
Optimizing Information Flow in the Gossip Objects
Platform

Ymir Vigfusson∗ Ken Birman Qi Huang Deepak P. Nataraj
IBM Haifa Research Lab

Mount Carmel
Haifa, Israel

ymirv@il.ibm.com

Department of Computer Science
Cornell University
Ithaca, New York

{ken,qhuang}@cs.cornell.edu, deepak.pn@gmail.com

ABSTRACT
Gossip-based protocols are commonly used for diffusing in-
formation in large-scale distributed applications. GO (Gos-
sip Objects) is a per-node gossip platform that we developed
in support of this class of protocols. GO allows nodes to join
multiple gossip groups without losing the appealing fixed
bandwidth guarantee of gossip protocols, and the platform
also optimizes latency in a principled manner. Our algo-
rithm is based on the observations that multiple rumors can
often be squeezed into a single IP packet, and that indirect
routing of rumors can speed up delivery.

We formalize these observations and develop a theoreti-
cal analysis of this algorithm. We have also implemented
GO, and studied the effectiveness of the algorithm by com-
paring it to the more standard random dissemination gossip
strategy.

Categories and Subject Descriptors
C.2.4 [Computer Communication]: Distributed Systems

Keywords
gossip, epidemic broadcast, multicast

1. INTRODUCTION
Gossip-based communication is commonly used in dis-

tributed systems to disseminate information and updates in
a scalable and robust manner [10, 15, 5]. The idea is simple:
Each node sends or exchanges information (known as ru-
mors) with a randomly chosen node in the system, allowing
messages to propagate to everybody in an “epidemic fash-
ion”. For this reason, gossip-based group communication is
also known as epidemic broadcast.

When considered in isolation, gossip protocols have a num-
ber of appealing properties.

∗Work done while the author was at Cornell University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LADIS ’09 Big Sky, MT
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

P1. Robustness. They can sustain high rates of message
loss and crash failures without reducing reliability or
throughput [5], as long as several assumptions about
the implementation and the node environment are sat-
isfied [1].

P2. Constant, balanced load. Each node initiates ex-
actly one message exchange per round, unlike leader-
based schemes in which a central node is responsible
for collecting and dispersing information. Since mes-
sage exchange happens at fixed intervals, network traf-
fic overhead is bounded [20].

P3. Simplicity. There is no need for careful synchroniza-
tion across nodes, specific hardware support like for IP
Multicast [9], or to maintain the health of a structured
overlay network. Gossip protocols are simple to write
and debug.

P4. Scalability. All of these properties are preserved when
the size of the system increases.

However, gossip protocols also have drawbacks. The most
commonly acknowledged are these: the basic protocol is
probabilistic meaning that some rumors may be delivered
late, although with low probability. The expected number
of rounds required for delivery in gossip protocols is logarith-
mic in the number of nodes. The latency of gossip protocols
is thus on average higher than can that provided by sys-
tems using hardware accelerated solutions like IP Multicast
[9]. Finally, gossip protocols support only the weak guar-
antee of eventual consistency — updates may arrive in any
order and the system will converge to a consistent state if
updates cease for a period of time. Applications that need
stronger consistency guarantees need to use more involved
and expensive message passing schemes [4], although relax-
ing consistency guarantees has become increasingly popular
in large-scale industrial applications such as Amazon’s Dy-
namo [8] and Yahoo!’s PNUTS [7].

But gossip also has a less-commonly recognized drawback.
A common assumption in the gossip literature is that all
nodes belong to a single gossip group, which we will also call
a gossip object. While sufficient in individual applications,
such as when replicating a database [10], our object-oriented
perspective suggests that nodes might use multiple objects
and hence belong to multiple gossip groups. The solution
is more involved than running multiple independent gossip
processes on the same node, because load now depends on
the number of concurrent processes on a node, which violates
property P2. Similarly, the trivial scheme of broadcasting

each message to all nodes in the system forces nodes to filter
out unwanted messages — an expensive operation if there
are many groups and typical nodes belong to just a few,
particularly if there are high rates of gossip [6].

