
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

ABSTRACT

This paper reports on the development of EPOCHS, the
Electric Power and Communication Synchronizing Simu-
lator, a distributed simulation environment. Existing elec-
tric power simulation tools do a good job of modeling
power systems of the past, which were controlled as large
regional power pools without significant communication
elements. As power systems increasingly turn to protection
and control systems that make use of computer networks,
existing power simulators are less and less capable of pre-
dicting the likely behavior of large power grids. Similarly,
the tools used to evaluate new communication protocols
and systems have been developed without any attention to
the roles they might play in power scenarios. EPOCHS
utilizes multiple research and commercial off-the-shelf
(COTS) systems to bridge the gap. EPOCHS is also nota-
ble for allowing users to transparently encapsulate complex
system behavior that bridges multiple domains through the
use of a simple agent-based framework.

1 INTRODUCTION

This paper presents EPOCHS, the Electric Power and
Communication Synchronizing Simulator, a combined
simulation system, or federation, that links the
PSCAD/EMTDC electromagnetic transient simulator, the
PSLF electromechanical transient simulation engine, and
the Network Simulator 2 (NS2) communication simulator.
Each of these simulators is in some sense the best within
its class. PSCAD provides extremely detailed simulations
of power systems containing up to several hundred buses,
and has been extensively validated through experiments
comparing the behavior of PSCAD simulations with the
behavior of real power systems. PSLF is used by electric
utilities to simulate real-world situations and has under-
gone extensive validation. NS2 is the most widely used and
trusted simulator for the Internet, and includes very high
quality simulations of standard protocols like TCP and of
standard Internet topologies, such as transit-stub configura-
tions. Interesting issues arose during the creation of
EPOCHS because none of its components were designed
for simulation interoperability.

EPOCHS: INTEGRATED COTS SOFTWARE FOR AGENT-BASED ELECTRIC POWER AND
COMMUNICATION SIMULATION

Kenneth M. Hopkinson

Computer Science Department
Cornell University
Ithaca, NY 14853

 Renan Giovanini

Department of Electrical Engineering
School of Engineering at São Carlos

University of São Paulo
São Carlos, SP 13566-590, Brazil

Xiaoru Wang

School of Electrical Engineering
Cornell University
Ithaca, NY 14853

 Kenneth P. Birman

Computer Science Department
Cornell University
Ithaca, NY 14853

James S. Thorp

School of Electrical Engineering
Cornell University
Ithaca, NY 14853

 Denis Coury

Department of Electrical Engineering
School of Engineering at São Carlos

University of São Paulo
São Carlos, SP 13566-590, Brazil

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

Using an approach like the DOD’s High Level Archi-
tecture (HLA) (Kuhl, 1999) to link disparate simulation
engines has many benefits. We live in an increasingly in-
terconnected world where multiple domains such as water,
power, and network communication can each affect the
other. Yet, few standalone simulators exist that capture
these inter-domain worlds. Constructing a combined simu-
lation engine is oftentimes inordinately time-consuming
and expensive. This is particularly true when simulations
have both continuous and discrete-event components. An
alternative is to link multiple simulations (federates) into a
distributed environment (federation). Using this approach
to combining multiple simulators for use in inter-domain
situations is becoming more common. Commercial off-the-
shelf simulation (COTS) systems are popular in many
fields due to their rich feature sets, ease of use, and cost ef-
fectiveness. However, the lack of source code availability
can be a hurdle to their use in federated simulation sys-
tems. This can be a significant handicap in areas where the
most trusted systems are COTS software packages and
built-in support for federating these simulators has not
been implemented. Notable case studies federating COTS
simulation software in an HLA or similar environment in
the areas of supply chain manufacturing and manufacturing
simulation have been performed in the GRIDS project
(Taylor, 2001), in (Tucci, 2001)’s HLA compliance pro-
ject, and in Strabburger’s SLX federation (Strabburger,
1999), but the documented use of commercial simulation
systems in federations is still relatively rare. Additionally,
once a group of simulators have been federated, casual
modelers may find the added complexity of the new simu-
lation platform difficult to manage. These issues were
foremost in our thoughts during the development of the
EPOCHS system.

The technology underlying our work illustrates how
non-intrusive techniques can be used to federate simulation
engines using only the built-in Application Programming
Interfaces (APIs). In addition, our agent-based framework
hides the complexity involved in the combined simulation
system making it easy for users to design new power sce-
narios involving communication. We believe that
EPOCHS serves as an important case that could be applied
to many settings such as air traffic control, banking, medi-
cal systems, military command and control systems, and
other forms of mixed-mode critical infrastructure.

