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The developers of today’s cloud computing systems are expected to not
only create applications that will work well at scale, but also to create
management services that will monitor run-time conditions and intervene
to address problems as conditions evolve. Management tasks are gener-
ally not performance intensive, but robustness is critical: when a large
system becomes unstable, the management infrastructure must remain
reliable, predictable, and fault-tolerant.

A wide range of management tasks can be expressed as gossip protocols
where nodes in the system periodically interact with random peers and
exchange information about their respective states. Although individual
gossip protocols are typically very simple, by composing multiple proto-
cols one can create a wide variety of interesting, complex functionality
with strong (albeit probabilistic) robustness and convergence guarantees.
For example, in a system with a sufficiently dense topology, all nodes will
learn the information being disseminated in expected logarithmic time.
Unfortunately, programmers today must typically build gossip protocols
by hand—an approach that makes their programs more complicated and
error-prone, and hinders attempts to optimize gossip implementations to
achieve better performance.

MiCA is a new system for building gossip-based management tools that
are highly resistant to disruptions and make efficient use of system re-
sources. MiCA provides abstractions that enable expressing gossip pro-
tocols in terms of functions on pairs of node states, along with a rich
collection of composition operators that facilitates constructing sophis-
ticated protocols in a modular style. The MiCA prototype realizes these
abstractions on top of the Java Virtual Machine, and implements opti-
mizations that greatly reduce the number and size of messages used.

Keywords: Gossip protocols, fault tolerance, composition, distributed systems,
program partitioning, Java.



1 Introduction

Monitoring and management infrastructure is critical for ensuring the reliability
of modern cloud computing applications. In practice, each application typically
has a distinct notion of what constitutes a healthy system state. For example, a
scientific computing application might be especially sensitive to CPU utilization,
while a database application might depend on the size of buffer queues, and
the throughput of a streaming video service might be determined by available
network capacity. Other examples include distributed hash tables, which must
build and maintain structured overlay networks, and data mining applications,
which must ensure the convergence of results produced by iterative computation.

Unfortunately, programmers today typically develop monitoring and manage-
ment infrastructure by hand—a rudimentary approach that leads to a number
of practical problems. First, because they lack tools that provide high-level ab-
stractions, programmers must deal with a host of low-level details such as setting
up and maintaining network connections, serializing and deserializing applica-
tion data, and dealing with exceptions and failures. Second, because standard
infrastructure is not available, they must reimplement conventional algorithms,
such as computing the minimum value in the system, from scratch in each new
tool. Third, when several different tools are deployed on the same platform, the
aggregate behavior can be unpredictable and can produce unexpected errors—
nullifying the very properties the tools were designed to ensure!

Clearly, there is a growing need for higher-level frameworks that would en-
able programmers to rapidly build robust monitoring and management tools. To
address this need, this paper presents MiCA (Microprotocol Composition Ar-
chitecture). Unlike frameworks based on pub-sub [13,6] or any-cast [15,3] com-
munication models, MiCA is based on gossip. In a gossip protocol, each node
exchanges information with a randomly selected peer at periodic intervals. Be-
cause it is based on periodic peer-to-peer communication, gossip’s network load
tends to be well-behaved, scaling linearly with system size and not prone to re-
active feedback. Moreover, because peers are selected randomly, no single node
is indispensable, so tools built on gossip are extremely tolerant to disruptions
and able to rapidly recover from failures. Accordingly, gossip is an attractive
choice for system monitoring tools [26,22,27], network overlay management [14],
and even distributed storage systems [26,8,20,5].

MiCA enables programmers to describe gossip protocols in terms of three
functions: a function view that is used to determine peers to gossip with; a
function update that takes states of gossiping nodes and computes the new
states following an exchange; and a function rate that determines how frequently
exchanges should occur. This abstraction exposes the essential characteristics of
gossip protocols, but hides low-level implementation details such as how random
numbers are picked, how network connections are managed, and how protocol
messages are constructed. Because the MiCA run-time system handles all these
details, programmers are free to focus on higher-level issues.

To facilitate building more sophisticated protocols, MiCA also provides a
collection of composition operators that combine several smaller protocols into



a single larger one. These operators are made possible by MiCA’s abstractions,
which provide a clean interface for merging protocols while preserving their es-
sential behavior. As examples of protocol composition, a MiCA programmer
might develop a layered protocol that first creates a tree overlay on top of an
otherwise unstructured network and then aggregates data values up the tree. Or,
they might implement a transformation that takes an unreliable protocol and
makes it fault-tolerant by running multiple copies of the protocol concurrently
in a pipeline [2]. Protocol transformations of these kinds would be extremely
tedious to implement by hand but are easy to express in MiCA.

Describing gossip protocols using higher-level abstractions provides the MiCA
system with opportunities for optimizing implementations of protocols automat-
ically. For example, although the update function is defined on pairs of node
states, the compiler can often determine that only a portion of the state of each
node actually needs to be serialized and sent over the network using program
analysis. In composite protocols, the run-time system can often bundle messages
from different sub-protocols together, thereby reducing the communication cost
of running those protocols simultaneously. Consequently, MiCA programs can
provide correct behavior and predictable performance, while substantially re-
ducing overhead compared to hand-written code.

We have built a prototype implementation of MiCA and used it to implement
a wide range of standard protocols. To evaluate the performance of our system,
we have performed experiments using MiCA on a collection of micro-benchmarks
and simulations. Overall, these experiments demonstrate the effectiveness and
robustness of our approach—in particular, that MiCA effectively bounds the
costs of monitoring applications with hundreds of distinct components.