We have built a per-node service called the Gossip Objects
platform (GO) which allows applications to join a multi-
tude of gossip groups in a simple fashion. GO provides
a multicast-like interface [9]: local applications can join or
leave gossip objects, and send or receive rumors via callback
handlers that are executed at particular rates. In the spirit
of property P2, the platform enforces a configurable per-
node bandwidth limit for gossip communication, and will
reject a join request if the added gossip traffic would cause
the limit to be exceeded. The maximum memory space used
by GO is also customizable.

To satisfy these goals and maximize performance, GO
incorporates some novel optimizations. Our first observa-
tion is that gossip messages are frequently short, perhaps
containing just a few tens of bytes. This is not surpris-
ing: many gossip systems push only rumor version numbers
to minimize waste [20, 2], so if the destination node does
not have the latest version of the rumor, it can request a
copy from the exchange node. An individual rumor header
and its version number can be as short as 12-16 bytes total.
The second observation is that there is negligible difference
in network overhead between a UDP datagram packet con-
taining 15 bytes or 1500 bytes, as long as the datagram is
not fragmented [21].

It follows from these observations that stacking multiple
rumors in a single datagram packet from node s to d is possi-
ble and imposes practically no additional network overhead.
The question then becomes: Which rumors should be stacked
in a packet? The obvious answer is to include rumors from
all the gossip objects of which both s and d are members.
GO takes this a step further: If s includes rumors for gossip
objects that d is not interested in, d might in turn propagate
these rumors to nodes that will benefit from them. We for-
malize rumor stacking and message indirection by defining
the utility of a rumor in section 2.

The GO platform can be used as a generic transport
layer for group-heavy distributed systems, supporting one-
to-many and many-to-many communication patterns out-
of-the-box. For instance, the GO interface can be eas-
ily extended to be a gossip-based publish/subscribe system
[11]. GO can also complement the low-reliability but low-
latency IP Multicast with a robust high-latency UDP multi-
cast primitive for improved group communication with ap-
plications in multi-player gaming, online lecture feeds, and
so forth [9]. GO was developed to become the transport
layer for Live Distributed Objects, a framework for abstract
components running distributed protocols that can be com-
posed easily to create custom and flexible live applications
or web pages [17, 3].

Our paper makes the following contributions.

• A natural extension of gossip protocols by supporting
multiple groups per node.

• A novel algorithm to exploit the similarity of gossip
groups to improve propagation speed and scalability.

• An evaluation of an implementation of the GO plat-
form on a real-world trace.

2. GOSSIP ALGORITHMS
Consider a system with a set N of n nodes and a set M

of m gossip objects denoted by {1, 2, . . . , m}. Each node i
belongs to some subset Ai of gossip objects. Let Oj denote
member set of gossip object j, defined as Oj := {i ∈ N : j ∈
Ai}. We let Ni denote the set of neighbors of i, defined as
S

j∈Ai
Oj .

A subset of nodes in a gossip object generate rumors.
Each rumor r consists of a payload and two attributes: (i)
r.dst ∈ M : the destination gossip object for which rumor r
is relevant, and (ii) r.ts ∈ N: the timestamp when the ru-
mor was created. A gossip message between a pair of nodes
contains a collection of at most L stacked rumors, where L
reflects the maximum transfer unit (MTU) for IP packets
before fragmentation kicks in. For example, if each rumor
has length of 100 bytes and the MTU is 1500 bytes, L is 15.

We will assume throughout this paper that each node i
knows the full membership of all its neighbors Ni. This as-
sumption is for theoretical clarity, and can be relaxed using
peer sampling techniques [13] or remote representatives [19].
Furthermore, large groups can likely be fragmented at a cost
of higher latency, although we leave this avenue of research
to future work. However, the types of applications for which
GO is appropriate, such as pub-sub systems or Live Objects
[17], will neither produce immensely large groups nor sustain
extreme rates of churn.

2.1 Random Dissemination
A gossip algorithm has two stages: a recipient selection

stage and a content selection stage. [15] For baseline com-
parison, we will consider the following straw man gossip al-
gorithm Random-Stacking running on each node i.