This paper is structured as follows. In section 2, we
review background material that motivated the creation of
EPOCHS and present the system’s architecture. In section
3, we outline our agent framework. The methods used to
federate the commercial and high quality research simula-
tion components are discussed in section 4. We go on to
describe a case study that has been developed and run on
the EPOCHS platform in section 5. Finally, the paper ends
with our conclusions in section 6.

2 EPOCHS

2.1 Motivation

An accurate understanding of an electric power system is
necessary to have any confidence that it will operate relia-
bly under the conditions that may arise in the field. Yet,
electric power simulators today do not model the network
communication that is being increasingly deployed in
modern protection and control systems.

Traditional protection systems nearly always make de-
cisions based on local measurements, and conventional
control systems make use of slow communication systems
that operated in a predictable manner. It has not been nec-
essary to simulate communication in order to accurately
model these electric power systems. However, over the last
decade, power systems have been operated ever closer to
their transmission, generation, and stability limits. Protec-
tion and control systems are being placed under a corre-
spondingly greater strain. Power engineers have begun to
conclude that the use of communication networks based on
Internet standards is a natural choice to improve both. Yet,
communication protocols and standards developed by the
networking community were never thought to be used in
power scenarios. There is a real concern that new protec-
tion and control systems will be deployed without fully
understanding the issues that will arise from their use.

New kinds of simulation and evaluation tools are
needed that are capable of bridging the gap, by providing
high-quality simulations of electric power scenarios while
simultaneously modeling the ways that computer commu-
nications protocols behave in realistic networks, con-
fronted with realistic scenarios, including load surges, out-
ages, and other forms of dynamic stress.

2.2 Overview

EPOCHS is a distributed simulation platform that links
commercial and high quality research off-the-shelf simula-
tors through the use of a Runtime Infrastructure (RTI) to
allow modelers to investigate electric power scenarios that
involve network communication. One goal of the EPOCHS
platform is to minimize the intrusiveness of the simulation
platform on users that are unfamiliar with its components.
It does so by allowing complex behavior to be embedded
within agents that can read and modify simulation vari-
ables by interacting with a module called the Agent Head-
quarters, or AgentHQ, that hides the details in the other
simulation components. In the case of electric power sys-
tems involving network communication, this agent frame-
work is a quite natural one since hardware support for
software agents exists in the power system today.

EPOCHS seamlessly links its three off-the-shelf simu-
lation systems from a modeler’s perspective, enabling them

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

to investigate power protection and control scenarios that
combine communication with real-time sensing of the state
of a power grid and real-time response. For example, sup-
pose that a new protection protocol were deployed in a
power system, and was known to operate correctly pro-
vided that the input data used by the control algorithm was
accurate. EPOCHS will let us understand how that protocol
might behave when running over TCP while other users
move large data files through shared network links and
routers – behaviors known to trigger delays and congestion
control in the TCP protocol. Similarly, we are able to use
EPOCHS to compare different options for running the
same protection protocol (e.g. over TCP, over UDP, over
various QoS mechanisms), and to understand how failures
might impact power systems protection and control.

Broadly, EPOCHS is particularly valuable for evaluat-
ing the communications requirements of new protection
and control schemes and the impact of common Internet
behavior, such as TCP congestion control, on power sys-
tem operation. Such information will help designers of fu-
ture power systems’ communications networks make ap-
propriate design decisions, and will help designers of new
control and protection protocols deploy them with confi-
dence.

2.3 Architecture

Recent work centering on combining, or federating, simu-
lation systems has focused on the use of the High Level
Architecture (HLA). HLA is an architecture that can be
used to combine individual simulations, known as feder-
ates, together into combined simulators known as federa-
tions. The “glue” that holds these combinations together is
a central component known as a Runtime Infrastructure
(RTI). The RTI routes all messages between simulation
components and is responsible for making sure that simula-
tion time is appropriately synchronized. HLA’s main
drawback is that it can be very difficult to modify existing
simulations to conform to its specification. Many fields
make heavy use of COTS software and do not have the
luxury of source code availability. Additionally, HLA can
be an inefficient means of combining federates together.
The system is based on a publish-subscribe mechanism
where any federate subscribing to another will receive all
of its updated information whether it is needed or not.