In summary, the main contributions of this paper are as follows:

1. We design a novel framework for building gossip protocols that captures their
essential features while eliding tedious low-level implementation details.

2. We develop a collection of primitive gossip protocols and well-behaved pro-
tocol composition operators that satisfy natural correctness criteria.

3. We present our implementation and results from experiments illustrating the
expressiveness and robustness of our framework.

The rest of the paper is structured as follows: § 2 and § 3 motivate MiCA’s de-
sign using intuitive examples and experimental results from a simple simulation;
§ 4 describes operators for composing protocols and discusses correctness; § 5
discusses state management and an optimization; § 6 describes the MiCA pro-
totype; § 7 presents an evaluation; § 8 discusses related work; and § 9 concludes.

2 Overview

This section introduces MiCA, using an epidemic protocol as a running example.

Assumptions. MiCA is based on a model of gossip in which the behavior of
the system emerges from frequent pairwise interactions between nodes in the



system. We call each interaction an exchange, and the nodes participating in an
exchange a gossip pair. The state of the system evolves as the result of repeated,
concurrent exchanges.

This model reflects several assumptions that hold in real-world cloud com-
puting and data center environments: messages may be reordered or lost by the
network, and the local clocks on each node all run at the same rate (though the
clocks need not be synchronized). The evolution of the system state proceeds in
loose rounds, with each correctly functioning node initiating a gossip exchange
once every unit of time. Although the probabilistic nature of this model means
that gossip protocols do not provide firm guarantees at fine-grained time scales,
the expected behavior of the system over time can be reasoned about accurately.

Failures are inevitable in any real-world system, and systems based on gossip
protocols are no exception. MiCA uses a failure model that includes both fail-
stop and Byzantine nodes: nodes may crash and messages may be forged or lost,
either due to network faults or malicious code executing on some of the nodes
in the system. We do assume, however, that all messages are well formed and
that malfunctioning nodes do not overwhelm the system by sending messages at
arbitrary rates (an assumption that could be enforced by the network itself).

These assumptions mean that failures can prevent an otherwise correct node
from gossiping in any particular round, but over time, such failures are likely to
be vastly outnumbered by successful exchanges. Primitive gossip protocols are
expected to tolerate transient failures—e.g., selecting sufficiently long rounds to
prevent endemic timeouts—and programmers are expected to avoid pathological
topologies and communication patterns that could lead to partitions or bottle-
necks. In practice, most gossip protocols are designed to overcome transient
faults and achieve convergence under less than ideal network conditions.

Programming model. The programming abstraction provided in MiCA closely
follows the informal model of gossip protocols just described. With MiCA, pro-
grammers write gossip protocols by specifying the implementation for one par-
ticipant node. Each participant in a protocol is a Java object implementing the
following interface:

interface GossipParticipant {

ProbMassFunc<Address> view();

double rate();

void update(GossipParticipant other);

}

The first method, view, controls peer selection during gossip exchanges. Un-
like other gossip systems, which assume uniform random selection from a set of
neighboring nodes or the global set of nodes, MiCA allows the programmer to
specify the view as a discrete probability distribution on the set of network ad-
dresses. The MiCA run-time samples this distribution to select a gossip peer. The
view method returns a probability mass function object (i.e., ProbMassFunc),
which supports a sample method. As we will discuss in § 4, MiCA composition
operators ensure that the probability mass function is scaled to provide a proper
distribution over gossip nodes.



This approach has several advantages. First, working with probability dis-
tributions allows greater flexibility than uniform random selection. For exam-
ple, probabilities can be used to encode notions of locality (“gossip more fre-
quently with nearby neighbors”) and capacity (“gossip more frequently with
super-peers”), and even to encode overlay topologies [14]. Second, it allows de-
velopers to implement their protocols as if they were deterministic. Sources of
non-determinism (e.g., peer-selection) are abstracted away and handled by the
MiCA runtime. This makes programs simpler and eliminates a potential source
of bugs. Third, it retains precise information about distributions and makes
them available for analysis and manipulation by other operators. In particu-
lar, these distributions are used heavily by MiCA’s composition operators—e.g.,
composing two protocols with uniform random peer selection over different sets
of nodes yields a non-uniform distribution over the union of those sets—unlike
other systems, where views are sampled and discarded prior to composition,
losing opportunities for optimization.

The view function also serves as a way to delegate overlay topology main-
tenance to another software component. When populating the view, developers
often need to pay attention to the structure of the selected nodes: correctness
and convergence are usually tied to particular topological properties, which may
not hold for ad-hoc topologies. The MiCA programmer can use Java’s type sys-
tem to declare these requirements; for example, a protocol that outsources its
view to an overlay maintenance layer might accept this layer as an instance of
the interface ExpanderGraphOverlay.

The second method, rate, specifies the local node’s gossip rate relative to
the basic unit of time. A constant rate such as 1.0 is usually sufficient for non-
composite protocols, but variable rates are used by composition to multiplex
sub-protocols without slowing down their overall convergence rates against wall-
clock time. Per-node variable rates are also used by some gossip protocols, for
example, as a mechanism to compensate for dropped packets [24].

The third method, update, takes the state of the gossip peer as input and
performs an exchange, potentially modifying the states of the initiating node and
the peer. Due to failures, one or both of the nodes may not actually be updated—
modifications are not guaranteed to be atomic. However, the widespread success
of gossip protocols testifies to the utility of this abstraction, and its simplicity:
programmers are able to work with pairs of node states rather than having to
explicitly send and receive messages, and the tedious logic needed to manually
deal with timeouts and failures is subsumed by the model.

