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ABSTRACT 

This paper reports on the development of EPOCHS, the 
Electric Power and Communication Synchronizing Simu-
lator, a distributed simulation environment. Existing elec-
tric power simulation tools do a good job of modeling 
power systems of the past, which were controlled as large 
regional power pools without significant communication 
elements. As power systems increasingly turn to protection 
and control systems that make use of computer networks, 
existing power simulators are less and less capable of pre-
dicting the likely behavior of large power grids. Similarly, 
the tools used to evaluate new communication protocols 
and systems have been developed without any attention to 
the roles they might play in power scenarios. EPOCHS 
utilizes multiple research and commercial off-the-shelf 
(COTS) systems to bridge the gap. EPOCHS is also nota-
ble for allowing users to transparently encapsulate complex 
system behavior that bridges multiple domains through the 
use of a simple agent-based framework. 

1 INTRODUCTION 

This paper presents EPOCHS, the Electric Power and 
Communication Synchronizing Simulator, a combined 
simulation system, or federation, that links the 
PSCAD/EMTDC electromagnetic transient simulator, the 
PSLF electromechanical transient simulation engine, and 
the Network Simulator 2 (NS2) communication simulator. 
Each of these simulators is in some sense the best within 
its class. PSCAD provides extremely detailed simulations 
of power systems containing up to several hundred buses, 
and has been extensively validated through experiments 
comparing the behavior of PSCAD simulations with the 
behavior of real power systems. PSLF is used by electric 
utilities to simulate real-world situations and has under-
gone extensive validation. NS2 is the most widely used and 
trusted simulator for the Internet, and includes very high 
quality simulations of standard protocols like TCP and of 
standard Internet topologies, such as transit-stub configura-
tions. Interesting issues arose during the creation of 
EPOCHS because none of its components were designed 
for simulation interoperability. 
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Using an approach like the DOD’s High Level Archi-
tecture (HLA) (Kuhl, 1999) to link disparate simulation 
engines has many benefits. We live in an increasingly in-
terconnected world where multiple domains such as water, 
power, and network communication can each affect the 
other. Yet, few standalone simulators exist that capture 
these inter-domain worlds. Constructing a combined simu-
lation engine is oftentimes inordinately time-consuming 
and expensive. This is particularly true when simulations 
have both continuous and discrete-event components. An 
alternative is to link multiple simulations (federates) into a 
distributed environment (federation). Using this approach 
to combining multiple simulators for use in inter-domain 
situations is becoming more common. Commercial off-the-
shelf simulation (COTS) systems are popular in many 
fields due to their rich feature sets, ease of use, and cost ef-
fectiveness. However, the lack of source code availability 
can be a hurdle to their use in federated simulation sys-
tems. This can be a significant handicap in areas where the 
most trusted systems are COTS software packages and 
built-in support for federating these simulators has not 
been implemented. Notable case studies federating COTS 
simulation software in an HLA or similar environment in 
the areas of supply chain manufacturing and manufacturing 
simulation have been performed in the GRIDS project 
(Taylor, 2001), in (Tucci, 2001)’s HLA compliance pro-
ject, and in Strabburger’s SLX federation (Strabburger, 
1999), but the documented use of commercial simulation 
systems in federations is still relatively rare. Additionally, 
once a group of simulators have been federated, casual 
modelers may find the added complexity of the new simu-
lation platform difficult to manage. These issues were 
foremost in our thoughts during the development of the 
EPOCHS system. 

The technology underlying our work illustrates how 
non-intrusive techniques can be used to federate simulation 
engines using only the built-in Application Programming 
Interfaces (APIs). In addition, our agent-based framework 
hides the complexity involved in the combined simulation 
system making it easy for users to design new power sce-
narios involving communication. We believe that 
EPOCHS serves as an important case that could be applied 
to many settings such as air traffic control, banking, medi-
cal systems, military command and control systems, and 
other forms of mixed-mode critical infrastructure. 