With this in mind, we created a federated simulation
system that operates in the spirit of the HLA, but that uses
our own interface for easier implementation in the current
EPOCHS implementation. EPOCHS’ architecture is shown
in Fig. 1. This system consists of the following compo-
nents:

NS2

RTI

 AgentHQ

PSLF
PSCAD/
EMTD

Agent

Agent

Agent

Fig. 1 The Relationship Between EPOCHS’s Five Compo-
nents

• PSCAD/EMTDC

PSCAD/EMTDC is used for electromagnetic transient
simulation. EMTDC is a well-known electric power simu-
lator. One of its main strengths is its ability to accurately
simulate power system electromagnetic transients. That is,
EMTDC models short-duration time-domain electric
power responses. PSCAD is a graphical interface that is
used to simplify the development of EMTDC scenarios.
PSCAD is produced by the Manitoba HVDC Research
Centre (Manitoba HVDC Research Centre, 1998).

EMTDC simulates power system scenarios in con-
tinuous time by solving a series of differential equations in
a time-stepped manner. It has very detailed electrical mod-
els making it well-suited to electromagnetic transient in-
vestigations.

• PSLF

PSLF is used for electromechanical transient simula-
tion. PSLF can simulate power systems with tens of thou-
sands of nodes and is widely used by electric utilities to
model electromechanical stability scenarios (General Elec-
tric, 2003). It models large systems in less detail than that
available in PSCAD/EMTDC making it better-suited for
long-running scenarios. It simulates power systems in con-
tinuous time by solving differential equations in a time-
stepped manner that is similar to that employed by
PSCAD/EMTDC.

• NS2

Network Simulator 2 (NS2) is an event-driven
communication network simulator that was created
through a joint effort between the University of California
at Berkeley, Lawrence Berkeley Labs, the University of
Southern California, and Xerox PARC. NS2 is a high-
quality simulator that allows the creation of a wide variety
of communications scenarios. It has built-in support for the

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

most widely used network protocols and for the most
popular research protocols. It is particularly valuable when
studying TCP/IP behavior within IP-based networks due to
its detailed models (Breslau, 2000). NS2 is able to simulate
the behavior of these protocols even under various forms
of stress, such as might be caused by competition for net-
work resources when multiple applications share a network
and communicate over the same routers and communica-
tion links, the impact of failures including router failures,
link failures, or denial of service attacks. It can even cap-
ture the normal dynamics resulting from relaying messages
with real-time data rates through many layers of routers.
This is particularly important due to TCP’s early adoption
in new standards such as the Utility Communications Ar-
chitecture (UCA) within the electric power community
(Adamiak, 1999).

• AgentHQ

AgentHQ is a module that we developed to present a uni-
fied environment to our agents and acts as a proxy for
those agents when interacting with other EPOCHS compo-
nents. Through it, the agents can get and set power system
values and send and receive messages to one another.
AgentHQ is a discrete-event system. Events are processed
as they occur and routed to the agents that are affected by
them.

• Runtime Infrastructure (RTI)

The RTI acts as the “glue” between all other components.
It is responsible for simulation synchronization and for
routing communication between EPOCHS components. A
firm requirement placed on any simulation system is that
no event can be processed with a time stamp earlier than
one that has already been completed. This makes good
sense and is easy to enforce in sequential simulators, but
issues arise when making use of distributed simulation sys-
tems. Many methods exist for dealing with this matter in
the parallel and distributed simulation research community
(Fujimoto, 2000). We employ a time-stepped model, one
the simplest techniques for component synchronization, in
our current system when running EPOCHS scenarios.
Time steps are user-selectable and can be chosen depend-
ing on the granularity of a given case. Simulations can use
a short time between synchronization points to compensate
for the errors introduced by the decoupled simulation ap-
proach or can use larger time steps for faster execution.

2.4 Component Interaction

The synchronization between the various simulation com-
ponents follows a simple algorithm. All systems are halted
at time 0. At the beginning of any time step, the RTI waits
for synchronization messages from both the power system

simulator and NS2. Then, the RTI yields control to the
AgentHQ. The AgentHQ passes the control on to the
agents one by one until all have had a chance to execute.
During this cycle, the agents are capable of sending com-
munication messages and getting/setting power system
variables. Once all agents are done, the AgentHQ returns
control back to the RTI. Finally, the RTI notifies both NS2
and the power system simulator that the current time step is
done. At this point, the two simulation engines run for an
additional time step. Special attention must be paid to NS2.
Messages may be received in between two synchronization
points within NS2. If a message arrives, NS2 will immedi-
ately pass it along to the RTI bound for the AgentHQ. The
AgentHQ will, in turn, pass the message on to the appro-
priate agent. The agent can process the message and send
another in response. If the message requires power system
state to be read or changed then that agent keeps the mes-
sage in a queue until the next synchronization point occurs.