2.1 Example

As an example, consider the MiCA program in Figure 1. MinFinder nodes im-
plement a simple epidemic protocol that, given a system in which nodes initially
contain arbitrary integer values, eventually converges to a global system state
where every (correctly functioning) node contains the minimum value in the sys-
tem. The view method returns a probability distribution on network addresses.
For the purpose of this example, we assume the view is known in advance and



class MinFinder implements GossipParticipant {

int value;

ProbMassFunc<Address> view;

MinFinder(int value, ProbMassFunc<Address> view) {

this.value = value;

this.view = view;

}

ProbMassFunc<Address> view() { return view; }

double rate() { return 1.0 }

void update(GossipParticipant other) {

MinFinder that = (MinFinder) other;

this.value = min(this.value, that.value);

that.value = this.value;

}

}

Figure 1. Anti-entropy protocol in MiCA

is supplied as a parameter to the constructor. The rate method returns a con-
stant indicating that 1.0 gossip exchanges should occur every round. The update
method implements a push-pull anti-entropy protocol: it compares the values
stored on the initiating node and the receiving node, and updates both values
to the minimum. It is worth pointing out that while the update method allows
developers to transmit data between nodes, it is ultimately the MiCA runtime
that determines which data is sent. As a result, the runtime can optimize the
exchange. For example, if it can determine that some data will not be used by an
update, it will only send the relevant subset of the data. It is straightforward to
show that MinFinder participants converge to the minimum value in expected
logarithmic time (in the absence of failures) on a complete graph [9].

3 Näıve Composition

Cloud computing platforms such as Amazon EC2, Microsoft Azure, IBM Web-
sphere, Google Compute Engine, and Facebook consist of tens or even hun-
dreds of thousands of individual components that must be monitored to ensure
the health of the platform. Gossip protocols provide a simple way to ensure
that monitoring tools will behave predictably and have bounded communica-
tion costs. However, while it is not difficult to monitor multiple components
of a system simultaneously—one can fork a new process for each component—
combining tasks näıvely leads to increasing demands on system resources such
as CPU, memory, and network bandwidth. In large systems, these demands can
cause the cost of monitoring to rapidly dominate the very system being moni-
tored. Addressing this issue is one of the primary motivations for MiCA.

To quantify the cost of näıve composition (and the potential for optimiza-
tion) we conducted an experiment in which we executed several monitoring tasks
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Fig. 2. The average CPU, memory, and network utilization when running an increasing
number of monitoring tasks with both näıve composition and MiCA.

simultaneously. We executed an increasing number of copies of an anti-entropy
protocol and measured CPU utilization, memory utilization, and network la-
tency. Intuitively, this experiment can be thought of as modeling the situation
where an administrator must monitor an aggregate value for each of a large num-
ber of components. We ran the experiment on a testbed consisting of 32 virtual
machines on a Eucalyptus cluster. Each VM was configured with an emulated
2.9GHz CPU, 4GB memory, 10GB ATA disk, and 1Gb/s NIC. The physical
nodes hosting the VMs were 15 Dell-R720 servers with two 8-core 2.9GHz E5-
2690 CPUs, 96GB RAM, 2×900GB disks, and two 10Gb/s Ethernet NICs each.

The results of the experiment are given in Figure 2. They show that CPU,
memory, and network utilization rapidly increased under näıve composition,
whereas MiCA was able to scale out to hundreds of monitoring tasks with only a
little additional cost compared to running a single copy of the epidemic protocol.
For example, with 200 monitoring components, CPU utilization on each instance
exceeded 50% and required 250MB of memory, and network latency for other
traffic was increased by a factor of two. Overall, this experiment demonstrates
how interactions between monitoring components can incur substantial costs,
and highlights the benefits that can be gained using optimized implementations
of higher-level abstractions provided in systems such as MiCA.

4 Protocol Combinators

MiCA not only helps developers build complex monitoring tools out of simpler
reusable components—it also provides operators that combine protocols while
preserving semantics and guaranteeing predictable performance. As motivation
for these operators, suppose that we want to execute two copies of the MinFinder
protocol: one copy to compute the minimum address in the system, and a second
copy to compute the smallest amount of free memory of any node in the sys-
tem. Why might we want to do this? Perhaps the first copy implements leader
election and the second implements a monitoring application. Using the abstrac-
tions described in the last section, it would not be difficult to construct a new
MinFinderTwo protocol that implements both tasks. This protocol would main-
tain a pair of values, and would update both components of the pair on each



Communication
Isolated Combined

State

Isolated
With this näıve implementa-
tion strategy, each application
is completely independent.

Subsystems cannot share state,
but can multiplex messages
(e.g., MQ[30], TIBCO[23]).

Combined

An application can have many
shared subsystems, but each
communicates independently
(e.g, JXTA[15], Bast[13]).

Composition reduces the over-
head of executing multiple
monitoring applications simul-
taneously (e.g., MiCA).

Table 1. Forms of gossip protocol composition.

exchange. Of course, it would be even better if we could simply reuse our exist-
ing implementation of MinFinder instead of building a whole new protocol from
scratch. This section presents composition operators that do just this—merging
one or more gossip protocols into a single protocol that implements the behaviors
of each sub-protocol.

There are many different ways of combining protocols. MiCA compositional
operators can be categorized along two axes: whether the state and communi-
cation of the composed protocols are isolated or shared. Table 1 presents an
overview of various approaches for protocol composition:

– Isolated state, isolated communication: This is the näıve multiplexing ap-
proach discussed in § 3, in which each protocol executes completely indepen-
dently. As demonstrated by our simulations, this approach does not scale.

