.broadcast(〈archive, r, j, (r, vr
j)〉);

Each archiver i (still in instance r) executes:

(A.2) wait for archive messages from selectors:
Mr

i := Sr.wait(〈archive, r, ∗, ∗〉);
(A.3) unanimous suggestion from a quorum?

qr
i := Sr.uni-quorum(Mr

i);
(A.4) archive the suggestion:

ci := if qr
i = ⊥ then (r, ⊥) else qr

i fi;
(A.5) send the suggestion to all deciders:

D.broadcast(〈decide, r, i, ci〉)

Each decider k executes:
(D.1) wait for decide messages from archivers:

Nr
k := A.wait(〈decide, r, ∗, ∗〉);

(D.2) unanimous suggestion from a quorum?
dr

k := A.uni-quorum(Nr
k);

(D.3) if there is, and not ⊥, decide:
if (dr

k = (r, v′) and v′ %= ⊥)
then decide v′ fi;

Fig. 1. The skeletal algorithm of consensus protocols

If an archiver
receives the same
suggestion from a
quorum of selec-
tors (A.3), it (i)
archives that sug-
gestion (A.4), and
(ii) broadcasts the
suggestion to the
deciders (A.5). If
a decider receives
the same sugges-
tion from a quorum
of archivers (D.2),
the decider decides
the corresponding
proposal in those
suggestions (D.3).

Each selector i
maintains a set Pi

containing propos-
als it has received
(across instances).
A selector waits for
at least one pro-
posal before par-
ticipating in the
rest of the proto-
col, so Pi is never
empty during exe-
cution of the proto-
col. (Typically, Pi

first contains a pro-
posal from the pro-
poser on the same
node as selector i.) For simplicity, we assume an honest proposer sends a single
proposal. The details of how Pi is formed and used differ across consensus pro-
tocols, so this is discussed below when full protocols are presented. Pi has an
operation Pi.pick(r) that returns either a single proposal from the set or some
value as a function of r. Different protocols use different approaches for selecting

62 Y.J. Song et al.

that value, and these too are discussed below. Note, selectors may lose their
state, starting again with an empty Pi.

Archivers’ states survive crashes and recoveries. So, an archiver j running on
an honest node maintains: rj , the current instance identifier and cj , the last
archived suggestion, which is initialized with the value ⊥.

Note that steps (A.1), (S.1), and (S.2) can be skipped in the lowest numbered
instance, because ci is guaranteed to be ⊥ for all archivers. This is an important
optimization in practice and eliminates one of the three message rounds necessary
for a proposal to be decided in the normal (failure-free) case.

4.2 Agreement

We now show that the skeletal algorithm satisfies Agreement, that is, if two
honest deciders decide, then they decide the same proposal. We omit the proofs
of lemmas that are relatively straightforward. For complete proofs please refer
to [12].

Lemma 1. In the skeletal algorithm of Figure 1:

(a) if any honest archiver i computes a suggestion qr
i $= ⊥ in Step (A.3) of

instance r, then any honest archiver that computes a non-⊥ suggestion in
that step of that instance, computes the same suggestion.

(b) if any honest decider k computes a suggestion dr
k $= ⊥ in Step (D.2) of

instance r, then any honest decider that computes a non-⊥ suggestion in
that step of that instance, computes the same suggestion.

Note that Step (S.2) does not satisfy (a) and (b) of Lemma 1. because selectors
do not try to obtain a unanimous suggestion from a quorum.

Corollary 1. In the skeletal algorithm of Figure 1, if any honest archiver archives
a suggestion (r, v) with v $= ⊥ in Step (A.4) of instance r, then any honest
archiver that archives a suggestion with a non-⊥ proposal in that step of that
instance archives the same suggestion.

Lemma 2. In the skeletal algorithm of Figure 1, if any honest archiver sends a
suggestion (r̄, v) with v $= ⊥ in Step (A.1) of instance r then any honest archiver
that sends a suggestion (r̄, v′) with v′ $= ⊥ in that step of that instance, sends
the same proposal, i.e., v = v′.