2.5 Simulation Scripts

Each agent simulation takes three parts. The structure of
the power system and its electrical parts must be laid out in
a PSCAD/EMTDC or PSLF compatible file. The layout of
the communications subsystem and the transport protocols
used needs to be specified in an NS2 file. Finally, agent
types and locations are added to the NS2 simulation script
for use by the agent manager. If the agent component were
decoupled from NS2 then this would result in a third simu-
lation file that would be required by EPOCHS. This is one
limitation inherent in combining multiple simulators to-
gether. Each must be initialized in its own way. The other
major drawback is the extra communication and manage-
ment overhead between the simulation components.

2.6 Implementation and Optimization

In the current implementation, NS2, the RTI, the
AgentHQ, and its corresponding Agents are all combined
inside a single executable. Each component is logically
separated within the source code and the RTI is still im-
plemented as a protocol stub inside NS2. This combination
was used purely to boost the performance of the simulation
federation.

We have used EPOCHS to investigate a number of
power system situations. None of them use PSLF and
PSCAD/EMTDC at the same time. It is technically possi-
ble to do so, however we have not encountered a good ex-
ample where this would be beneficial. As a result, we did
not allow both PSCAD and PSLF to operate as federates
simultaneously, but it would only require a minor modifi-
cation to do so.

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

3 FEDERATING COTS COMPONENTS

PSLF and PSCAD/EMTDC are COTS programs and their
source code is not available to the general public. NS2 is a
research system, and its source code is available. However,
it would require a great deal of effort to understand its
more than 150,000 lines of source code sufficiently well to
modify it to interface with an RTI. As an alternative, we
used internal API’s to federate each of these components.
Strabburger listed four standard methods for making a
simulation compliant with an RTI approach to simulation
federation in (Strabburger, 1999).

They are, from most to least desirable:
• Re-implementation of the tool with the proper exten-

sions
• Extending the simulation with intermediate code
• Using an external programming interface
• Coupling via a gateway program

In the first approach, simulation developers modify a

simulator’s internal source code so that it can interface
with the RTI. In the second approach, if the simulator in
question generates intermediate source code in a higher
level language then the developer can include source mod-
ules of her own design to add RTI support. Some tools in-
clude the option of calling arbitrary functions either in
user-specified source code or in dynamic link libraries. The
third option takes advantage of this facility to add RTI
support. Finally, if none of the previous options are avail-
able, but the simulation engine in question includes facili-
ties for external communication via files, pipes, network
communication, or some similar means then the developer
can use that method to communicate with an external
gateway program that will process commands and pass
their results along to the RTI. The federation of the three
commercial and research systems serve as an interesting
case study because each of them used a different technique
from Strabbugers’ list.

Our synchronization approach allows us to use a
convenient alternative to modifying the core source code.
PSCAD/EMTDC, PSLF, and NS2 allow user-defined ex-
tensions. That is, a PSCAD/EMTDC scenario can include
user-defined libraries that add equipment definitions using
the C programming language that were not present in the
original software. PSLF similarly allows user-defined
equipment models using its proprietary interpreted EPCL
language. NS2 has well-defined procedures for adding new
communication protocols in C++ to the base simulation
software. We have created our own equipment stubs whose
sole purpose is to interact with EPOCHS’s RTI at each
synchronization point. Both PSCAD/EMTDC and PSLF
use a user-modifiable length between each of their time
steps. Both systems allow users to modify the time step
length at each interaction, however we chose to keep time

steps consistent for easy interaction in our first EPOCHS
release.

This process is simplified by the fact that
PSCAD/EMTDC, PSLF, and NS2 are all single-threaded
systems, so each system is effectively halted whenever a
synchronization event takes place. Additional efforts
would be required if that were not the case.

The federation techniques used were:

• NS2

The network communication component uses an approxi-
mation of the second approach of integrating COTS, or
more accurately research system, components. A new
transport protocol is added to NS2 serving as its link to the
RTI. A periodic call is added to the simulation script in-
voking the new protocol in order to halt execution and in-
teract with the RTI once per time step. The length of the
step can take on any value as long as it is the same as that
used in the power system simulator. NS2 normally lacks
the ability to automatically track message contents under
most circumstances when using TCP/IP. We use the
TCPApp application in order to keep track of this state on
our behalf. UDP, by contrast, does have the ability to
transmit data and we took advantage of it adding our own
layer of abstraction through a module we named UDPApp.
These choices gives us a great deal of flexibility as we can
easily select any communication protocol at any time by
sending data through simple NS2 function calls.