– Isolated state, shared communication: This approach provides communica-
tion primitives that can combine messages with the goal of reducing network
congestion. This approach is used in pub-sub message buses, like TIBCO [23],
and message-storage middleware, such as IBM WebSphere MQ [30]. POSIX
streams also provide a similar style of message multiplexing.

– Shared state, isolated communication: This approach enables a single appli-
cation to have many subsystems, each of which is monitored independently.
For example, each job in MapReduce [7] runs in its own thread and commu-
nicates independently, but the overall system state is shared. Examples of
this kind of system include JXTA [15] and Bast [13].

– Shared state, shared communication: This new approach combines the ad-
vantages of the previous two, allowing a single application to be expressed
in terms of several sub-protocols whose state depends on each other, while
reducing communication overhead by bundling messages together.

Note that although Table 1 locates MiCA in the quadrant for shared-state
and shared-communication, MiCA actually provides a comprehensive suite of
composition operators that capture each of these forms of composition. The rest
of this section discusses correctness criteria for protocol composition operators,
and then presents the operators that we find most useful in applications in detail.



4.1 Correctness Properties

To reason effectively about a composite protocol, programmers need assurance
that the semantics of the combined protocol faithfully encodes the behavior of
each sub-protocol. This section identifies essential properties for gossip compo-
sition:

– View preservation: A view-preserving operator ensures that the ratio of
the frequencies with which it initiates gossip exchanges that update sub-
protocols are identical to the ratio (calculated pointwise) of the distributions
generated by each sub-protocol’s view method. In other words, the rate of
events where the composite chooses to execute Pi.update may be reduced
or increased, but must be done so uniformly for all nodes in Pi’s view.

– Rate preservation: A rate-preserving operator ensures that each sub-protocol
continues to run at the same wall-clock rate as it would if run in isolation. Of
course, there is a tension between view preservation and rate preservation: to
ensure the former, a composite protocol must only execute each sub-protocol
on certain exchanges, while to ensure the latter, it must not delay the rate
at which the sub-protocol gossips.

– State preservation: A state-preserving operator ensures that the effect on
the state of each sub-protocol is either the outcome of executing the update

method of that sub-protocol or a no-op. In other words, composition does
not introduce any co-mingling of sub-protocol states. Note that deliberate
state sharing is still allowed—indeed, it is vital for building layered protocols
where a lower-level protocol computes some form of state (such as a mesh-
overlay), which is imported as a read-only input by one or more higher-level
protocols layered over it. In the context of MiCA, state corresponds to an
instance of a GossipParticipant, and everything reachable from it.

Together, these properties facilitate reasoning about composite protocols in a
modular way: the programmer can write, reason about, and deploy a smaller
protocol within a larger composite, and understand the way that it will be-
have without having to consider the entire program. They serve as guides while
designing and debugging the operators presented in the rest of this section.

4.2 Operators

We now define a few useful MiCA composition operators. We begin with an ob-
vious operator, round-robin merging, whose behavior is intuitive but restrictive
and inefficient, before moving on to more sophisticated probabilistic operators.

Round-robin merging. Arguably the most obvious way to merge multiple proto-
cols into a single protocol is to interleave their operations in round-robin fashion.
Figure 3 defines a simple composition operator that does exactly this: given sub-
protocols g1 and g2, it alternates between g1 exchanges and g2 exchanges, using
a boolean g1Next to keep track of the next sub-protocol to execute. For reasons



class RoundRobinMerger implements GossipParticipant {

GossipParticipant g1, g2;

boolean g1Next; // if true, g1 gossips next

...

ProbMassFunc<Address> view() {

if(g1Next) return g1.view();

else return g2.view();

}

double rate() { return g1.rate() + g2.rate(); }

void update(GossipParticipant other) {

RoundRobinMerger that = (RoundRobinMerger) other;

if(g1Next) g1.update(that.g1);

else g2.update(that.g2);

g1Next = !g1Next;

}

Figure 3. Round-robin merging. Note: assumes g1 and g2 to gossip at the same rate.

discussed below, this operator assumes that the rate methods of g1 and g2

are equivalent. The view method branches on g1Next and dispatches the view

method from g1 or g2. The update method is similar, but also updates g1Next
so that the other protocol will execute on the next exchange. The rate method
is slightly different: it returns the sum of the rates for g1 and g2. This is cor-
rect since doubling the rate of the combined protocol compensates for the fact
that each sub-protocol is only able to initiate an exchange every other round.
Hence, the rate at which each sub-protocol converges will be preserved in the
composite protocol. Note that if g1 and g2 have different rates, then it would
be incorrect to combine them using round-robin merging—a more sophisticated
strategy would be needed to account for the rate disparity. The next operator
provides a possible approach.

Correlated merging. Another way to combine several protocols into one is to
do so probabilistically. That is, instead of alternating between the sub-protocols
in sequence, we can invoke the view methods to compute the probability dis-
tributions for each sub-protocol and construct a composite distribution that
represents the peer selection preferences of both. This approach takes advantage
of the fact that both sub-protocols may sometimes be willing to gossip with the
same peer, allowing execution of both update methods to be bundled into a single
exchange and reducing the overall number of messages sent without degrading
performance. The correlated merge operator (Figure 4) is aggressive in trying to
exploit this form of overlap—it bundles messages as often as possible while still
satisfying the view-preservation and rate-preservation properties. Because this
operator is somewhat involved, we step through each of its methods in detail.