This paper is structured as follows. In section 2, we 
review background material that motivated the creation of 
EPOCHS and present the system’s architecture. In section 
3, we outline our agent framework. The methods used to 
federate the commercial and high quality research simula-
tion components are discussed in section 4. We go on to 
describe a case study that has been developed and run on 
the EPOCHS platform in section 5. Finally, the paper ends 
with our conclusions in section 6. 

2 EPOCHS 

2.1 Motivation 

An accurate understanding of an electric power system is 
necessary to have any confidence that it will operate relia-
bly under the conditions that may arise in the field. Yet, 
electric power simulators today do not model the network 
communication that is being increasingly deployed in 
modern protection and control systems.  

Traditional protection systems nearly always make de-
cisions based on local measurements, and conventional 
control systems make use of slow communication systems 
that operated in a predictable manner. It has not been nec-
essary to simulate communication in order to accurately 
model these electric power systems. However, over the last 
decade, power systems have been operated ever closer to 
their transmission, generation, and stability limits. Protec-
tion and control systems are being placed under a corre-
spondingly greater strain. Power engineers have begun to 
conclude that the use of communication networks based on 
Internet standards is a natural choice to improve both. Yet, 
communication protocols and standards developed by the 
networking community were never thought to be used in 
power scenarios. There is a real concern that new protec-
tion and control systems will be deployed without fully 
understanding the issues that will arise from their use. 

New kinds of simulation and evaluation tools are 
needed that are capable of bridging the gap, by providing 
high-quality simulations of electric power scenarios while 
simultaneously modeling the ways that computer commu-
nications protocols behave in realistic networks, con-
fronted with realistic scenarios, including load surges, out-
ages, and other forms of dynamic stress. 

2.2 Overview 

EPOCHS is a distributed simulation platform that links 
commercial and high quality research off-the-shelf simula-
tors through the use of a Runtime Infrastructure (RTI) to 
allow modelers to investigate electric power scenarios that 
involve network communication. One goal of the EPOCHS 
platform is to minimize the intrusiveness of the simulation 
platform on users that are unfamiliar with its components. 
It does so by allowing complex behavior to be embedded 
within agents that can read and modify simulation vari-
ables by interacting with a module called the Agent Head-
quarters, or AgentHQ, that hides the details in the other 
simulation components. In the case of electric power sys-
tems involving network communication, this agent frame-
work is a quite natural one since hardware support for 
software agents exists in the power system today. 

EPOCHS seamlessly links its three off-the-shelf simu-
lation systems from a modeler’s perspective, enabling them 
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to investigate power protection and control scenarios that 
combine communication with real-time sensing of the state 
of a power grid and real-time response. For example, sup-
pose that a new protection protocol were deployed in a 
power system, and was known to operate correctly pro-
vided that the input data used by the control algorithm was 
accurate. EPOCHS will let us understand how that protocol 
might behave when running over TCP while other users 
move large data files through shared network links and 
routers – behaviors known to trigger delays and congestion 
control in the TCP protocol. Similarly, we are able to use 
EPOCHS to compare different options for running the 
same protection protocol (e.g. over TCP, over UDP, over 
various QoS mechanisms), and to understand how failures 
might impact power systems protection and control. 

Broadly, EPOCHS is particularly valuable for evaluat-
ing the communications requirements of new protection 
and control schemes and the impact of common Internet 
behavior, such as TCP congestion control, on power sys-
tem operation. Such information will help designers of fu-
ture power systems’ communications networks make ap-
propriate design decisions, and will help designers of new 
control and protection protocols deploy them with confi-
dence. 