Lemma 3. In the skeletal algorithm of Figure 1:

(a) if each honest selector that completes Step (S.4) of instance r sends the
same suggestion, then any honest archiver that completes Step (A.3) of that
instance computes the same suggestion;

(b) if each honest archiver that completes Step (A.4) of instance r sends the
same suggestion, then any honest decider that completes Step (D.2) of that
instance computes the same suggestion;

The Building Blocks of Consensus 63

(c) if each honest archiver that completes Step (A.1) of instance r sends the
same suggestion, then any honest selector that completes Step (S.2) of that
instance computes the same proposal.

The most important property we need to prove is:

Lemma 4. In the skeletal algorithm of Figure 1, if r′ is the earliest instance
in which a proposal w is decided by some honest decider, then for any instance
r, r > r′, if an honest archiver archives a suggestion in Step (A.4), then it is
(r, w).

Proof. Since instances are totally ordered, any subset of them are totally or-
dered. The proof will be by induction on all instances, past instance r′, in which
eventually some honest archiver archives a suggestion.

Let w $= ⊥ be the proposal decided by an honest decider in Step (D.4) of
instance r′. Let Qr′ ∈ A be the quorum in instance r′ whose suggestions caused
the decider to decide w.

Let r1 > r′ be the first instance past r′ at which some honest archiver even-
tually completes Step (A.4). Since this archiver completes Step (A.4), it must
have received archive messages from a maximal-wait set of selectors following
Step (A.2) of instance r1. Each honest selector that sent such a message received
select messages from a maximal-wait set of archivers sent in their Step (A.1) of
instance r1. Each honest archiver that completes Step (A.1) did not archive any
new suggestion in any instance r′′ where r′ < r′′ < r1 holds, because r1 is the
first such instance. Moreover, the archiver will not archive such a suggestion in
the future, since all such instances r′′ aborted before sending select messages
in Step (A.1) of instance r1.

In Step (A.1), an archiver sends the last suggestion it archived. Some archivers
may send suggestions they archived prior to instance r′ while other archivers
send suggestions they archived in Step (A.5) of instance r′. Each honest selector
j awaits a set of messages Lj from a maximal-wait set in Step (S.1). Lj contains
suggestions from a quorum Qr1 consisting entirely of honest archivers (by the
opaqueness property of A). By the consistency property of A, the intersection
of Qr1 and Qr′

contains a guarded set, and thus Qr1 contains suggestions from a
guarded set of honest archivers that archived (r′, w). There cannot be such a set
of suggestions for a later instance, prior to r1. By Corollary 1 and Lemma 2, there
cannot be any suggestions from a guarded set for a different proposal in instance
r′. Thus, each honest selector will select a non-⊥ proposal and those proposals
are identical. By Lemma 3, every honest archiver that completes Step (A.4) will
archive the same suggestion. Thus the proof holds for r1.

Now assume that the claim holds for all instances r′′ where r′ < r′′ < r holds;
we will prove the claim for instance r. There is an honest archiver that completes
Step (A.4) in instance r and archives (r, w). Following Step (A.2) of instance r,
it must have received archive messages from a maximal-wait set of selectors.
Each honest selector that sent such a message received select messages from a
maximal-wait set of archivers in Step (S.1) of instance r.

64 Y.J. Song et al.

Each honest archiver sends the last suggestion it archived. Some honest
archivers might send suggestions they archived prior to instance r′, while other
honest archivers send suggestions archived in Step (A.4) of instance r′′, where
r′ ≤ r′′ < r holds. By the induction hypothesis, all honest archivers that send a
suggestion archived by an instance ordered after instance r′ use proposal w in
their suggestions.

In instance r, each honest selector j awaits a set of messages Lj from a
maximal-wait set in Step (S.1). Lj has to contain suggestions from a quorum
Qr consisting entirely of honest archivers (by the opaqueness property of A). By
the consistency property of A, the intersection of Qr and Qr′

contains a guarded
set, so Qr has to contain suggestions from a guarded set of honest archivers that
archived (r′, w) in instance r′ and that might have archived (r′′, w) in some later
instance. Therefore, selector j obtains w as a possible potential-proposal. Since
all honest archivers that archive a suggestion past instance r′ archive the same
proposal, there is a support-set for w with associated-instance-identifier r̄ ≥ r′.

There cannot be any other possible potential-proposal with an associated-
instance-identifier ordered larger than r′ since, by induction, no honest archiver
archives a suggestion with a different proposal later than r′. Therefore, each
honest selector selects proposal w. By Lemma 3, every honest archiver that
completes Step (A.4) archives the same suggestion. Thus, the proof holds for r.