The view method works more or less in the way just described: it computes
the views for g1 and g2 and scales them by w and (1-w) respectively, where w is
the relative weight of g1’s rate with respect to g2. It then computes the pointwise



class CorrelatedMerger implements GossipParticipant

GossipParticipant g1, g2;

...

ProbMassFunc<Address> view() {

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

ProbMassFunc<Address> d1 = g1.view().scale(w);

ProbMassFunc<Address> d2 = g2.view().scale(1-w);

return ProbMassFunc.max(d1, d2).normalize();

}

double rate() {

double r1 = g1.rate();

double r2 = g2.rate();

ProbMassFunc<Address> d1 = g1.view().scale(r1);

ProbMassFunc<Address> d2 = g2.view().scale(r2);

return ProbMassFunc.max(d1, d2).magnitude();

}

void update(CorrelatedMerger other) {

CorrelatedMerger that = (CorrelatedMerger) other;

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

double pr1 = g1.view().get(that) * w;

double pr2 = g2.view().get(that) * (1-w);

double pmin = Math.min(pr1,pr2);

double pmax = Math.max(pr1,pr2);

double alpha = (pr1 - pmin) / pmax;

double beta = (pr2 - pmin) / pmax;

double gamma = pmin / pmax;

switch (weightedChoice({ alpha, beta, gamma })) {

case 0: // only g1 gossips

g1.update(that.g1); break;

case 1: // only g2 gossips

g2.update(that.g2); break;

case 2: // both g1 and g2 gossip

g1.update(that.g1);

g2.update(that.g2);

}

}

}

Figure 4. Correlated merging.

max of the scaled distributions and normalizes the result. This produces a distri-
bution that reflects the peer selection preferences of g1 and g2 with respect to
their relative rates. This is equivalent to summing the two rate-scaled views and
then subtracting their intersection, where the area of the intersection represents



the fraction of correlation between views that can be exploited by bundling—
two sub-protocols with identical views intersect completely, whereas two disjoint
views have none. The rate method calculates the views for g1 and g2, scales
them by r1 and r2, and then takes the area under the pointwise maximum of
the resulting distributions. This calculation determines the rate needed to cor-
rectly execute both sub-protocols while preserving their rates, and anticipating
opportunistic bundling of messages. The update method must decide whether
to gossip g1, g2, or both. To do this, it uses the sub-protocol views to compute
three probabilities: given that a particular peer was sampled from the composite
view, let alpha be the probability that only g1 chose to gossip with that peer,
beta be the same for g2, and gamma be the probability that both nodes choose to
gossip—i.e., the view intersection for address a. A pseudo-random choice selects
one of these three possibilities and executes the respective update methods.

Correlated merge has two significant advantages over simple round-robin.
First, it is completely general, in that it does not make any assumptions about
the protocols being combined. This is unlike round-robin merge, which assumes
that the two sub-protocols gossip at the same rate. Second, it can greatly reduce
the number of messages needed to implement the composite protocol; this is
advantageous because it amortizes overheads over the messages in the bundle.
The degree to which the operator is able to bundle messages depends on the
amount of overlap in the peer selection preferences of g1 and g2—the greater
the overlap of their distributions, the greater the benefit.

To illustrate correlated merging, consider the following abstract examples.

– Suppose that g1 gossips by selecting randomly from nodes with odd ad-
dresses, and g2 by selecting randomly from nodes with even addresses. That
is, if there are n nodes in total, g1’s view method returns a distribution
where odd nodes have probability mass 2/n and even nodes have probability
mass 0, and symmetrically for g2. Because these distributions are disjoint,
the view method for the merged protocol returns the uniform distribution
on all n addresses. For a given gossip partner b, the distribution computed by
g1 assigns probability mass 0 to b if b’s address is even, and the distribution
computed by g2 assigns probability mass 0 to b if b’s address is odd. The
combined update method invokes g1’s update method when called with a
partner b whose address is odd and otherwise invokes g2’s update method.
Importantly, it never invokes both update functions as the peer selection
preferences are disjoint. In a sense, probabilistic merge operator subsumes
round-robin merging when the sub-protocol distributions are disjoint.

– Suppose instead that both g1 and g2 gossip by selecting randomly from all
nodes—i.e., the view method for both sub-protocols returns a uniform dis-
tribution where every node has probability mass 1/n. The combined view

method returns the same uniform distribution and the update method eval-
uates g1 and g2 every round, where round length is a system-wide constant.
This example shows how probabilistic merge allows protocols with equivalent
view methods to be combined without additional messages or rate increases.



class IndependentMerger implements GossipParticipant

GossipParticipant g1, g2;

...

ProbMassFunc<Address> view() {

double r1 = g1.rate();

double r2 = g2.rate();

double w = r1 / (r1 + r2);

ProbMassFunc<Address> d1 = g1.view().scale(w);

ProbMassFunc<Address> d2 = g2.view().scale(1-w);

return d1.add(d2).normalize();

}

double rate() { return g1.rate() + g2.rate(); }

void update(IndependentMerger other) {

IndependentMerger that = (IndependentMerger) other;

double r1 = this.g1.rate();

double r2 = this.g2.rate();

double w = r1 / (r1 + r2);

double pr1 = g1.view().get(that) * w;

double pr2 = g2.view().get(that) * (1-w);

double alpha = pr1 / (pr1 + pr2);

double beta = pr2 / (pr1 + pr2);

switch (weightedChoice({ alpha, beta })) {

case 0: // Only g1 gossips

g1.update(that.g1); break;

case 1: // Only g2 gossips

g2.update(that.g2); break;

}

}

Figure 5. Independent merging.