• PSCAD/EMTDC

PSCAD/EMTDC uses the third COTS federation method.
PSCAD/EMTDC generates FORTRAN source code based
on scenarios created in its graphical environment. Users
can extend its functionality by making calls to source code
written either in the C or FORTRAN languages and this
code is compiled in with the generated code. Calls to this
extended source code can be embedded into PSCAD sce-
narios, but unfortunately the stub must be customized to
each scenario since the stub must access each internal vari-
able by name. PSCAD/EMTDC is a continuous-time sys-
tem. We use a library in our simulations that adds a call to
our user-defined component once per time step. The
PSCAD/EMTDC component begins by reading in all user-
accessible equipment values that might be requested. Next,
the electrical component contacts the RTI and notifies it
that the beginning of the time step has been reached.
Agents can request equipment values or can set power val-
ues when they execute. At the end of an agent execution
cycle, a finish message is sent from the RTI to the electri-
cal components and the power component set any values
that have changed in their simulations. The components
relinquish control afterwards and execution continues.

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

• PSLF

In PSLF, we use an approximation to the fourth COTS
federation method. PSLF includes its own native language
called EPCL that is roughly similar to C. Using this lan-
guage, we were able to create our stub enabling us to inter-
act with the RTI using files. The use of files was necessary
because no other method was supported by the language. It
would have been possible to go through a gateway pro-
gram to translate these files into TCP/IP transmissions if
we wished to communicate with modules in other systems,
but we chose to run all simulations on the same machine
making this step unnecessary.

PSLF halts execution at periodic intervals and waits
for requests from the RTI. Incoming requests to get or set
electrical simulation values are processed and the results
are returned to the RTI. When all requests have been ful-
filled, a final message is sent to PSLF allowing it to con-
tinue execution.

4 AGENT FRAMEWORK

4.1 Agent Definition

The keyword ‘agent’ has been popularized both in and out
of the artificial intelligence research community, but there
is still no single universally accepted definition about what
it means to be an agent. Agents nearly always have the
properties of autonomy (the ability to take independent ac-
tion) and interaction (the capacity to sense the surrounding
environment and make changes to it). In addition, an agent
may exhibit the properties of mobility, intelligence, adap-
tivity, and communication. In this paper, the term agent
will be used to refer to computer programs that are
autonomous, interactive, and have the ability to communi-
cate over a network. Agents may optionally also have any
of the other attributes defined above.

4.2 Related Work

A wide range of simulations have made use of agents.
There are two main classes of agent-based simulators. The
first class uses agents to act as a mechanism for combining
simulation engines. The flexibility that agents provide can
be used to more efficiently link simulation components to-
gether such as by using filters to reduce inter-simulation
traffic. An example of this can be found in (Wilson, 2000).
The second class of simulations use agents to model enti-
ties within a simulated world. (Lee, 2001) makes use of a
mix of continuous and discrete-time simulators in an air-
traffic control simulation using object-oriented agents to
represent, among other things, air-traffic controllers, air-
craft, and air traffic generators. Our work is similar in spirit
to that done by Lee, but it makes use of commercial off-

the-shelf and research systems and is targeted towards
electric power systems making use of network communica-
tion. These are just two of many examples of both classes
of agent-based simulations.

4.3 Agents in Electric Power Protection and Control
Systems

The electric power grid has traditionally been made up of a
large number of protection and control devices that act on
local information to respond to problems. This method
works well in some cases, but is inefficient in many others.
Agents have begun to be recognized as a natural solution to
this problem in the electric power research community.
Their autonomous nature, ability to share information and
coordinate actions, and the potential to be easily replaced
from remote facilities make them potentially valuable.

The protection and control scenarios that interest us
use geographically distributed agents located in a number
of Intelligent Electronic Devices (IEDs) as shown in Fig. 2.
An IED is a hardware environment that has the necessary
computational, communication, and other I/O capabilities
needed to support a software agent. An IED can be loaded
with agents that can perform control and/or protection
functions. These agent-based IEDs work in an autonomous
manner where they interact both with their environment
and with each other. An example of this might be digital
relays where each one has its own thread of local control,
but they perceive a more global scope of the system and
act in response to their non-local environment by commu-
nicating with other agents either via Local Area Networks
(LANs) or via Wide Area Networks (WANs). These IEDs
are relatively rare at present, but many are already avail-
able and we expect their use to increase over time.

Ethernet LAN

 Host Computer

Protection
IED

Protection
IED

Control
IED

Control
IED

Utility
WAN

Substation

Router

Power Plant - Control Center - Substation

SCADA System

Control
Center

Power Plant

Fig. 2 Placements of the Agent-based IEDs within the Util-
ity Intranet Infrastructure

The agent-based IED’s structure is depicted in Fig. 3.
Agents within an IED perceive their environment through
local sensors and act upon it through the IED’s actuators.
Examples of sensor inputs might include local measure-
ments of the current, voltage, and breaker status. Actuator
outputs might include breaker trip signals, adjusting trans-
former tap settings, and switching signals in capacitor
banks. Agents might even interface with legacy systems
such as Supervisory Control and Data Acquisition

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

(SCADA) systems. The host computer shown in Fig. 2
could act as a bridge between the old and new systems in
this type of situation. Internally, agents might be composed
of many layers of functionality and control or may be con-
tained in a single layer depending on the designer’s speci-
fications and implementation. As shown in Fig. 2, agents
have the ability to communicate through a LAN in order to
interact with other agents directly located on that same
LAN, or can pass information along to the Utility WAN,
i.e. the Utility Intranet, ultimately communicating with
more remote IEDs.