• Recipient selection: Pick a recipient d from Ni uni-
formly at random.

• Content selection: Pick a set of at most L unexpired
rumors uniformly at random.

We will also evaluate the effects of rumor stacking; Random

is a heuristic that packs only one random rumor per gossip
message.

2.2 Optimized Dissemination
As mentioned earlier, the selection strategy in Random

can be improved by sending rumors indirectly via other gos-
sip objects. Here, a triangular rumor specific to gossip object
j is sent from node s to a node d only in j′. Node d in turn
infects a node in the intersection of the two gossip objects.

j j’
s d

We will define the utility of including a rumor in a gossip
message which informally measures the“freshness”of the ru-
mor once it reaches the destination gossip object, such that
a “fresh” rumor has higher probability of infecting an unin-
fected node. If rumor r needs to travel via many hops before
reaching a node in r.dst, r might be known to most members
of r.dst by the time it reaches the destination object, and
thus the utility of including it in a message is limited. Ide-
ally, rumors that are “young” or “close” should have higher
utility.

2.2.1 Hitting Time
We make use of results on gossip within a single object.

Let define an epidemic on n hosts to be the following pro-
cess: One host in a fully-connected network of n nodes starts
out infected. Every round, each infected node picks another
node uniformly at random and infects it.

Definition 1. Let S(n, t) denote the number of nodes
that are susceptible (uninfected) after t rounds of an epi-
demic on n hosts.

To the best of our knowledge, the probability distribution
function for S(n, t) has no closed form. It is conjectured
in [10, 14] that E[S(n, t)] ≈ n exp(−t/n) for push-based
gossip and large n using mean-field equations, and that
E[S(n, t)] ≈ n exp(−2t) for push-pull. Here, we will assume
that S(n, t) is sharply concentrated around this mean, so
S(n, t) = n exp(−t/n) henceforth. Improved approxima-
tions, such as using look-up tables for simulated values of
S(n, t), can easily be plugged into the heuristic code.

Definition 2. The expected hitting time H(n, k, S) is
the expected number of rounds until we infect any of k special
nodes in an epidemic on n hosts if S(n, t) fraction of nodes
are susceptible in round t.1

If a gossip rumor r destined for some gossip object j ends
up in a different gossip object j′ that overlaps with j, then
the expected hitting time roughly approximates how many
rounds elapse before r infects a node in the intersection of
Oj and Oj′ . Two simplifying assumptions are at work here,
first that each node in j contacts only nodes within j in
each round, and second that r has high enough utility to be
included in all gossip messages exchanged within the group.

Let p(t) = 1 −
`

1 − k
n

´n−S(n,t)
denote the the probability

of infecting any of k special nodes at time t when S(n, t) are
susceptible. We derive an expression for H(n, k) akin to the
expectation of a geometrically distributed random variable.

H(n, k) =
∞

X

t=1

tp(t)

t−1
Y

ℓ=1

(1 − p(ℓ)),

which can be approximated by summing a constant number
T of terms from the infinite series, and by plugging in S(n, t)
from above.

2.2.2 Utility
Recall that each node i only tracks the membership of its

neighbors. What happens if i receives gossip message con-
taining a rumor r from an unknown gossip object j? To
be able to compute the utility of including r in a message
to a given neighbor, we will have nodes track the size and
the pairwise connectivity of gossip objects. Define a transi-
tion graph for propagation of rumors across gossip objects
as follows:

Definition 3. A transition graph G = (M, E) is an undi-
rected graph on the set of gossip objects, and E = {{j, j′} ∈
V ×V : Oj∩Oj′ 6= ∅}. Define the weight function w : E → R

as w({j, j′}) = |Oj ∩ Oj′ | for all {j, j′} ∈ E. Let Pj,j′ be
the set of simple paths between gossip objects j and j′ in the
transition graph G.

1We will write H(n, k) if S is clear from context.

We can now estimate the propagation time of a rumor by
computing the expected hitting time on a path in the tran-
sition graph G. A rumor may be diffused via different paths
in G; we will estimate the time taken by the shortest path.