Theorem 1 (Agreement). If two honest deciders decide, then they decide the
same proposal.

Proof. If the deciders decide in the same instance, the result follows fromLemma 1.
Say one decider decides v′ in instance r′, and another decider decides v in in-
stance r, with r′ < r. By Lemma 4, all honest archivers that archive in instance
r archive (r, v′). By the consistency property of A, an honest decider can only
decide (r, v′) in instance r, so v = v′.

5 Full Protocols

The skeletal algorithm described above does not specify how instances are cre-
ated, how broadcasts are done in steps (A.1), (S.4), and (A.5), what specific
extended quorum systems to use for A and Sr, how a selector j obtains propos-
als for Pj , or how j selects a proposal from Pj . We now show how Paxos [6],
the algorithm by Chandra and Toueg [7], and the early protocol by Michael
Ben-Or [8] resolve these questions.

5.1 Paxos

Paxos [6] was originally designed only for honest systems. In Paxos, any node
can create an instance r at any time, and that node becomes the leader of the
instance. The leader creates a unique instance-identifier r from its node identifier
along with a sequence number per node that is incremented for each new instance
created on that node. The leader runs both a proposer and a selector. Sr is a
leader extended quorum system consisting only of that selector.

The Building Blocks of Consensus 65

The leader starts the instance by broadcasting a prepare message containing
the instance identifier to all archivers. Upon receipt, an archiver i checks that
r > ri, and, if so, sets ri to r and proceeds with Step (A.1). Since there is only
one participant in Sr, the broadcast in (A.1) is actually a point-to-point message
back to the leader, now acting as selector. In Step (S.3), if the leader has to pick
a proposal from Pj , it selects the proposal by the local proposer. Thus, there is
no need for proposers to send their proposals to all selectors.

Unanimity and Validity follow directly from the absence of Byzantine par-
ticipants. To support Non-Blocking, Paxos has to assume that there is always
at least one correct node that can become a leader and create a new instance.
Consider a state in which some correct decider has not yet decided. Now con-
sider the following continuation of the run: one of the correct nodes creates a
new instance with an instance identifier higher than used before. Because there
are always correct nodes and there is an infinite number of instance identifiers,
this is always possible. The node sends a prepare message to all archivers. All
honest archivers start in Step (A.1) of the instance on receipt, so the selector at
the leader will receive enough select messages in Step (S.1) to continue. Due
to Lemma 3 and there being only one selector in Sr, all honest archivers archive
the same suggestion in Step (A.4). The deciders will each receive a unanimous
suggestion from a quorum of archivers in Step (D.1) and decide in Step (D.3).

5.2 Chandra-Toueg

The Chandra-Toueg algorithm [7] is another consensus protocol designed for
honest systems. It requires a coordinator in each instance; the role of the coordi-
nator is similar to the leader in Paxos. Unlike Paxos, Chandra-Toueg instances
are consecutively numbered 0, 1, The coordinator of each instance is deter-
mined by the instance number modulo the number of nodes in the system, so
the role of the coordinator shifts from node to node at the end of each instance.
Each node in the system is both a proposer and a archiver. For each instance r,
selector quorum Sr is the extended quorum consisting only of the coordinator
of that instance.

To start the protocol, a proposer sends a message containing a proposal to
all nodes. Upon receiving the first proposal, an archiver starts in instance 0 and
executes (A.1). The coordinator of each instance starts (S.1) upon receiving a
select message for that instance. In (S.3), Pi.pick(r) returns the first proposal
received by the coordinator. Archivers that successfully complete (A.2-5) move
to the next instance. Archivers must be prepared to time-out while awaiting an
archive message from the selector of a particular instance, because the selector
can fail. When this happens, archivers proceed to (A.1) in the next instance.
When an archiver receives an archive message with a larger instance number
than it has thus far received, it aborts the current instance and skips forward to
the instance identified in the archive message.