2.3 Architecture 

Recent work centering on combining, or federating, simu-
lation systems has focused on the use of the High Level 
Architecture (HLA). HLA is an architecture that can be 
used to combine individual simulations, known as feder-
ates, together into combined simulators known as federa-
tions. The “glue” that holds these combinations together is 
a central component known as a Runtime Infrastructure 
(RTI). The RTI routes all messages between simulation 
components and is responsible for making sure that simula-
tion time is appropriately synchronized. HLA’s main 
drawback is that it can be very difficult to modify existing 
simulations to conform to its specification. Many fields 
make heavy use of COTS software and do not have the 
luxury of source code availability. Additionally, HLA can 
be an inefficient means of combining federates together. 
The system is based on a publish-subscribe mechanism 
where any federate subscribing to another will receive all 
of its updated information whether it is needed or not.  

With this in mind, we created a federated simulation 
system that operates in the spirit of the HLA, but that uses 
our own interface for easier implementation in the current 
EPOCHS implementation. EPOCHS’ architecture is shown 
in Fig. 1. This system consists of the following compo-
nents: 

NS2

RTI

   AgentHQ

PSLF
PSCAD/
EMTD

Agent

Agent

Agent

 
 

Fig. 1 The Relationship Between EPOCHS’s Five Compo-
nents 

• PSCAD/EMTDC 

PSCAD/EMTDC is used for electromagnetic transient 
simulation. EMTDC is a well-known electric power simu-
lator. One of its main strengths is its ability to accurately 
simulate power system electromagnetic transients. That is, 
EMTDC models short-duration time-domain electric 
power responses. PSCAD is a graphical interface that is 
used to simplify the development of EMTDC scenarios. 
PSCAD is produced by the Manitoba HVDC Research 
Centre (Manitoba HVDC Research Centre, 1998).  

EMTDC simulates power system scenarios in con-
tinuous time by solving a series of differential equations in 
a time-stepped manner. It has very detailed electrical mod-
els making it well-suited to electromagnetic transient in-
vestigations.  

• PSLF 

PSLF is used for electromechanical transient simula-
tion. PSLF can simulate power systems with tens of thou-
sands of nodes and is widely used by electric utilities to 
model electromechanical stability scenarios (General Elec-
tric, 2003). It models large systems in less detail than that 
available in PSCAD/EMTDC making it better-suited for 
long-running scenarios. It simulates power systems in con-
tinuous time by solving differential equations in a time-
stepped manner that is similar to that employed by 
PSCAD/EMTDC.  

• NS2 

Network Simulator 2 (NS2) is an event-driven 
communication network simulator that was created 
through a joint effort between the University of California 
at Berkeley, Lawrence Berkeley Labs, the University of 
Southern California, and Xerox PARC. NS2 is a high-
quality simulator that allows the creation of a wide variety 
of communications scenarios. It has built-in support for the 
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most widely used network protocols and for the most 
popular research protocols. It is particularly valuable when 
studying TCP/IP behavior within IP-based networks due to 
its detailed models (Breslau, 2000). NS2 is able to simulate 
the behavior of these protocols even under various forms 
of stress, such as might be caused by competition for net-
work resources when multiple applications share a network 
and communicate over the same routers and communica-
tion links, the impact of failures including router failures, 
link failures, or denial of service attacks. It can even cap-
ture the normal dynamics resulting from relaying messages 
with real-time data rates through many layers of routers. 
This is particularly important due to TCP’s early adoption 
in new standards such as the Utility Communications Ar-
chitecture (UCA) within the electric power community 
(Adamiak, 1999).  

• AgentHQ 

AgentHQ is a module that we developed to present a uni-
fied environment to our agents and acts as a proxy for 
those agents when interacting with other EPOCHS compo-
nents. Through it, the agents can get and set power system 
values and send and receive messages to one another. 
AgentHQ is a discrete-event system. Events are processed 
as they occur and routed to the agents that are affected by 
them. 