Definition 4. Let P ∈ Pj,j′ be a path where P = (j =
p1, . . . , ps = j′). The expected delivery time on P is

D(P) =

s−1
X

k=1

H (|Opk
|, w ({pk, pk+1})) .

The expected delivery time from when a node i ∈ N includes
a rumor r in an outgoing message until it reaches another
node in r.dst is

D(i, r) = min
j∈Ai

min
P∈Pj,r.dst

D(P).

We can now define a utility function U to estimate how
beneficial it is to include a rumor r in a gossip message.

Definition 5. The utility Us(d, r, t) of including rumor
r in a gossip message from node s to d at time t is the
expected fraction of nodes in gossip object j = r.dst that are
still susceptible at time t′ = t + D(s, r) when we expect it to
be delivered. More precisely,

Us(d, r, t) =
S(|Oj |, t

′)

|Oj |
.

2.2.3 The GO Algorithm
The following code is run by client on node s at time t.

• Recipient selection: Pick a recipient d uniformly at
random from a random gossip object Oj from As.

• Content selection: Calculate the utility Us(d, r, t)
for each unexpired rumor r. Pick L rumors at random
from the set of unexpired rumors so that the probabil-
ity of including rumor r is proportional to its utility
Us(d, r, t).

In order to compute the utility of a rumor, each node
needs to maintain complete information about the transi-
tion graph and the sizes of gossip objects. We describe the
protocol that maintains this state in section 3.2. The cost
of storing and maintaining such a graph may become pro-
hibitive for very large networks. We intend GO to remedy
this potential scalability issue by maintaining only a local
view of the transition graph, based on the observation that
if a rumor belongs to distant gossip object with respect to
the transition graph, then its utility is automatically low
and the rumor could be discarded. Evaluating the trade-off
between the view size and benefit from the above optimiza-
tions is a work in progress.

2.3 Gossip Rates and Memory Use
The above model can be generalized to allow gossip ob-

jects to gossip at different rates. Let λj be the rate at which
new messages are generated by nodes in gossip object j, and
Ri the rate at which the GO platform gossips at node i.

For simplicity, we have implicitly assumed that the all
platforms gossip at the same fixed rate R, and that this
rate is “fast enough” to keep up with all the rumors that are
generated in the different gossip objects. Viewing a gossip
object as a queue of rumors that arrive according to a Pois-
son process, it follows from Little’s law [16] that the average
rate at which node i receives rumors, Ri, cannot be less

Rumor Queue Membership
Component

Gossip Mechanism
Event Loop
GO Heuristic

N e t w o r k

GO Plat form

App App AppApp

Node

Figure 1: The GO Platform.

than the rate λj of message production in j if rumors are to
be diffused to all interested parties in finite time with finite
memory. In the worst case there is no exploitable overlap
between gossip objects, in which case we require R to be at
least maxi∈N

P

j∈Ai
λj . Furthermore, the amount of mem-

ory required is at least maxi∈N

P

j∈Ai
O (log |Oj |) λj since

rumors take logarithmic time on average to be disseminated
within a given gossip object.

The GO platform dynamically adjusts its gossip rate based
on an exponential average of the rate of incoming messages
per group. The platform speed is set to match that of the
group with the highest incoming rate. Furthermore, GO en-
forces customizable upper bounds on both the memory use
and gossip rate (and hence bandwidth), rejecting applica-
tions from joining gossip objects that would cause either of
these limits to be violated. Rumors are stored in a priority
queue based on their maximum possible utility; if the ru-
mors in the queue exceed the memory bound then the least
beneficial rumors are discarded.

3. PLATFORM IMPLEMENTATION
The GO platform is a per-node service that provides gos-

sip to applications via a multicast-like interface. The plat-
form constitutes three major parts: the membership com-
ponent, the rumor queue and the gossip mechanism, as il-
lustrated in figure 1.

