Code-Partitioning Gossip

Lonnie Princehouse
Dept. of Computer Science
Cornell University
lonnie@cs.cornell.edu

ABSTRACT

Code-Partitioning Gossip (CPG) is a novel technique to
facilitate implementation and analysis of gossip protocols.
A gossip exchange is a pair-wise transaction between two
nodes; a gossip system executes an endless sequence of ex-
changes between nodes chosen by a randomized procedure.
Using CPG, the effects of a gossip exchange are succinctly
defined by a single function that atomically updates a pair
of node states based on their previous values. This func-
tion is automatically partitioned via program slicing into
executable code for the roles of gossip-initiator and gossip-
recipient, and networking code is added automatically. CPG
may have concrete benefits for protocol analysis and author-
ing composite gossip protocols.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems

General Terms
Design,Languages,Algorithms

Keywords

gossip protocol program slicing code partitioning

1. INTRODUCTION

Gossip protocols are a family of network protocols roughly
characterized by the following scenario: One node selects
another node at random from a pool of known peers (its
view). These two nodes exchange information, and one or
both update their internal states accordingly. The first node
waits for some interval before repeating the process. Nodes
may gossip concurrently and independently. It is not un-
common to have an upper bound on the size of data ex-
changed; this, combined with the predictable frequency of
gossip exchanges, results in a steady (and usually small) net-
work overhead that scales well as the network grows, and is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PLOS 09, October 11, 2009, Big Sky, Montana, USA.

Copyright 2009 ACM XXX-X-XXXXX-XXX-X/09/0010 ...$10.00.

Ken Birman
Dept. of Computer Science
Cornell University
ken@cs.cornell.edu

well-behaved in the presence of network congestion. In gen-
eral, gossip is well-suited to tasks that can be accomplished
using fixed bandwidth and for which probabilistic guaran-
tees suffice.

Gossip is used for a wide range of tasks. Some general
types of gossip protocols are:

Rumor mongering. Nodes seek to disseminate messages
by passing the messages to their neighbors who will,
in turn, pass them to theirs. As time passes, the prob-
ability that every node has a particular message ap-
proaches one. A system might use rumor mongering
to collect a complete set of something that is originally
spread across the network, such as database meta-
information[3] or a list of received packets[1].

Aggregation. Similar to rumor-mongering, but comput-
ing a function of data held at different nodes. Exam-
ples are: Approximating statistics about node capacity
throughout the network[5][6]; computing user-defined
aggregate queries[15].

Overlay maintenance. Systems such as distributed hash
tables often build dynamic routing overlays that must
be constantly updated as nodes enter and leave the
system. Gossip can be used to update views in such
a manner that the graph of node connectivity either
functions as the desired overlay, or can be used to
monitor some underlying overlay for purposes of adap-
tation and repair.

Peer sampling. Randomness of peer selection is impor-
tant for many gossip protocols. For large networks,
however, it is impractical for each node to store the
address of all other nodes in the system. Peer sam-
pling algorithms allow gossip nodes to sample values
maintained by their peers in a way that approximates
true random peer selection given only a fixed-size local
view.[11]

This paper concerns itself with both the analysis and im-
plementation of gossip systems. Accordingly, we consider
two different perspectives on gossip—that of the program-
mer, and that of the theorist.

The programmer formulates gossip with implementation
in mind. A gossip system uses two threads per node; one
active, one passive[8]. The active thread periodically initi-
ates a gossip exchange with a randomly selected peer, and
the passive thread awaits and reacts to connections. In this
paper, we use the terminology “sender” to refer to the active-
thread node that initiates a gossip exchange, and “receiver”

// Active thread,
do forever:
wait t seconds
b« selectPeer (o,)
send o, to b
receive o, from b
o4 «— updateg(oq,0p)

running on node a with state oq

-
// Passive thread, running on node b with state oy
do forever:

a «— awaitConnection

receive o, from a

send op to a

op +— update,(0a,0b)