In the original description of the Chandra-Toueg algorithm, the coordinator
for an instance is the only decider for that instance. This necessitates an addi-
tional round of communication, where the coordinator broadcasts a decision so

66 Y.J. Song et al.

that all nodes become aware of the decision. The Chandra-Toueg algorithm can
be changed so that all nodes are deciders in all instances without affecting the
rest of the protocol. This eliminates one round of communication while increas-
ing the number of messages sent in (A.5) of the skeletal algorithm. This is similar
to the algorithm proposed in [13]. A comparison of the original Chandra-Toueg
algorithm and this modified version is given in [14].

As in the case of Paxos, Unanimity and Validity follow directly from the
absence of Byzantine participants. Non-blocking follows from that fact that a
honest, correct selector can always receive sufficient select messages in (S.1) to
continue. All honest archivers will always receive the same suggestion in (A.3),
since there is only one selector in each instance. If the coordinator for an in-
stance fails, then archivers for that instance will time-out and move to the next
instance.

5.3 Ben-Or

In this early protocol [8], each node runs a proposer, a selector, an archiver, and
a decider. Instances are numbered with consecutive integers. Proposals are either
“0” or “1” (that is, this is a binary consensus protocol), and each Pi = {0, 1}.
Pi.pick(r) selects the local proposer’s proposal for the first instance, or a random
one in later instances.

Each of the selectors, archivers, and deciders starts in instance 1 and loops.
The loop at selector j consists of steps (S.1) through (S.4), with rj incremented
right after Step (S.4). The loop at archiver i consists of steps (A.1-5), with ri

incremented after Step (A.4). The broadcasts in steps (A.1) and (A.5) are to the
same destination nodes and happen in consecutive steps, so they can be merged
into a single broadcast, resulting in just two broadcasts per instance. Finally,
the loop at decider k consists of steps (D.1) through (D.3), with rk incremented
after Step (D.3).

Sr is the same extended quorum system as A for every instance r; both consist
of all nodes and use a threshold quorum system. Ben-Or works equally well in
honest and Byzantine environments as long as opaqueness is satisfied. It is easily
shown that if a decider decides, then all other deciders decide either in the same
or the next instance.

Unanimity follows from the rule that selectors select the locally proposed
proposal in the first instance: if all selectors select the same proposal v, then by
Lemma 3 the archivers archive v, and, by opaqueness of A, the deciders decide
v. Validity is ensured by the rule that selectors pick the local proposal in the
first instance and random proposals in subsequent instances. Selectors have to
pick random proposals in an instance iff there was not a unanimous suggestion
computed in (A.3) of the previous instance. This can only happen if both of the
binary proposals have been proposed by some proposer. Non-Blocking follows
from the rule that honest selectors pick their proposals at random in all but the
first instance, so it is always possible that they pick the same proposal, after
which a decision in Step (D.3) is guaranteed because of opaqueness for A.

The Building Blocks of Consensus 67

6 Implementation and Evaluation

The descriptions of the Paxos, Chandra-Toueg, and Ben-Or protocols above
show that these protocols share common building blocks. Having observed their
similarities, we now investigate how their differences affect their performance. To
do this, we implemented the skeletal algorithm, and built each of the three pro-
tocols using different configurations of the algorithm. In this section, we present
the implementation and the performance of the three instantiations.

6.1 Implementation

We built a simple replicated logging service, consisting of a set of servers that
use epochs of consensus to agree on the sequence of values to add to the log.
Clients submit values to any server; that server then attempts to have that value
decided in the current epoch by proposing that value. When a value is decided
in an epoch, the client that submitted the value is informed of the epoch number
in which the value was decided, and servers move to the next epoch. Each server
maintains an internal queue of values it has received from clients but that are
not yet decided, and attempts to get the values decided in FIFO order.

Paxos requires a leader election mechanism that was not described in the
original protocol [6]. We explored two different leader election mechanisms. First,
we built a version of Paxos where each node that wants to propose a value simply
makes itself the leader. By having each node pick instance numbers for instances
where it is the leader from a disjoint set of instance numbers, we ensure that
each instance can only have one unique leader. We call this version of Paxos
GreedyPaxos.

We also built a variant of Paxos that uses a token-passing mechanism to
determine the leader. We call this version of Paxos TokenPaxos. The current
leader holds a token that is passed to other nodes when the leader no longer
has any local requests to commit. Token request and token passing messages are
piggy-backed on select and archive messages. Further details of this protocol
are outside the scope of this paper.