The rising use of agents in IEDs makes an agent-based
framework a natural choice. Protection and control engi-
neers can create agents for use in real situations and test
them with minor modification in the EPOCHS environ-
ment. Of course, agents can also mimic the behavior of
more traditional systems. EPOCHS’s early adopters have
found the agent concept to be an intuitive one.

4.4 The Structure of a Utility Communication Network

Networked computing systems are becoming increasingly
prevalent in many areas and we believe that this growth
will occur within electric utility systems as well. Technol-
ogy is constantly changing, but we can make some edu-
cated guesses about what utility communication systems
will look like. First, the network systems will almost cer-
tainly be built from standard commercial off-the-shelf
components. To do otherwise would be expensive both in
terms of initial cost outlay and system maintenance. This
means that these networks will be based on Internet stan-
dards even if the systems remained independent of the
global network conglomeration. We can already see hints
that such changes are coming in recent standardization ef-
forts such as the Utility Communications Architecture
(UCA). We believe that IP-based communication protocols
will be heavily used in utility communication for these rea-
sons.

Agent

Communication

Control and
Protection
Schemes S

ub
st

at
io

n
LA

N

Sensor
Input

Actuator
Output

Environment

Fig. 3 The Structure of an Agent-based IED

4.5 Agent-based Simulation Framework

We have created a basic simulation framework both to
minimize the changes needed between simulated systems
and their real-world counterparts as well as to ease imple-
mentation for EPOCHS’ users. This framework provides
basic functionality for the EPOCHS agents. The basic
functionality is shown in Fig. 4. Functions have been bro-
ken down into two main categories. Events occur in the
AgentHQ subsystem and notification is passed on to the
appropriate agents. Agents interact with their surroundings
by using straightforward method calls both in order to get
and set the state of their environment and to exchange mes-
sages between themselves.

AgentHQ is triggered at each synchronization point
and acts as a proxy between the agents, the network com-
munications simulation, and the electric power simulators.
At that time, the AgentHQ calls each of the agent’s action
methods giving them an opportunity to calculate their set
of operations for the next time step.

Interface Agent
{
methods:
 double get_round_time();
 void send_comm._msg(comm._type, group,
 src, dst, pkt_size,
 msg);
 void send_power_msg();
 void recv_power_msg();
events:
 void request();
 void action();
 void recv_comm._msg(comm._type, group,
 src, dst, pkt_size,
 send_time, round_num,
 msg);
 void recv_power_msg(msg);
};

Figure 4: The Agent Interface

The agents remain dormant until they receive an event

notification. Power system agents mimic those in real pro-
tection and control systems polling the current environ-
ment at regular intervals. When the beginning of an inter-
val is reached, each agent is given a chance to request its
power system state information through the use of the
send_power_msg method and receive the results through
the recv_power_msg event notification. All agents’ initial
requests are sent and the replies are received in one block.
This is an optimization to help compensate for the use of
files to exchange information between the AgentHQ and
the electric power simulation systems. When all agents
have been given a chance to run, the AgentHQ will give
each of them a chance to react to their current state in the
action method where they can send communication mes-
sages using the send_comm_msg method, or can make addi-
tional power system get and set requests using the
send_power_msg method. In addition to these regular acti-

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

vation intervals, individual agents may receive communi-
cation messages through the recv_comm_msg event at any
time and can take additional action in response to that
event.

5 CASE STUDY – A SPECIAL PROTECTION
SYSTEM

Power system generators are run synchronously. When one
or more generators lose synchrony, the resulting transient
instability can lead to costly blackouts. Stability problems
are often caused by disturbances such as the loss of genera-
tion, loads, or tie lines. These disturbances stimulate power
system electromechanical dynamics, resulting in deviations
in frequencies, voltages, and generator phase angles. Spe-
cial Protection Schemes (SPS) are devices that are most
commonly designed to counteract instances of power sys-
tem instability. Most SPS schemes do so by using a com-
bination of generation rejection and load shedding (Ander-
son, 1996).