Figure 1: Active and passive threads

to indicate the passive-thread recipient, even though both
nodes send and receive data. For brevity, all examples name
the sender a and the receiver b. Figure 1 contains pseudo-
code for the sender and receiver event loops. Note that
during an exchange, each node sends its state to the other,
and then computes a new state based on the pair of states.
In gossip terminology, this is a push-pull protocol, and it en-
compasses the more specific sets of push protocols (in which
only the sender pushes its state to the receiver) and pull pro-
tocols, in which state moves only from receiver to sender.
In contrast, the theorist frames gossip in more holistic
terms, asking, “How does the gossip exchange affect the state
of the system?”. Instead of two update functions o, «—
update, (04, 01) and o, < update, (04, 0b) separated by ugly
networking code, the theorist ignores the network and poses
the exchange as single unified update function, (q,0b) «—
update(oq,0p). Using this function, the theorist proves in-
teresting properties about her gossip algorithm. For exam-
ple, the theorist might prove that update is monotonic with
respect to some property of system state, and use this fact
in an inductive proof to show that an invariant always holds.
There are, of course, simplifying assumptions. The theo-
rist has presented this gossip exchange as an atomic trans-
action on system state. In reality, networks are unreliable
and nodes sometimes fail. The Two Generals tell us that a
node fundamentally has no way of knowing if its counterpart
has successfully completed the exchange; the best our nodes
can do is to atomically commit changes to their own state,
such that the failure of one node halfway through a gossip
exchange does not leave the other node with an inconsistant
state. Accordingly, the proofs must be expanded to account
for the possibility of failure, which may cause a gossip ex-
change to unpredictably udpate one, both, or none of the
states of its participants.
In this paper, we present Code-Partitioning Gossip (CPG),
a Programming Languages-inspired technique for the imple-
mentation of gossip protocols. CPG strives to reach a happy
medium between the programmer and the theorist. Using
CPG, the programmer writes a unified update function that
operates on pairs of states. This function is automatically
partitioned into update, and update,, and code for the active
and passive threads is synthesized. Networking code is in-
serted automatically, allowing systems to be easily re-tooled
for different network models and transports.
Code-Partitioning Gossip offers several possibilities. First,
it allows the programmer to create composite gossip proto-

© 0N oA W N

P T e = T)
© 0N OOk W N RO

public class Maxvalue {
private Address address;
public int value;

public Maxvalue(Address address, int value,
Set<Address> view) {
this.address = address;
this.value = value;
this.view = view;

}

@GossipSelectPeerUniform
private Set<Address> view;

@QGossipExchangeUpdate
public void update(Maxvalue b) {
value = b.value = max(value, b.value);
}
}

Figure 2: MAXVALUE protocol

cols using the familiar mechanisms of functional composition
and object oriented programming. Second, it affords the
theorist the opportunity to bring program analysis tools to
bear on the update function. Third, it lets the programmer
separate implementation details from protocol semantics.
This paper is organized as follows: Section 2 elaborates
on the design of CPG. Section 3 further describes the design
of Code-Partitioning Gossip and our prototype implementa-
tion. Section 4 discusses existing work as it relates to gossip
protocols and code-partitioning. Finally, Section 5 rumi-
nates on the implications and future directions of CPG.

2. DESIGN

Let the set of all nodes be N. For the purposes of Code-
Partitioning Gossip, we define a gossip protocol as the triplet,

State type A datatype. The set of all states is X.

selectPeer : X — N. Chooses a peer to gossip with based on
a node’s state. Allowed to be non-deterministic.

update : ¥? — Y2, Deterministic exchange update function.
Given a pair of node states, compute an updated pair.

Given such a protocol definition, the CPG runtime auto-
matically partitions update into update, and update,. Before
explaining exactly how this is done, we present as a simple
example the MAXVALUE protocol. In MAXVALUE, each
node stores an integer value. During a gossip exchange, both
nodes adopt the greater of their two values. MAXVALUE
runs on a fixed communication graph. All nodes eventually
converge to the maximum value in the system with high
probability.

Figure 2 contains the actual Java code for MAXVALUE as
implemented in our system. MAXVALUE is mostly ordinary
Java code: The gossip protocol is written as a class, and in-
stances of this class represent individual nodes. The only un-
usual features are the annotations GossipSelectPeerUniform
and GossipExchangeUpdate on lines 12 and 15. These an-
notations tag elements of the program for special treatment
by our runtime system. GossipSelectPeerUniform tells the
runtime that the member variable view is to be used for
uniform random peer selection, and GossipExchangeUpdate
marks the function update for automatic partitioning.

@GossipExchangeUpdate
public void update(Maxvalue b) {
value = b.value = max(value, b.value);

}

public void update_a(Maxvalue b) {
value = max(value, b.value);

public void update_b(Maxvalue a) {
value = max(a.value, value);

Figure 3: MAXVALUE automatic partition

We employ static program slicing[16] to accomplish this
partition. Briefly, program slicing attempts to solve the fol-
lowing problem: Given a program and a target value (as it
appears at some program point), return a subgraph of the
program’s control flow graph consisting only of statements
that contribute to the computation of the target value. This
CFG subgraph is called a “slice”, and is itself an executable
program. When executed, the slice computes the target
value exactly as the original program would have. CPG’s
program slicing is necessarily conservative, omitting state-
ments only if they are proven irrelevant.