For the implementation of Chandra-Toueg, we modified the original algorithm
to have all nodes be deciders in all instances. As described in Section 5.2, this
avoids requiring deciders to broadcast a decision when a value is decided, thus
improving the performance of our particular application where all servers need
to learn about decisions.

All of our implementations use a simple threshold quorum system for the
archiver and decider quorums, as well as for Ben-Or’s selector quorums.

6.2 Experimental Setup

We evaluate the protocols using simulation. In our experiments, the logging
service consists of a set of 10 servers. 10 clients generate the workload. Each
client sends requests to the servers according to a Poisson distribution with a
mean λc requests per minute. Each client chooses a server at random and sends

68 Y.J. Song et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14

M
ea

n
La

te
nc

y
(m

s)

Requests per minute per client

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

M
ed

ia
n

La
te

nc
y

(m
s)

Requests per minute per client

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

Fig. 2. Mean time (left) and median time (right) to decide under varying request rates

its requests to that server. All client to server and server to server messages
have a latency that is given by a lognormal distribution with mean 100 ms and
standard deviation 20 ms. For each set of experiments, we measure the elapsed
time between when a server first receives a value from a client until the time
that the server learns the value has been decided.

6.3 Results

In the first set of experiments, we run the service with varying loads until 100
values are decided by the logging service. We vary the request rate λc from each
client from 0.5 requests per minute to 14 requests per minute. We report the
mean and median values of 100 decisions averaged over 8 runs of each experiment.

The Building Blocks of Consensus 69

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2 4 6 8 10 12 14

N
um

be
r

of
 m

es
sa

ge
s

Requests per minute per client

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2 4 6 8 10 12 14

N
um

be
r

of
 m

es
sa

ge
s

Failures per minute

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

Fig. 3. Communication overhead under varying request rates (left) and failure rates
(right)

Figure 2 shows the mean and the median latency for a single value to be
decided. The graphs show that as load increases, the time it takes for a value
to be decided increases gradually. At low loads, the performance of all four
algorithms is quite close. This is because in the ideal case, all four algorithms
take four rounds of communication for a value to be decided.

As load increases, performance degrades, because of contention between
servers trying to commit different values. GreedyPaxos consistently outperforms
TokenPaxos latency, particularly under heavy load. This is because selectors in
GreedyPaxos do not need to wait for the token before creating a new instance.
Under heavy load, each GreedyPaxos leader sends a prepare message in the
beginning of each epoch without having to wait. The leader with the largest in-
stance number wins and gets its value decided. TokenPaxos, on the other hand,

70 Y.J. Song et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14

M
ea

n
La

te
nc

y
(m

s)

Failures per minute

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14

M
ed

ia
n

La
te

nc
y

(m
s)

Failures per minute

GreedyPaxos
TokenPaxos

Ben-Or
Chandra-Toueg

Fig. 4. Mean time (left) and median time (right) to decide under varying failure rates

will always decide values of the node with the token before passing the token to
the next node with requests. This has two implications: i) if the leader keeps get-
ting new requests, other nodes can starve, and ii) one round of communication
overhead is incurred for passing the token.

The left graph in Figure 3 shows the number of messages that each protocol
uses to commit 100 values under different request rates. Ben-Or incurs a larger
overhead than the other protocols. This is because Ben-Or uses a selector quorum
that consists of all nodes rather than just a leader/coordinator, so (A.1) and (S.4)
of the skeletal algorithm send n2 messages in each instance, rather than just n
messages in Paxos and Chandra-Toueg.

Also observe that compared to TokenPaxos, GreedyPaxos sends more mes-
sages as load increases. Under heavy load, each GreedyPaxos node broadcasts a

The Building Blocks of Consensus 71

prepare message to all other nodes in the beginning of every round. This results
in n2 messages being sent rather than the n prepare messages that are sent in
the case of TokenPaxos.

Next we investigate the performance of each protocol under crash failures. We
model failure event occurrences as a Poisson distributed rate of λf failures per
minute. When a failure event occurred, we failed a random server until the end
of the epoch. To ensure that the system is able to make progress, we limit the
number of failures in an epoch to be less than half the number of servers in the
system in order to satisfy the threshold assumption of the quorum systems that
we use. Keeping the request rate from clients steady at 7 requests per minute
per client, we vary the failure rate from 0.5 failures per minute to 12 failures per
minute.