• Runtime Infrastructure (RTI) 

The RTI acts as the “glue” between all other components. 
It is responsible for simulation synchronization and for 
routing communication between EPOCHS components. A 
firm requirement placed on any simulation system is that 
no event can be processed with a time stamp earlier than 
one that has already been completed. This makes good 
sense and is easy to enforce in sequential simulators, but 
issues arise when making use of distributed simulation sys-
tems. Many methods exist for dealing with this matter in 
the parallel and distributed simulation research community 
(Fujimoto, 2000). We employ a time-stepped model, one 
the simplest techniques for component synchronization, in 
our current system when running EPOCHS scenarios. 
Time steps are user-selectable and can be chosen depend-
ing on the granularity of a given case. Simulations can use 
a short time between synchronization points to compensate 
for the errors introduced by the decoupled simulation ap-
proach or can use larger time steps for faster execution.  

2.4 Component Interaction 

The synchronization between the various simulation com-
ponents follows a simple algorithm. All systems are halted 
at time 0. At the beginning of any time step, the RTI waits 
for synchronization messages from both the power system 

simulator and NS2. Then, the RTI yields control to the 
AgentHQ. The AgentHQ passes the control on to the 
agents one by one until all have had a chance to execute. 
During this cycle, the agents are capable of sending com-
munication messages and getting/setting power system 
variables. Once all agents are done, the AgentHQ returns 
control back to the RTI. Finally, the RTI notifies both NS2 
and the power system simulator that the current time step is 
done. At this point, the two simulation engines run for an 
additional time step. Special attention must be paid to NS2. 
Messages may be received in between two synchronization 
points within NS2. If a message arrives, NS2 will immedi-
ately pass it along to the RTI bound for the AgentHQ. The 
AgentHQ will, in turn, pass the message on to the appro-
priate agent. The agent can process the message and send 
another in response. If the message requires power system 
state to be read or changed then that agent keeps the mes-
sage in a queue until the next synchronization point occurs. 

2.5 Simulation Scripts 

Each agent simulation takes three parts. The structure of 
the power system and its electrical parts must be laid out in 
a PSCAD/EMTDC or PSLF compatible file. The layout of 
the communications subsystem and the transport protocols 
used needs to be specified in an NS2 file. Finally, agent 
types and locations are added to the NS2 simulation script 
for use by the agent manager. If the agent component were 
decoupled from NS2 then this would result in a third simu-
lation file that would be required by EPOCHS. This is one 
limitation inherent in combining multiple simulators to-
gether. Each must be initialized in its own way. The other 
major drawback is the extra communication and manage-
ment overhead between the simulation components.  

2.6 Implementation and Optimization 

In the current implementation, NS2, the RTI, the 
AgentHQ, and its corresponding Agents are all combined 
inside a single executable. Each component is logically 
separated within the source code and the RTI is still im-
plemented as a protocol stub inside NS2. This combination 
was used purely to boost the performance of the simulation 
federation. 

We have used EPOCHS to investigate a number of 
power system situations. None of them use PSLF and 
PSCAD/EMTDC at the same time. It is technically possi-
ble to do so, however we have not encountered a good ex-
ample where this would be beneficial. As a result, we did 
not allow both PSCAD and PSLF to operate as federates 
simultaneously, but it would only require a minor modifi-
cation to do so.  
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3 FEDERATING COTS COMPONENTS 

PSLF and PSCAD/EMTDC are COTS programs and their 
source code is not available to the general public. NS2 is a 
research system, and its source code is available. However, 
it would require a great deal of effort to understand its 
more than 150,000 lines of source code sufficiently well to 
modify it to interface with an RTI. As an alternative, we 
used internal API’s to federate each of these components. 
Strabburger listed four standard methods for making a 
simulation compliant with an RTI approach to simulation 
federation in (Strabburger, 1999).  
 