– Finally, suppose that g1 gossips randomly with odd nodes, and g2 gossips
randomly with all nodes. The combined view method returns a distribution
in which nodes with odd addresses are assigned probability mass 4/(3·n) and
nodes with even addresses are assigned probability mass 2/(3 ·n). Hence, the
run-time chooses peers with odd addresses twice as often as it chooses peers
with even addresses. The combined update method has two cases: if the node
has an odd address, it always invokes g1’s update method and additionally
invokes g2’s update method with probability 1/2. Or, if the node has an
even address, then it only invokes g2’s update method. Hence, the merged
protocol distributes exchanges evenly between g1 and g2, allowing many
exchanges with odd peers to execute both sub-protocols.

Independent merging. Although it is often advantageous to bundle messages
from multiple sub-protocols together, there is also a downside to the correlated
merge operator: the peer selection preferences of the sub-protocols are no longer



class EpochPipeliner<G extends GossipParticipant> extends

CorrelatedMerger {

GossipParticipantFactory<G> factory = null;

int epochLength = 0;

int currentEpochStart = 0;

EpochPipeliner(GossipParticipantFactory<G> factory, int epochLength) {

super(factory.create(), factory.create());

...

}

void update(EpochPipeliner<G> other) {

int now = getRuntimeState().getSystemClockRounds();

if(now - currentEpochStart >= epochLength) {

g1 = g2; // promote backup to primary

g2 = factory.create();

currentEpochStart = now;

}

super.update(other);

}

}

Figure 6. Epoch-based “pipelining” operator.

independent. This could violate assumptions in a program that depends on inde-
pendence. For example, the correctness of the random walk protocol developed
by Massoulié et al. [17] depends on randomly sampling locations in the system. If
we mistakenly composed two copies of this protocol using the correlated merging
operator just defined, believing that this would yield samples from two distinct
random walks, both instances would actually generate the same walks. Such
problems could have dire consequences in systems whose robustness assumes in-
dependent peer selection. Another example involving random walks comes from
Broder et al. [4], who solve the problem of generating independent paths be-
tween pairs of nodes with a random walk approach. More generally, any system
relying on the independence of concurrent gossip protocols could be inadver-
tently sabotaged by the correlated merge operator. To address this concern, we
present an independent probabilistic merge operator (Figure 5). Like correlated
merge, independent merge makes probabilistic gossip choices, and combines sub-
protocol view and rate methods. However, the independent merge ensures that
the probabilistic decisions made by each sub-protocol are independent.

Epoch pipelining. The final operator presented in this section implements a
completely different kind of composition. Rather than composing multiple sub-
protocols in parallel, it composes a single protocol with itself, running two in-
stances in a primary-backup configuration for enhanced fault tolerance.

As a motivating example, recall the MinFinder example from the previous
section, which gossips the minimum value in the system using a simple anti-
entropy protocol. This protocol converges rapidly to a stable state and is ex-



tremely robust—a small number of lost messages or transient failures have little
affect on overall convergence. However, it is susceptible to a particular failure
that can easily lead to unintuitive behavior. To illustrate, consider a system in
which each node executes MinFinder. Next, suppose that after running the pro-
tocol for a while, the node that originally contained the minimum value crashes.
What should happen? We might want the system to converge to the next smallest
value in the system. But, assuming the crashed node successfully communicated
with at least one other node, this is not what will happen. Instead, the system
will continue gossiping the old minimum value even though none of the nodes in
the system still have that value.

To address this problem, we can execute two copies of MinFinder side by
side. The primary protocol, by convention g1, contains the definitive copy of the
protocol while the backup protocol, g2, executes a second copy of the protocol
from a fresh state. The composite protocol executes the two copies in parallel
until a certain number of rounds have elapsed—sufficiently many to ensure that
the backup copy has converged to a stable value. At that point, the composite
protocol replaces the primary with the backup and resets the backup to a fresh
copy of the protocol. It is easy to see that this “pipelined” protocol does not
suffer from the anomaly described above, since the minimum value is recomputed
from scratch in each epoch. Note that this implementation of pipeline parallelism
requires system-wide clock drift to be less than one half of a round, to prevent
possible contamination from the primary layer to the backup layer. This is a
reasonable constraint in a data center, where round-trip communication times
between nodes are no more than a few milliseconds.

We can define pipelining on top of any of the merging operators just de-
fined. Figure 6 gives a definition using correlated merge operator. Note that the
view and rate functions are inherited from the super class. The definition of
a pipelining operator based on independent merge is similar, and preferable in
many scenarios since it makes completely independent choices when selecting
a peer. On the downside, however, it requires extra messages and an increased
rate, whereas the operator based on correlated merge only requires larger mes-
sages since it can always bundle messages from each pipeline stage. A more
general EpochPipeliner implementation might admit other implementations of
epoch-switching, for example, triggered by a consensus threshold instead of a
clock [10]. Finally, although we do not develop it here, one can define pipelining
of k protocol copies at a time for higher levels of fault tolerance.

5 State Management and Data Movement

MiCA is designed to abstract away the details of handling distributed state. In
particular, developers write the update function with the illusion that each par-
ticipating node is able to access the other’s state as if it were local. In actuality,
the update function is a distributed program that exchanges messages using the
communication pattern illustrated in Figure 7. The MiCA compiler transforms
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Fig. 7. Execution of a gossip exchange with the explicit messages used by the low-level
target of the MiCA compiler. Provided the synthesized functions f1, f2, f3 are correct,
the final states of both nodes are guaranteed to be the same as if update had executed
locally: (n′′

1 , n
′
2) = update(n1, n2).

the update function into the distributed implementation, and the MiCA runtime
manages the exchange of state between the nodes.