Traditional SPS systems are based either on purely lo-
cal measurements to detect transiently unstable situations,
a source of unreliability, or on communication that is too
slow to allow them to respond to many types of faults. We
created an agent-based SPS system that used wide-area
measurements in a novel frequency prediction and control
algorithm. Results showed that the system was successfully
able to keep a system transiently stable and maintain its
frequency above a preset threshold through rapid genera-
tion rejection. The precise load shedding required was cal-
culated and acted upon in a single step. This would not be
possible without the use of wide-area measurements. These
experimental results showed the accuracy and usefulness
of the method when communication channels were lightly
loaded. However, inaccuracies were introduced under
heavier communication traffic levels. Frequency levels de-
cline as time passes after a fault making it important that
measurements are used close to the time that a fault occurs.
Under heavy traffic conditions, it may not be possible to
detect when the fault occurred due to a lack of data points
making it more likely that a stay value is introduced. This
outcome points towards issues that must be dealt with in
future research before protection and control systems util-
izing Internet technology are ready to be deployed.

By using the agent-based framework provided, both
traditional and agent-based systems were able to be created
in an environment that isolated the modeler from the de-
tails involved in coordinating the various COTS and re-
search components. EPOCHS’s users could work in the
framework provided with few reminders that these compo-
nents were distributed making it much easier to concentrate
on their work. The authors believe that this resulted in
fewer bugs and faster modeling time than would have been
otherwise possible. The use of EPOCHS allowed designers
to understand the issues involved in creating power protec-

tion and control systems that had to take inherent delay,
unpredictable message delivery times, and the possibility
of message loss due to congested network conditions into
account. This was an eye-opening experience in some
cases. The experimental results received would have been
difficult to reproduce using other tools and helped validate
the concepts behind the EPOCHS project.

The complete set of results for the special protection
system is outlined in greater detail within the chapter enti-
tled, “Agent Technology Applied to the Protection of
Power Systems” in (Thorp, To Appear in 2003). Two addi-
tional protection systems and their experimental results
running on the EPOCHS platform are also included.

6 CONCLUSION

In this paper we have described EPOCHS, a simulation en-
gine that combines PSCAD/EMTDC, PSLF, and NS2
functionalities together with an agent component. The pa-
per has three main contributions. First, the simulator is the
first to combine realistic network communications with
electric power components. Second, EPOCHS serves as a
case study illustrating methods for bridging unrelated
simulation engines without making use of source-code
modification to any of the systems in question. Finally, we
make use of a simple yet powerful agent framework that is
easy to use for modelers making use of EPOCHS.

We feel that techniques like those used in EPOCHS
will become more common over time as commercial/open-
source software continues to improve in terms of cost,
availability, and feature set.

ACKNOWLEDGEMENT

The authors were supported, in part, by DARPA under
AFRL grant RADC F30602-99-1-0532 and by AFOSR
under MURI grant F49620-02-1-0233. They were also
supported by FAPESP (Fundação de Amparo à Pesquisa
do Estado de São Paulo, Brazil) and CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

7 REFERENCES

Adamiak M., W. Premeriani 1999. Data Communications
in a Deregulated Environment. IEEE Computer Appli-
cations in Power 12 (3): 36-39.

Anderson P., B. K. LeReverend 1996. Industry Experience
with Special Protection Schemes. IEEE Transactions
on Power Systems 11 (3): 1166-1179.

Breslau L., D. Estrin, K. Fall, S. Floyd, J. Heidermann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
H. Yu 2000. Advances in Network Simulation. IEEE
Computer 33 (5): 59-67.

Fujimoto R. M. 2000. Parallel and Distributed Simulation
Systems. New York, NY: Wiley-Interscience.

Hopkinson, Giovanini, Wang, Birman, Thorp, and Coury

General Electric 2003. PSLF Manual. Available online via

<http://www.gepower.com/dhtml/corporate/en_us/asse
ts/software_solns/prod/pslf.jsp> [accessed March 12,
2003].

Kuhl F., R. Weatherly, J. Dahmann 1999. Creating Com-
puter Simulation Systems: An Introduction to the High
Level Architecture. Upper Saddle River, NJ: Prentice
Hall.

Lee S., A. Pritchett, D. Goldman 2001. Hybrid Agent-
based Simulation for Analyzing the National Airspace
System. In Proceedings of the Winter Simulation Con-
ference, Arlington, VA, USA, 1029-1037.

Manitoba HVDC Research Centre 1998. PSCAD/EMTDC
Manual Getting Started. Winnipeg, Manitoba, Canada.

Strabburger S. 1999. On the HLA-based Coupling of
Simulation Tools. In European Simulation Multicon-
ference, 45-51.