Code-Partitioning Gossip generates two slices: one that
computes updated state o, for the sender, and one that
computes o}, for the receiver. These slices are effectively the
update, and update, functions seen earlier. Figure 3 shows
an example of the how MAXVALUE’s update function could
be partitioned. Code-Partitioning Gossip expects the update
function to be deterministic and to halt; the onus to enforce
these conditions is on the programmer.

This particular brand of program slicing—splitting a func-
tion between two nodes—raises some interesting questions.
The nodes cooperate initially to share their states, but pro-
gram slicing may reveal that only pieces of the other node’s
state are needed to compute update, or update,. For exam-
ple, view and address are part of MAXVALUE’s state, but
are not needed for the gossip update. Further, which pieces
of state are needed may only be known at runtime. Rather
than shipping the entire state in a single transaction, our
synthesis of the update, and update, functions could pro-
vide the opportunity to send state between nodes on de-
mand. Such a system might make the additional decisions
of whether to send any state speculatively and whether to
try to minimize bandwidth used or total number of messages
sent between nodes. However, these questions are not our
focus.

3. IMPLEMENTATION

In our prototype implementation, CPG protocols are writ-
ten in Java, with custom annotations used to designate a
protocol’s peer selection and exchange update behavior. We
considered creating a domain-specific language for gossip,
but ultimately decided against it on the grounds that Java
provides sufficient extensibility to accomplish our goals, and
many programmers are already familiar with Java. When a
Java class is loaded, the Code-Partitioning Gossip runtime
uses reflection to search for members tagged with one of sev-

eral special gossip annotations. The annotation GossipEx-
changeUpdate on a method causes the method to be par-
titioned and two new methods, representing the two slices
of the update method, are dynamically added to the class.
These functions are called to perform gossip exchanges by
active and passive gossip threads implemented by the Code-
Partitioning Gossip runtime.

Our prototype implementation of CPG has two phases of
analysis, both operating on the Java bytecode of a protocol
class. Running this analysis on bytecode rather than Java
source was a pragmatic decision—we felt it would be easier
to write a prototype using existing bytecode manipulation
tools—but it has some additional benefits, such as the po-
tential to write CPG gossip protocols in any language that
targets the JVM (e.g., Scala). For CPG, first the update
method is is sliced into active and passive methods that up-
date the states of two local node instances. Second, network
code is injected to retrieve state from the remote node when
it is needed. Several annotations are provided for peer se-
lection. GossipSelectPeerUniform selects a peer uniformly at
random from a set of addresses of other peers. GossipSe-
lectPeerWeighted lets the developer specify probability mass
weights (for protocols that require non-uniform random se-
lection, e.g., spatial gossip[9]). GossipSelectMethod desig-
nates a method to call directly for peer selection.

In order to use a gossip protocol, the developer creates an
instance of its class and instructs the Code-Partitioning Gos-
sip runtime to begin gossiping. While gossip proceeds qui-
etly in the background, the protocol instance can be used
like any other Java object by the encompassing Java pro-
gram. As a practical matter, nodes in our prototype wait
to finish one gossip exchange before engaging in another.
This mandates a system-imposed timeout for failed nodes
(or else a node would cease to gossip when it fails to receive
a response).

3.1 Example

We now present a more sophisticated example. Sliver[5]
is a slicing protocol. In a network where nodes have varying
capacities of some metric, Sliver assigns each node to one
of k groups of approximately equal total capacity. Nodes
provide a getSlice method that returns an estimate of their
current slice; this is computed as follows:

All nodes keep a set of (node identifier, capacity, times-
tamp) triples. During a gossip exchange, the sender trans-
mits its capacity to the receiver, and the receiver records
(sender, capacity, timestamp). To compute getSlice, a Sliver
node first purges any stale triples (either because they have
been superceded by new information about a node, or be-
cause their timestamps are too old). It then computes the
fraction of known nodes with lesser or equal capacity to it-
self. The current slice is obtained by multiplying this frac-
tion by the total number of slices £ and rounding to the
nearest integer.

Figure 4 shows Sliver as implemented under Code-Partitioning

Gossip.