They are, from most to least desirable:  
• Re-implementation of the tool with the proper exten-

sions 
• Extending the simulation with intermediate code 
• Using an external programming interface  
• Coupling via a gateway program  

 
In the first approach, simulation developers modify a 

simulator’s internal source code so that it can interface 
with the RTI. In the second approach, if the simulator in 
question generates intermediate source code in a higher 
level language then the developer can include source mod-
ules of her own design to add RTI support. Some tools in-
clude the option of calling arbitrary functions either in 
user-specified source code or in dynamic link libraries. The 
third option takes advantage of this facility to add RTI 
support. Finally, if none of the previous options are avail-
able, but the simulation engine in question includes facili-
ties for external communication via files, pipes, network 
communication, or some similar means then the developer 
can use that method to communicate with an external 
gateway program that will process commands and pass 
their results along to the RTI. The federation of the three 
commercial and research systems serve as an interesting 
case study because each of them used a different technique 
from Strabbugers’ list. 

Our synchronization approach allows us to use a 
convenient alternative to modifying the core source code. 
PSCAD/EMTDC, PSLF, and NS2 allow user-defined ex-
tensions. That is, a PSCAD/EMTDC scenario can include 
user-defined libraries that add equipment definitions using 
the C programming language that were not present in the 
original software. PSLF similarly allows user-defined 
equipment models using its proprietary interpreted EPCL 
language. NS2 has well-defined procedures for adding new 
communication protocols in C++ to the base simulation 
software. We have created our own equipment stubs whose 
sole purpose is to interact with EPOCHS’s RTI at each 
synchronization point. Both PSCAD/EMTDC and PSLF 
use a user-modifiable length between each of their time 
steps. Both systems allow users to modify the time step 
length at each interaction, however we chose to keep time 

steps consistent for easy interaction in our first EPOCHS 
release.  

This process is simplified by the fact that 
PSCAD/EMTDC, PSLF, and NS2 are all single-threaded 
systems, so each system is effectively halted whenever a 
synchronization event takes place. Additional efforts 
would be required if that were not the case. 
 
The federation techniques used were:  

• NS2 

The network communication component uses an approxi-
mation of the second approach of integrating COTS, or 
more accurately research system, components. A new 
transport protocol is added to NS2 serving as its link to the 
RTI. A periodic call is added to the simulation script in-
voking the new protocol in order to halt execution and in-
teract with the RTI once per time step. The length of the 
step can take on any value as long as it is the same as that 
used in the power system simulator. NS2 normally lacks 
the ability to automatically track message contents under 
most circumstances when using TCP/IP. We use the 
TCPApp application in order to keep track of this state on 
our behalf. UDP, by contrast, does have the ability to 
transmit data and we took advantage of it adding our own 
layer of abstraction through a module we named UDPApp. 
These choices gives us a great deal of flexibility as we can 
easily select any communication protocol at any time by 
sending data through simple NS2 function calls. 

• PSCAD/EMTDC 

PSCAD/EMTDC uses the third COTS federation method. 
PSCAD/EMTDC generates FORTRAN source code based 
on scenarios created in its graphical environment. Users 
can extend its functionality by making calls to source code 
written either in the C or FORTRAN languages and this 
code is compiled in with the generated code. Calls to this 
extended source code can be embedded into PSCAD sce-
narios, but unfortunately the stub must be customized to 
each scenario since the stub must access each internal vari-
able by name. PSCAD/EMTDC is a continuous-time sys-
tem. We use a library in our simulations that adds a call to 
our user-defined component once per time step. The 
PSCAD/EMTDC component begins by reading in all user-
accessible equipment values that might be requested. Next, 
the electrical component contacts the RTI and notifies it 
that the beginning of the time step has been reached. 
Agents can request equipment values or can set power val-
ues when they execute. At the end of an agent execution 
cycle, a finish message is sent from the RTI to the electri-
cal components and the power component set any values 
that have changed in their simulations. The components 
relinquish control afterwards and execution continues. 
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• PSLF 

In PSLF, we use an approximation to the fourth COTS 
federation method. PSLF includes its own native language 
called EPCL that is roughly similar to C. Using this lan-
guage, we were able to create our stub enabling us to inter-
act with the RTI using files. The use of files was necessary 
because no other method was supported by the language. It 
would have been possible to go through a gateway pro-
gram to translate these files into TCP/IP transmissions if 
we wished to communicate with modules in other systems, 
but we chose to run all simulations on the same machine 
making this step unnecessary.  