To transform update into the distributed equivalent, MiCA partitions the
function into three fragments, f1, f2, and f3, that cooperate to execute the
gossip exchange. First, the initiator of the exchange updates its own state by
applying f1, and sends its updated state to the receiver node in message msg1.
Next, the receiver executes its fragment, f2, using the initiator state and its own
state, and then returns its new state in msg2. Finally, the initiator updates its
state, using f3, with the data from the receiver. Note that when partitioning the
function into fragments, the compiler must ensure that the fragments obey the
constraints imposed by the program dependence graph (PDG). So, f1 cannot
execute code that may read state from n2, and f3 cannot execute code that may
modify the state of n2. This can be expressed as two cuts in the PDG, breaking
update into three regions corresponding to f1, f2, and f3.

Consistency Model. A key challenge for maintaining MiCA’s local state abstrac-
tion is handling failures during the execution of update. Ideally, MiCA would
provide guarantees about an exchange, even if failures occur. Unfortunately, it is
impossible to guarantee the obvious property—transactional atomicity—because
when a network fault is detected on a given node, that node has no way of deter-
mining whether the remote node has successfully completed its last phase. This
means that the node cannot decide whether or not to roll back its local state or
not (this is an instance of the classic Two Generals’ problem).

To avoid these issues, MiCA employs a relaxed consistency model. MiCA
saves node state before executing calls to update. If a network error is detected
(including timeouts, which do not necessarily mean the message failed to reach
its destination), the state is rolled back. All state changes that occurred during
the unsuccessful update are erased by the rollback. This leaves four possible
outcomes for each gossip exchange: each node completes successfully, or one
or both revert to their original state. However, it precludes the possibility of
corrupting state by interrupting update in the middle of its execution.



Communication Optimization. The simplest strategy to exchange state between
the participants would be to send the entire state of each node. In contrast,
MiCA uses an optimization to reduce the communication overhead. Rather than
send the entire state, the compiler performs a static analysis that determines
conservative sets of objects that may be read and may be modified by f1, f2,
and f3. MiCA then generates custom serializers that send the relevant objects in
messages msg1 and msg2. This analysis is currently performed at the granularity
of fields of the root protocol objects. While coarse, this is a significant improve-
ment over the näıve strategy, in that fields that will definitely not be used are
not exchanged. It would be natural to duplicate the execution of side-effect-free
code to further reduce the amount of state that needs to be transmitted, but
MiCA does not currently implement this extension.

6 Implementation

We have built a full working prototype of MiCA, implemented as an extension to
Java, and made it available under an open-source license. Our implementation
can be obtained at: https://github.com/mica-gossip/mica. It includes the
compiler and runtime, as well as a library of primitive protocols and implemen-
tations of the composition operators presented in this paper.

The MiCA compiler is implemented as a bytecode post-processor. Post-
processing allows MiCA to partition the update function into methods for each
node participating in the gossip exchange, and perform the static analysis for
the communication optimization.

The current implementation uses TCP/IP for network communication. One
connection is kept alive for the duration of the gossip exchange. However, the
communication layer of MiCA does not depend on this particular implementa-
tion choice. In ongoing work, we are exploring an alternative implementation
that uses UDP. Because gossip protocols are tolerant of failures, the unreliable
communication mechanism seems like a natural choice if some performance ben-
efit can be gained due to smaller packet headers, reduced connection state, etc.

MiCA uses the Soot analysis framework [25] for analysis and transformation,
and relies on Soot for computing the program dependence graph, points-to sets,
and call graph. For functions f1, f2, and f3, the remote node (either n1 or n2) is
replaced with a custom-generated proxy class, inspired by the Uniform Proxies
of Eugster [12]. An instance of this proxy class may represent a local or remote
GossipParticipant object; in the case of a remote object, the proxy acts as a
container for the subset of fields that may be necessary for remote execution.

7 Experience and Case Studies

To evaluate our design and implementation of MiCA, we asked volunteers in
an undergraduate course to use MiCA for developing distributed applications.
To explore how MiCA performs in real-world scenarios, we performed two case
studies in a simulated environment.

https://github.com/mica-gossip/mica
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Fig. 8. Convergence of all four layers. Arrows indicate (a) Convergence from arbitrary
starting state; (b) a transient fault: 10% of nodes crash; (c) failed nodes recover; (d)
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layer was not affected by the transient fault because the leader did not crash.

In the undergrad course, a number of students who had no connection to
our research efforts used MiCA to develop their projects. Using MiCA, they
developed a data replication protocol for use in coherent distributed caching, a
probabilistic consensus protocol, a scalable distributed denial-of-service (DDoS)
detection application, and a storage backend for a peer-to-peer social network.

The case studies were performed in a simulated runtime. This runtime sim-
ulates a gossip network of many logical nodes with a discrete event simulation
passing messages via message queues on a single machine. All of the MiCA logic
and state serialization is the same as in the TCP/IP runtime. The simulated
runtime allowed us to perform experiments faster than realtime. For the first
case study, we implemented a four-layer composite protocol that builds a tree
over an otherwise unstructured topology and then labels the nodes of the tree
according to a depth-first traversal. During execution, we introduced several
disruptions, and measured the time needed for each layer to converge back to
a stable state. This experiment demonstrates how MiCA facilitates building so-
phisticated protocols out of simple components, as well as the resilience of such
composite protocols to various kinds of failures. For the second case study, we
studied the effect on convergence times for protocols built using probabilistic
merge. Because this operator changes the gossip rate for each sub-protocol from
a deterministic to an probabilistic value, the expected convergence time is in-
creased in certain topologies. This experiment illustrates this effect, which we
call dilation, using another simulation.