4. RELATED WORK

We are aware of one API framework, GossipKit[10], that
uses standard object-oriented programming methodology to
furnish the developers of gossip protocols with reusable, mod-
ular gossip abstractions. Such a framework serves two pur-
poses: It provides plug-and-play gossip protocols that can

public class Sliver {

private class Rumor {
public Long timestamp;
public Double capacity;
Rumor (Double capacity) {
timestamp = new Date ().getTime ();
this.capacity = capacity;
}

}

private Address address; // This node’s address
private int k; // Number of slices
private Double capacity;

private long timeout;

// Everything we know about other mnodes’
// capacities

private HashMap<Address, Rumor> rumors;

public Sliver (int k, Double capacity ,
long timeout, Set<Address> view,
Address address) {
this.rumors = new HashMap<Address , Rumor>();
this.address = address;

this . k = k;

this.capacity = capacity;
this.view = view;
this.timeout = timeout;

}

@GossipSelectPeerUniform
public Set<Address> view; // known peers

@QGossipExchangeUpdate

public void update(Sliver b) {
// Tell the other node about this node’s
// capacity
b.rumors.put(address, new Rumor(capacity));

}

// Called by user to determine this node’s slice
public long getSlice () {
purgeExpiredRumors ();

long m = rumors.size ();

long B = 0; // number of known peers with
// capacity not greater than
// ours

for (Rumor i rumors . values ())
if (i.capacity <= capacity)
B++;
return StrictMath.round (k x*
(double) B / (double) m);
}

private void purgeExpiredRumors () {
// Delete ezxzpired rumors
long now = new Date ().getTime ();
for (HashMap . Entry<Address , Rumor> e
rumors . entrySet ()) {
Address peer = e.getKey ();
if (now — e.getValue ().timestamp < timeout)
rumors .remove (peer);

Figure 4: Sliver implementation

be used by developers (e.g., peer sampling), and it facilitates
development of gossip protocols by providing a skeletal gos-
sip runtime that can be extended via inheritance. We assert
that CPG has an advantage over such a toolkit in that CPG
lets the programmer describe a protocol at a higher level of
abstraction, namely the pair-wise updates of system state.
However, the toolkit approach may be easier to debug since
the bytecode run by CPG has been transformed by program
slicing.

A second class of related work seeks to generalize specific
kinds of gossip protocols. Two such systems are T-Man|[7]
and Astrolabe[15]. T-Man is a configurable gossip system
for the creation and maintenance of structured overlays. T-
Man imposes a user-defined sort order > over all nodes in
the system. Nodes maintain views of fixed size, sorted in this
order. When a T-Man node learns of another node x such
that = > y for some y € view, x replaces y. The views of
each node define the overlay graph. By supplying different
sorting functions, T-Man can form a truly surprising variety
of overlay toplogies.

Astrolabe organizes its nodes into a tree. The tree’s inner
nodes may contain user-defined aggregation functions that
compute some aggregate of the data stored in the node’s
children. Users of Astrolabe can then execute database-like
queries to evaluate these aggregates. T-Man and Astrolabe
do not have the same goals as CPG, so a direct comparison
is not possible. However, both T-Man and Astrolabe would
make excellent benchmarks if implemented using CPG. As-
trolabe, in particular, has a recursive structure that lends
itself well to CPG. Implementing these systems using CPG
is left for future work.

MACE[12] is a domain-specific language for authoring over-
lay systems, intended for writing overlays such as Chord[14],
Pastry[13], etc. MACE compiles into C++, and claims to
save a great deal of programmer effort and attain reason-
able performance. While it is not gossip-specific, we see no
reason that MACE could not be used to implement gossip
systems.

Regarding program slicing and automatic partitioning,
Jif/Split[17] and Swift[2] use such a technique to automat-
ically partition programs to run between client and server
according to information flow security labels on variables. If
anything, Code-Partitioning Gossip is much less ambitious
in the scope of its partitioning scheme: Jif/Split and Swift
must decide where and when to move data based on a set of
hard security constraints, whereas CPG has the locations of
variables as a given from the start. CPG differs from these
systems in that its pair-wise program slicing implicitly de-
fines the behavior for an n-node system.

5. CONCLUSIONS

The essential idea of Code-Partitioning Gossip is that of
writing a gossip exchange as a single atomic function, and
then automatically partitioning this function into code for
the roles of sender and receiver. We believe this technique
offers several advantages.