PSLF halts execution at periodic intervals and waits 
for requests from the RTI. Incoming requests to get or set 
electrical simulation values are processed and the results 
are returned to the RTI. When all requests have been ful-
filled, a final message is sent to PSLF allowing it to con-
tinue execution. 

4 AGENT FRAMEWORK 

4.1 Agent Definition 

The keyword ‘agent’ has been popularized both in and out 
of the artificial intelligence research community, but there 
is still no single universally accepted definition about what 
it means to be an agent. Agents nearly always have the 
properties of autonomy (the ability to take independent ac-
tion) and interaction (the capacity to sense the surrounding 
environment and make changes to it). In addition, an agent 
may exhibit the properties of mobility, intelligence, adap-
tivity, and communication. In this paper, the term agent 
will be used to refer to computer programs that are 
autonomous, interactive, and have the ability to communi-
cate over a network. Agents may optionally also have any 
of the other attributes defined above.  

4.2 Related Work 

A wide range of simulations have made use of agents. 
There are two main classes of agent-based simulators. The 
first class uses agents to act as a mechanism for combining 
simulation engines. The flexibility that agents provide can 
be used to more efficiently link simulation components to-
gether such as by using filters to reduce inter-simulation 
traffic. An example of this can be found in (Wilson, 2000). 
The second class of simulations use agents to model enti-
ties within a simulated world. (Lee, 2001) makes use of a 
mix of continuous and discrete-time simulators in an air-
traffic control simulation using object-oriented agents to 
represent, among other things, air-traffic controllers, air-
craft, and air traffic generators. Our work is similar in spirit 
to that done by Lee, but it makes use of commercial off-

the-shelf and research systems and is targeted towards 
electric power systems making use of network communica-
tion. These are just two of many examples of both classes 
of agent-based simulations. 

4.3 Agents in Electric Power Protection and Control 
Systems 

The electric power grid has traditionally been made up of a 
large number of protection and control devices that act on 
local information to respond to problems. This method 
works well in some cases, but is inefficient in many others. 
Agents have begun to be recognized as a natural solution to 
this problem in the electric power research community. 
Their autonomous nature, ability to share information and 
coordinate actions, and the potential to be easily replaced 
from remote facilities make them potentially valuable.  

The protection and control scenarios that interest us 
use geographically distributed agents located in a number 
of Intelligent Electronic Devices (IEDs) as shown in Fig. 2. 
An IED is a hardware environment that has the necessary 
computational, communication, and other I/O capabilities 
needed to support a software agent. An IED can be loaded 
with agents that can perform control and/or protection 
functions. These agent-based IEDs work in an autonomous 
manner where they interact both with their environment 
and with each other. An example of this might be digital 
relays where each one has its own thread of local control, 
but they perceive a more global scope of the system and 
act in response to their non-local environment by commu-
nicating with other agents either via Local Area Networks 
(LANs) or via Wide Area Networks (WANs). These IEDs 
are relatively rare at present, but many are already avail-
able and we expect their use to increase over time. 
 