GO exports a simple interface to applications. Applica-
tions first contact the platform via a client library or an IPC
connection. An application can then join (or leave) gossip
objects by providing the name of the group, and a poll rate
r. Note that a join request might be rejected. An applica-
tion can start a rumor by adding it to an outgoing rumors
queue which is polled at rate R (or the declared poll rate
in the gossip object) using the send primitive. Rumors are
received via a recv callback handler which is called by GO
when data is available.

3.1 Bootstrapping
We assume that a directory service (DS), similar to DNS

or LDAP, is available for GO users. The DS tracks a ran-
dom subset of members in each group, the size of which
is customizable. When a GO node i receives a request by
one of its applications to join gossip object j, i sends the
identifier for j (a string) to the DS which in turn returns a
random node i′ ∈ Oj (if any). Node i then contacts i′ to get
the current state of gossip object j: (i) the set Oj , (ii) full
membership of nodes in Oj , and (iii) the subgraph spanned

by j and its neighbors in the transition graph G along with
weights. If node i is booting from scratch, it gets the full
transition graph from i′.

3.2 Gossip Mechanism and Membership
GO’s main loop runs periodically, receives gossip mes-

sages from other messages and adds rumors to the rumor
queue, and finally runs the GO algorithm (from section
2.2.3) to send a gossip message to a randomly chosen neigh-
bor.

Each GO node i maintains the membership information
for all the nodes in Ai (local state). and also tracks the
transition graph G and gossip group sizes (remote state), as
discussed in section 2. GO maintains both pieces of state
via gossip.

Remote state. After bootstrapping, all nodes join a
dedicated gossip object j∗ on which nodes communicate up-
dates to the transition graph. Let P be a global parameter
that controls the rate of system-wide updates, and should
reflect both the anticipated level of churn and membership
changes in the system, and the O(log n) gossip dissemina-
tion latency constant. Every P log |Oj | rounds, some node
i in j starts a rumor r in j∗ that contains the current size
of Oj and overlap sizes of Oj and j’s neighboring gossip ob-
jects, as long as this information needs updating. Instead
of picking i via leader election, each node in Oj starts their
version of rumor r with probability 1/|Oj |. In expectation,
only one node will start a rumor in j∗ for each gossip object.

Local state. When node i joins or changes its member-
ship, this information is announced to each gossip object in
Ai as a special system rumor. We rate limit the frequency
of these changes by allowing nodes to only make such an-
nouncements every P rounds.

3.3 Rumor Queue
As mentioned in section 2.3, GO tracks a bounded set

of rumors in a priority queue. The queue is populated
by rumors received by the gossip mechanism (remote ru-
mors), or by application requests (local rumors). The pri-
ority of rumor r in the rumor queue for node s at time t
is maxd∈Ni

Us(d, r, t), since rumors with lowest maximum
utility are least likely to be included in any gossip messages.
Because priorities change with time, we speed up the recom-
putation by storing the value of argmaxd∈Ni

D(s, r).

4. EVALUATION
GO is implemented as a Windows Remoting service us-

ing the .NET framework. We evaluate GO on a trace of
a widely deployed web-management application, IBM Web-
Sphere. This trace shows WebSphere’s patterns of group
membership changes and group communication in connec-
tion with a whiteboard abstraction used heavily by the prod-
uct, and thus is a good match with the kinds of applications
for which GO is intended.

4.1 Trace Details
IBM WebSphere [12] is a widely deployed commercial ap-

plication for running and managing web applications. A
WebSphere cell may contain hundreds of servers, on top of
which application clusters are deployed. Cell management,
which entails workload balancing, dynamic configuration,
inter-cluster messaging and performance measurements, is
implemented by a form of built-in whiteboard, which in turn

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 fr

es
h

ru
m

or
s

re
ce

iv
ed

Time (rounds)

GO
GO w/o utility

Random w/Stacking
Random

(a)

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 M

sg
s

S
en

t/R
ou

nd

Round

GO
GO w/o utility

Random w/Stacking
Random

(b)

Figure 2: IBM WebSphere Trace. (a) The number of new rumors received by nodes in the system over time,
and (b) the message rate over time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 600k 1200k 1800k 2400k 3000k