Taylor S. J. E., R. Sudra, T. Janahan, G. Tan, J. Ladbrook
2001. Towards COTS Distributed Simulation Using
GRIDS. In Proceedings of the Winter Simulation Con-
ference, Arlington, VA, 1372-1379.

Thorp J. S., X. Wang, K. M. Hopkinson, D. Coury, R.
Giovanini, To Appear in 2003. Agent Technology Ap-
plied to the Protection of Power Systems in Autono-
mous Systems and Intelligent Agents in Power System
Control and Operation, Editor Christian Rehtanz, Ba-
den, Schweiz: Springer-Verlag.

Tucci M., R. Revetria 2001. Different Approaches in Mak-
ing Simulation Languages Compliant with HLA
Specifications. In Proceedings of the Summer Com-
puter Simulation Conference, 622-628.

Wilson L. F., D. Burroughs, J. Sucharitaves, A. Kumar
2000. An Agent-based Framework for Linking Dis-
tributed Simulations. In Proceedings of the Winter
Simulation Conference, Orlando, FL, USA, 1713-
1721.

8 AUTHOR BIOGRAPHIES

KENNETH M. HOPKINSON received his BS degree in
Computer Science from Rensselaer Polytechnic Institute in
1997. Since that time, Ken has been working towards his
Ph.D. degree in Computer Science at Cornell University.
His areas of interest include distributed computer systems,
simulation, and network communications protocols. Ken is
currently investigating communications issues arising in
the power grid under deregulation. He can be reached by e-
mail at <hopkik@cs.cornell.edu>.

RENAN GIOVANINI received a B.Sc. degree in Electri-
cal Engineering and M.Sc. degree from the EESC - Uni-
versity of São Paulo, Brazil in 1998 and 2000, respectively.
He is presently a Ph.D. student at EESC - University of
São Paulo, Brazil. His main research interests are power

systems protection and applications of Artificial Intelli-
gence. He can be reached by e-mail at <renan@sc.usp.br>.

XIAORU WANG received B.E. and M.E degrees from
Chongqing University, China, in July 1983 and July 1988
respectively, and a Ph.D. from Southwest Jiaotong Univer-
sity (SWJTU), China, in June 1998 in Electrical Engineer-
ing. She is a Professor at SWJTU and is a visiting Profes-
sor at the School of Electrical Engineering at Cornell
University. Her areas of interest include power system pro-
tection and substation automation systems with a focus on
the application of wavelets and agent technology. She can
be reached by e-mail at <xw44@cornell.edu>.

KENNETH P. BIRMAN is a Professor of Computer Sci-
ence at Cornell University. A Fellow of the ACM, Birman
has published extensively on reliable, secure distributed
computing since joining Cornell in 1982. He developed the
Isis Toolkit, which controls communication in the New
York Stock and Swiss Exchanges, the French air traffic
control system, and oversaw development of Cornell’s Ho-
rus, Ensemble and Spinglass systems. He was Editor in
Chief of ACM Transactions on Computer Systems from
1994-1999. He has advised the government on hardening
the nationally critical communications infrastructure, and
was co-chair of the 1995 DARPA ISAT study that set the
research agenda in this field. He can be reached by e-mail
at <ken@cs.cornell.edu>.

JAMES S. THORP is the Charles N. Mellowes Professor
in Engineering and Director of the School of Electrical En-
gineering at Cornell University. In 1976, he was a faculty
intern at the AEP Service Corporation. He was an associate
editor for IEEE Transactions on Circuits and Systems from
1985 to 1987. In 1988, he was an overseas fellow at Chur-
chill College, Cambridge, England. He is a member of the
National Academy of Engineering, a Fellow of IEEE and a
member of the IEEE Power System Relaying Committee,
CIGRE, Eta Kappa Nu, Tau Beta Pi and Sigma Xi. He can
be reached by e-mail at <jst6@cornell.edu>.

DENIS V. COURY was born in Brazil, in 1960. He re-
ceived a B.Sc. degree in Electrical Engineering from the
Federal University of Uberlandia, Brazil in 1983, a MSc
degree from the University of São Paulo, Brazil in 1986
and a Ph.D. degree from Bath University, England in 1992.
He joined the Department of Electrical Engineering, Uni-
versity of São Paulo, São Carlos, Brazil in 1986, where he
is an Associate Professor in the Power Systems Group. He
spent his Sabbatical at Cornell University in 2000. His ar-
eas of research interest are Power System Protection as
well as new techniques for Power System Control and Pro-
tection including the use of Expert Systems and Artificial
Neural Networks. He can be reached by e-mail at
<coury@sel.eesc.sc.usp.br>.