5.1 Composition

A distributed hash table system might make use of sev-
eral gossip protocols: A peer sampling protocol to draw ade-
quately random samples from its members, an overlay main-
tenance protocol to adjust the overlay according to node
arrival and departure, a counting protocol to estimate the

number of nodes in the system, and an aggregation proto-
col to estimate the most popular objects to allow nodes to
make better caching decisions. The status quo would im-
plement this bundle of protocols in one of two ways: Either
as a single monolithic protocol, or as four separate proto-
cols that operate independently, each running its own active
and passive threads. In this situation it is difficult to reap
any benefit from commonality in communication or compu-
tation without significant code rewriting, unless perhaps all
four protocols have been written using a middleware layer
that abstracts away low-level network code. Using Code-
Partitioning Gossip, however, the protocols are composed
prior to partitioning. Instead of trying to merge multiple
active and passive threads, we invoke each protocol’s update
method from within the a single superior update method,
which is then partitioned CPG allows protocols to be com-
posed in much the same way functions and objects are com-
posed in object oriented programming. This composition
can take the form of a top-level udpate function that calls the
update functions of sub-protocols, or of extending a proto-
col by inheriting it. We have a cursory implementation lay-
ered self-stabilizing protocols[4] using CPG, but more work
is needed to evaluate the real utility of CPG.

5.2 Analysis

Code-Partitioning Gossip also offers the possibility of us-
ing program analysis tools to analyze the behavior of gossip
protocols. Gossip protocols in the literature are often pre-
sented with dual representations: One as a low-level imple-
mentation proof-of-concept, and one high-level theoretical
representation used for analysis. Code-Partitioning Gossip
unifies these two representations by providing a represen-
tation that can be partitioned into a working implementa-
tion, but also is abstract enough to facilitate formal rea-
soning, notably by containing all stateful effects of a gossip
exchange within a single deterministic function. Program
analysis tools could be used to prove, for example, that if
some predicate P holds for an pair of node states before a
gossip exchange, it also holds afterwards, where predicate
P would be written in the same language as the protocol’s
implementation. We leave this as future work.

6. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments, and Danny Dolev for good discussions that in-
fluenced the content of this paper. This work was funded in
part by grants from NSF and AFRL, with additional sup-
port from the Intel Corporation.

7. REFERENCES

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,

M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Trans. Comput. Syst., 17(2):41-88, 1999.

[2] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,

L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(SOSP ’07), pages 31-44, October 2007.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In PODC ’87: Proceedings of the sixzth

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

annual ACM Symposium on Principles of distributed
computing, pages 1-12, New York, NY, USA, 1987.
ACM.

S. Dolev. Self-Stabilization. The MIT Press, 2000.

V. Gramoli, Y. Vigfusson, K. Birman, A.-M.
Kermarrec, and R. van Renesse. A fast distributed
slicing algorithm. In PODC ’08: Proceedings of the
twenty-seventh ACM symposium on Principles of
distributed computing, pages 427-427, New York, NY,
USA, 2008. ACM.

M. Haridasan and R. van Renesse. Gossip-based
distribution estimation in peer-to-peer networks. In
IPTPS 2008: Proceedings of the 7Tth International
Workshop on Peer-to-Peer Systems, 2008.

M. Jelasity and O. Babaoglu. T-man: Fast
gossip-based constructions of large-scale overlay
topologies. Technical report, 2004.

M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks,
volume 23(3) of ACM Transactions on Computer
Systems, pages 219-252. August 2005.

D. Kempe, J. Kleinberg, and A. Demers. Spatial
gossip and resource location protocols. pages 163—-172.
ACM Press, 2001.

S. Lin, F. Taiani, and G. S. Blair. Facilitating gossip
programming with the gossipkit framework. In DAIS,
pages 238-252, 2008.

L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay
networks: random walk methods. In PODC ’06:
Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing,
pages 123-132; New York, NY, USA, 2006. ACM.

A. Rodriguez, S. Bhat, C. Killian, D. Dostic, and

A. Vahdat. Macedon: Methodology for automatically
creating, evaluating, and designing overlay networks.
Technical report, Duke University, July 2003.

A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems, 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. pages
149-160, 2001.

R. Van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Trans. Comput. Syst., 21(2):164-206,
2003.

M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439-449. IEEE Computer Society, March 1981.
S. Zdancewic, L. Zheng, N. Nystrom, and A. C.
Myers. Untrusted hosts and confidentiality: Secure
program partitioning, 2001.