Figure 4 shows the mean and median decision latency for the four protocols
under varying failure rates. Note that GreedyPaxos and Ben-Or are not affected
significantly by server failures. Chandra-Toueg and TokenPaxos, on the other
hand, see significant performance degradation as the failure rate increases. This
is because Chandra-Toueg and TokenPaxos both depend on time-out to recover
from failures of particular nodes. In the case of Chandra-Toueg, failure of the
coordinator requires that all archivers time-out and move to the next instance;
in the case of TokenPaxos, if the node that is holding the token crashes, then a
time-out is required to generate a new token.

A comparison study presented by Hayabashibara et al. [15] found that Paxos
outperforms Chandra-Toueg under crash failures. We find that this result de-
pends on the leader election protocol used by Paxos. In our experiments, Greedy-
Paxos outperforms Chandra-Toueg, but TokenPaxos performs worse under cer-
tain failure scenarios.

The right graph in Figure 3 shows the message overhead of each protocol
under varying failure rates, clearly showing that the number of messages sent is
not significantly affected by failures.

7 Conclusion

We investigated several well-known consensus protocols and showed that they
share the same basic building blocks. We used the building blocks to develop
a skeletal algorithm that can be instantiated to obtain Paxos, Chandra-Toueg,
and Ben-Or consensus protocols simply by configuring the quorum systems that
are used, the way instances are started, and other protocol-specific details. We
implemented the skeletal algorithm and used it to instantiate Ben-Or, Chandra-
Toueg, and two variants of the Paxos algorithm. Simulation experiments using
those implementations allowed the performance differences between these algo-
rithms to be measured for different workloads and crash failures. This approach
thus provides a basis for understanding consensus protocols and comparing their
performance. The skeletal algorithm also provides a novel platform for exploring
other possible consensus protocols.

72 Y.J. Song et al.

References

1. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

2. Barborak, M., Malek, M.: The consensus problem in fault-tolerant computing.
ACM Computing Surveys 25(2) (1993)

3. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

4. Guerraoui, R., Raynal, M.: The information structure of indulgent consensus. In:
Proc. of 23rd IEEE International Conference on Distributed Computing Systems
(2003)

5. Guerraoui, R., Raynel, M.: The alpha of indulgent consensus. The Computer Jour-
nal (2006)

6. Lamport, L.: The part-time parliament. Trans. on Computer Systems 16(2), 133–
169 (1998)

7. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

8. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols. In: ACM SIGOPS-SIGACT. Proc. of the 2nd ACM Symp. on Principles
of Distributed Computing, Montreal, Quebec, pp. 27–30 (August 1983)

9. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. Trans. on
Programming Languages and Systems 4(3), 382–401 (1982)

10. Malkhi, D., Reiter, M.: Byzantine Quorum Systems. Distributed Computing 11,
203–213 (1998)

11. Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. SIAM
Journal on Computing 27(2), 423–447 (1998)

12. Song, Y.J., van Renesse, R., Schneider, F.B., Dolev, D.: Evolution vs. intelligent
design in consensus protocols. Technical Report CUL.CIS/TR2007-2082, Cornell
University (May 2007)

13. Mostéfaoui, A., Raynal, M.: Solving consensus using Chandra-Toueg’s unreliable
failure detectors: A general quorum-based approach. In: Proc. of the International
Symposium on Distributed Computing, pp. 49–63 (1999)

14. Urbán, P., Schiper, A.: Comparing distributed consensus algorithms. In: Proc. of
International Conference on Applied Simulation and Modelling, pp. 474–480 (2004)

15. Hayashibara, N., Urbán, P., Schiper, A., Katayama, T.: Performance comparison
between the Paxos and Chandra-Toueg consensus algorithms. In: Proc. of Inter-
national Arab Conference on Information Technology, Doha, Qatar, pp. 526–533
(December 2002)

	Introduction
	The Consensus Problem
	Building Blocks
	Instances
	Actors
	Extended Quorum Systems
	Guarded Proposal

	Assembling the Pieces
	The Skeletal Algorithm
	Agreement

	Full Protocols
	Paxos
	Chandra-Toueg
	Ben-Or

	Implementation and Evaluation
	Implementation
	Experimental Setup
	Results

	Conclusion