Ethernet LAN

         Host  Computer

Protection
IED

Protection
IED

Control
IED

Control
IED

Utility
WAN

Substation

Router

Power Plant - Control Center - Substation

SCADA System

Control
Center

Power Plant

 
Fig. 2 Placements of the Agent-based IEDs within the Util-
ity Intranet Infrastructure 
 

The agent-based IED’s structure is depicted in Fig. 3. 
Agents within an IED perceive their environment through 
local sensors and act upon it through the IED’s actuators. 
Examples of sensor inputs might include local measure-
ments of the current, voltage, and breaker status. Actuator 
outputs might include breaker trip signals, adjusting trans-
former tap settings, and switching signals in capacitor 
banks. Agents might even interface with legacy systems 
such as Supervisory Control and Data Acquisition 
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(SCADA) systems. The host computer shown in Fig. 2 
could act as a bridge between the old and new systems in 
this type of situation. Internally, agents might be composed 
of many layers of functionality and control or may be con-
tained in a single layer depending on the designer’s speci-
fications and implementation. As shown in Fig. 2, agents 
have the ability to communicate through a LAN in order to 
interact with other agents directly located on that same 
LAN, or can pass information along to the Utility WAN, 
i.e. the Utility Intranet, ultimately communicating with 
more remote IEDs. 

The rising use of agents in IEDs makes an agent-based 
framework a natural choice. Protection and control engi-
neers can create agents for use in real situations and test 
them with minor modification in the EPOCHS environ-
ment. Of course, agents can also mimic the behavior of 
more traditional systems. EPOCHS’s early adopters have 
found the agent concept to be an intuitive one. 

4.4 The Structure of a Utility Communication Network 

Networked computing systems are becoming increasingly 
prevalent in many areas and we believe that this growth 
will occur within electric utility systems as well. Technol-
ogy is constantly changing, but we can make some edu-
cated guesses about what utility communication systems 
will look like. First, the network systems will almost cer-
tainly be built from standard commercial off-the-shelf 
components. To do otherwise would be expensive both in 
terms of initial cost outlay and system maintenance. This 
means that these networks will be based on Internet stan-
dards even if the systems remained independent of the 
global network conglomeration. We can already see hints 
that such changes are coming in recent standardization ef-
forts such as the Utility Communications Architecture 
(UCA). We believe that IP-based communication protocols 
will be heavily used in utility communication for these rea-
sons. 
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Fig. 3 The Structure of an Agent-based IED 

4.5 Agent-based Simulation Framework 

We have created a basic simulation framework both to 
minimize the changes needed between simulated systems 
and their real-world counterparts as well as to ease imple-
mentation for EPOCHS’ users. This framework provides 
basic functionality for the EPOCHS agents. The basic 
functionality is shown in Fig. 4. Functions have been bro-
ken down into two main categories. Events occur in the 
AgentHQ subsystem and notification is passed on to the 
appropriate agents. Agents interact with their surroundings 
by using straightforward method calls both in order to get 
and set the state of their environment and to exchange mes-
sages between themselves.  

AgentHQ is triggered at each synchronization point 
and acts as a proxy between the agents, the network com-
munications simulation, and the electric power simulators. 
At that time, the AgentHQ calls each of the agent’s action 
methods giving them an opportunity to calculate their set 
of operations for the next time step.  

 
Interface Agent 
{ 
methods: 
 double get_round_time(); 
 void send_comm._msg(comm._type, group,  
                        src, dst, pkt_size, 
                        msg); 
 void send_power_msg(); 
 void recv_power_msg(); 
events: 
 void request(); 
 void action(); 
 void recv_comm._msg(comm._type, group,   
                        src, dst, pkt_size,  
                        send_time, round_num,  
                        msg); 
 void recv_power_msg(msg); 
}; 

Figure 4: The Agent Interface 
 
The agents remain dormant until they receive an event 

notification. Power system agents mimic those in real pro-
tection and control systems polling the current environ-
ment at regular intervals. When the beginning of an inter-
val is reached, each agent is given a chance to request its 
power system state information through the use of the 
send_power_msg method and receive the results through 
the recv_power_msg event notification. All agents’ initial 
requests are sent and the replies are received in one block. 
This is an optimization to help compensate for the use of 
files to exchange information between the AgentHQ and 
the electric power simulation systems. When all agents 
have been given a chance to run, the AgentHQ will give 
each of them a chance to react to their current state in the 
action method where they can send communication mes-
sages using the send_comm_msg method, or can make addi-
tional power system get and set requests using the 
send_power_msg method. In addition to these regular acti-
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vation intervals, individual agents may receive communi-
cation messages through the recv_comm_msg event at any 
time and can take additional action in response to that 
event. 