N
um

be
r

of
 r

um
or

s
re

ce
iv

ed

Number of messages sent

GO
GO w/o utility

Random w/Stacking
Random

Figure 3: IBM WebSphere Trace. The number of
new rumors received by nodes in the system as a
function of the number of messages sent.

interfaces to the underlying communication layer via a pub-
sub [11] interface. IBM produced the trace by deploying 127
WebSphere nodes constituting 30 application clusters for a
period of 52 minutes, and recording topic subscriptions as
well as the messages sent by every node. An average process
subscribed to 474 topics and posted to 280 topics, and there
were a total of 1,364 topics with at least one subscribers
and at least one publisher used to disseminate messages.
The topic membership is strongly correlated, in fact 26 top-
ics contain at least 121 of the 127 nodes. On the other hand,
none of the remaining topics contained more than 10 nodes.

4.2 Experimental set-up
We deployed GO on 64 nodes, and ran two instances of

the platform on each node. We used the WebSphere trace
to drive our simulation by assigning a gossip group to each
topic, and each gossip round corresponds to one second of
the trace. All publishers and subscribers for the topic are
members of the corresponding gossip group. Each rumor is

100 bytes, meaning that up to 15 rumors can be stacked in
a message. Rumors are expired 100 rounds after they were
first sent to limit memory and bandwidth use.

Our experiment simulates a “port” of WebSphere to run
over each of the following dissemination mechanisms.

• GO: The GO platform with traffic adaptivity which
uses the GO algorithm for content selection.

• GO without utility: The GO platform with traffic
adaptivity which uses Random-Stacking heuristic for
content selection.

• Random: Independent gossip objects using the Ran-

dom heuristic with no benefit from any form of plat-
form support or traffic adaptivity.

• Random-Stacking: Independent gossip objects us-
ing the Random-Stacking heuristic. In contrast to
GO without utility, each group runs at its own native
gossip rate, sending its own rumors but also including
additional randomly selected rumors up to the mes-
sage MTU size, without regard for the expected value
of those rumors at the destination node.

4.3 Discussion
Figure 2(a) shows the total number of rumors received

by nodes in the system over time as the trace is played.
Starting at round 3,000, a surge in the message rates of
the WebSphere trace causes the different mechanisms to di-
verge. We observe that both Random-Stacking and GO
are able to successfully disseminate all the messages sent
in the trace, whereas Random and GO without utility fall
behind. The message rates between Random and Random-

Stacking are identical, as shown in figure 2(b), allowing us
to conclude that stacking is effective for rumor dissemination
in the WebSphere trace.

Now consider the discrepancy in performance between
GO with and without using the utility based GO algorithm.
The surge in the trace starting at round 3,000 consists pri-
marily of messages being sent on groups of size two (unicast
traffic). Without carefully handling such traffic patterns,
unicast rumors pile up while the platform gossips with nodes
that have marginal benefit from the rumors exchanged, and

gradually time out. We see that the GO algorithm avoids
this problem as it packs relevant rumors into the messages,
whereas randomly selecting rumors for inclusion in those
same messages is insufficient.

An important benefit of GO can be seen in figure 2(b),
which shows that the GO platform limits message rates
— sending at most 250 messages/round in total whereas
the random approaches send on average roughly 600 mes-
sages/round with spikes up to 1100 messages/round. This
corresponds to the goal set out in the introduction of bound-
ing platform load despite the number of groups scaling up.

An even bigger win for GO can be seen in figure 4, which
shows the number of new rumors delivered versus the num-
ber of messages exchanged. The GO platform sends 3.9
times fewer messages than the näıve per-group Random-

Stacking dissemination strategy, while delivering rumors
just as rapidly.

5. RELATED WORK
The pioneering work by Demers et al. [10] used gossip

protocols to enable a replicated database to converge to a
consistent state despite node failures or network partitions.
The repertoire of systems that have since employed gossip
protocols is impressive [2, 20, 19, 11, 8, 18], although most
work is focused on application-specific use of gossip instead
of providing gossip communication as a fundamental service.
The GO platform realizes the vision of a self-managed event
notification platform first presented in [3].