5 CASE STUDY – A SPECIAL PROTECTION 
SYSTEM  

Power system generators are run synchronously. When one 
or more generators lose synchrony, the resulting transient 
instability can lead to costly blackouts. Stability problems 
are often caused by disturbances such as the loss of genera-
tion, loads, or tie lines. These disturbances stimulate power 
system electromechanical dynamics, resulting in deviations 
in frequencies, voltages, and generator phase angles. Spe-
cial Protection Schemes (SPS) are devices that are most 
commonly designed to counteract instances of power sys-
tem instability. Most SPS schemes do so by using a com-
bination of  generation rejection and load shedding (Ander-
son, 1996).  

Traditional SPS systems are based either on purely lo-
cal measurements to detect transiently unstable situations, 
a source of unreliability, or on communication that is too 
slow to allow them to respond to many types of faults. We 
created an agent-based SPS system that used wide-area 
measurements in a novel frequency prediction and control 
algorithm. Results showed that the system was successfully 
able to keep a system transiently stable and maintain its 
frequency above a preset threshold through rapid genera-
tion rejection. The precise load shedding required was cal-
culated and acted upon in a single step. This would not be 
possible without the use of wide-area measurements. These 
experimental results showed the accuracy and usefulness 
of the method when communication channels were lightly 
loaded. However, inaccuracies were introduced under 
heavier communication traffic levels. Frequency levels de-
cline as time passes after a fault making it important that 
measurements are used close to the time that a fault occurs. 
Under heavy traffic conditions, it may not be possible to 
detect when the fault occurred due to a lack of data points 
making it more likely that a stay value is introduced. This 
outcome points towards issues that must be dealt with in 
future research before protection and control systems util-
izing Internet technology are ready to be deployed. 

By using the agent-based framework provided, both 
traditional and agent-based systems were able to be created 
in an environment that isolated the modeler from the de-
tails involved in coordinating the various COTS and re-
search components. EPOCHS’s users could work in the 
framework provided with few reminders that these compo-
nents were distributed making it much easier to concentrate 
on their work. The authors believe that this resulted in 
fewer bugs and faster modeling time than would have been 
otherwise possible. The use of EPOCHS allowed designers 
to understand the issues involved in creating power protec-

tion and control systems that had to take inherent delay, 
unpredictable message delivery times, and the possibility 
of message loss due to congested network conditions into 
account. This was an eye-opening experience in some 
cases. The experimental results received would have been 
difficult to reproduce using other tools and helped validate 
the concepts behind the EPOCHS project.  

The complete set of results for the special protection 
system is outlined in greater detail within the chapter enti-
tled, “Agent Technology Applied to the Protection of 
Power Systems” in (Thorp, To Appear in 2003). Two addi-
tional protection systems and their experimental results 
running on the EPOCHS platform are also included. 

6 CONCLUSION 

In this paper we have described EPOCHS, a simulation en-
gine that combines PSCAD/EMTDC, PSLF, and NS2 
functionalities together with an agent component. The pa-
per has three main contributions. First, the simulator is the 
first to combine realistic network communications with 
electric power components. Second, EPOCHS serves as a 
case study illustrating methods for bridging unrelated 
simulation engines without making use of source-code 
modification to any of the systems in question. Finally, we 
make use of a simple yet powerful agent framework that is 
easy to use for modelers making use of EPOCHS. 

We feel that techniques like those used in EPOCHS 
will become more common over time as commercial/open-
source software continues to improve in terms of cost, 
availability, and feature set. 
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