6. CONCLUSION
The GO platform generalizes gossip protocols to allow

them to join multiple groups without losing the appealing
fixed bandwidth guarantee of gossip protocols, and simulta-
neously optimizing latency in a principled way. Our algo-
rithm is based on the observations that a single IP packet
can contain multiple rumors, and that indirect routing of
rumors can accelerate delivery. Experimental evaluation on
a real-life trace demonstrates the competitiveness of our al-
gorithm, matching the delivery speed of per-group random
gossip dissemination yet sending in total 3.9 times fewer
messages.

Our vision is that GO can become a key component in
various group-heavy distributed services, such as a robust
multicast or publish-subscribe layer, and an integral layer of
the Live Distributed Objects framework.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for insightful com-

ments. Krzys Ostrowski and Danny Dolev were extremely
helpful in the design of the basic GO platform. We are also
grateful to Anne-Marie Kermarrec, Davide Frey and Martin
Bertier for contributions at an earlier stage of this project.
GO was supported in part by grants from AFOSR, AFRL,
NSF, Intel Corporation and Yahoo!.

8. REFERENCES
[1] L. Alvisi, J. Doumen, R. Guerraoui, B. Koldehofe,

H. C. Li, R. van Renesse, and G. Trédan. How robust
are gossip-based communication protocols? Operating
Systems Review, 41(5):14–18, 2007.

[2] M. Balakrishnan, K. P. Birman, A. Phanishayee, and
S. Pleisch. Ricochet: Lateral error correction for
time-critical multicast. In NSDI. USENIX, 2007.

[3] K. Birman, A.-M. Kermarrec, K. Ostrowski,
M. Bertier, D. Dolev, and R. van Renesse. Exploiting
gossip for self-management in scalable event
notification systems. Distributed Event Processing
Systems and Architecture Workshop (DEPSA), 2007.

[4] K. P. Birman. Replication and fault-tolerance in the
isis system. In SOSP, pages 79–86, 1985.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systems, 17:41–88, 1998.

[6] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman,
H. Nelken, J. Satran, and P. Vortman. High
throughput reliable message dissemination. In SAC,
pages 322–327, 2004.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, 2008.

[8] G. Decandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, pages 205–220, New York, NY, USA, 2007.
ACM Press.

[9] S. Deering. Host Extensions for IP Multicasting. RFC
1112, August 1989.

[10] A. J. Demers, D. H. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. E. Sturgis, D. C. Swinehart,
and D. B. Terry. Epidemic algorithms for replicated
database maintenance. In PODC, pages 1–12, 1987.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[12] IBM. WebSphere. http://www-01.ibm.com/
software/webservers/appserv/was/, 2008.

[13] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
Experimental evaluation of unstructured gossip-based
implementations. In Middleware, Toronto, Canada,
October 2004.

[14] R. Karp, C. Schindelhauer, S. Shenker, and
B. Vocking. Randomized rumor spreading. In FOCS,
pages 565–574, 2000.

[15] D. Kempe, J. M. Kleinberg, and A. J. Demers. Spatial
gossip and resource location protocols. In STOC,
pages 163–172, 2001.

[16] J. D. C. Little. A proof for the queuing formula:
L = λW . Operations Research, 9(3):383–387, 1961.

[17] K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn.
Programming with live distributed objects. In
J. Vitek, editor, ECOOP, volume 5142 of Lecture
Notes in Computer Science, pages 463–489. Springer,
2008.

[18] L. Rodrigues, U. D. Lisboa, S. Handurukande,
J. Pereira, J. P. U. do Minho, R. Guerraoui, and
A.-M. Kermarrec. Adaptive gossip-based broadcast. In
DSN, pages 47–56, 2003.

[19] R. van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Trans. Comput. Syst., 21(2):164–206,
May 2003.

[20] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. Technical Report
TR98-1687, August, 1998.

[21] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-net: A user-level network interface for parallel and
distributed computing. In SOSP, pages 40–53, 1995.