7.1 Layered Protocol

The first case study is based on a four-layer composite protocol originally pro-
posed by Dolev [11]. The layers represent several standard varieties of gossip,



all working together: overlay maintenance, aggregation, and dissemination. The
lowest layer, leader, gossips on a fixed topology and executes a standard leader
election protocol. The leader selected by the lowest layer is then used by the
second layer, tree, to construct a spanning tree overlay. The third and fourth
layers, count and label, gossip over the tree overlay. The count layer recur-
sively counts the number of nodes in each sub-tree and aggregates the results up
the tree to the root, while label assigns a numeric label to each node, resulting
in a depth-first traversal ordering. The labeling is achieved using a dissemination
protocol: a parent assigns labels to its children based on its own label plus an
offset calculated from the sizes of the children’s sub-trees.

Unlike all the composite protocols we have seen so far, this layered proto-
col requires sharing state between the sub-protocols. For example, the protocol
for the tree layer depends on the state maintained by the leader layer. It is
straightforward to encode this behavior in MiCA—the programmer simply cre-
ates references between the sub-protocols using ordinary Java references. For
example the following code creates the layers needed for the case study:

LeaderElection leader = new LeaderElection(topology);

Tree tree = new Tree(leader, topology);

Count count = new Count(tree);

Label label = new Label(tree, count);

GossipParticipant g = new IndependentMerger(leader,

new IndependentMerger(label,

new IndependentMerger (tree, count)));

Note that sharing state between sub-protocols using references obviously breaks
the state preservation property, albeit in a fairly innocuous way.

After implementing the layered protocol, we then executed it on a random
topology in a simulated environment and measured the amount of time needed
for each layer to converge under various disruptions. Figure 8 present the con-
vergence results for all four layers on a 100-node random graph of degree four,
starting from arbitrary initial states. To model failures, we introduced a tran-
sient disruption by crashing 10% of the nodes at t = 40 and restarting them
at t = 70. At t = 100, we introduced a major disruption by clobbering the
state of the leader layer with arbitrary values. We measured convergence as the
normalized per-round rate of change: a value of 1.0 indicates that 100% of the
nodes were changing in a given round while a value of 0.0 indicates the protocol
has converged. As these graphs show, MiCA can be used to implement protocols
that will recover rapidly from transient failures, even major ones, and even when
several protocols are combined together.

We also ran the experiment using correlated merge instead of independent
merge. This resulted in similar convergence times, but each gossip exchange
bundled together the messages for 2.3 layers on average, dramatically reducing
the total number of gossip exchanges by 56%. Note, however, that this is not a
general result: this particular layered protocol is amenable to correlation because
count and label always gossip together, as do leader and tree.



7.2 Dilation

The second case study illustrates an effect that we call dilation, and that can arise
when protocols running at different rates are merged probabilistically. Recall
that the rate of a gossip protocol controls the frequency at which the node
initiates exchanges with another node. When a protocol runs in isolation, rate is
completely deterministic: the node sleeps until the appropriate time, initiates an
exchange with that node, and then sleeps again. However, in a composite protocol
implemented using the probabilistic merge operator, a given sub-protocol will
only be able to initiate gossip at an expected rate. In particular, although the
average rate will faithfully track the value specified by the rate method for
that sub-protocol, the variance of the distribution of the interval between gossip
exchanges increases as sub-protocols are added to the composite.

To demonstrate this effect, we simulated the anti-entropy protocol from Fig-
ure 1, obtaining the results seen in Figure 9. The graph in the upper left corner
gives the baseline: the protocol executes deterministically, and the distribution
of intervals between exchanges is tightly clustered around 1.0 (because no packet
loss occurs in this experiment, it would be exactly 1.0 were it not for measure-
ment artifacts). The next graph, on the upper right, shows the effect when the
protocol is composed with another protocol using probabilistic merge. Now the
distribution contains values ranging from less than 1.0 all the way up to 5.0. That
is, some exchanges occur faster than the stated rate, and some occur slower, even
though the average exactly matches the target rate. As additional sub-protocols
are added to the composite, shown by the graphs on the bottom row, the dilation
becomes increasingly evident.

A natural question to ask is whether this phenomenon affects important
properties of a protocol, such as convergence. The answer is that it can, depend-
ing on the protocol and topology, but significant consequences are seen only in
somewhat artificial situations. Figure 10 depicts the convergence rate for the
anti-entropy protocol with various degrees of dilation on a system whose topol-
ogy is a complete graph. The x-axis contains the number of gossip rounds and
the y-axis contains the number of changes induced on that round. A protocol
converges when the number of changes reaches 0. In a complete graph topol-
ogy, the effect of dilation is minimal: because we are executing an anti-entropy
protocol and every node is connected to every other node, overall convergence
does not hinge on specific nodes being able to gossip at particular moments. We
believe that this would be the most common case in real uses of MiCA.

Note that dilation does not mean that probabilistic merge is incorrect—on
the contrary, all our operations correctly produce protocols that faithfully imple-
ment the sub-protocol, and faithfully run them at the correct average rate. The
point is somewhat more subtle: what we see here is that turning a deterministic
behavior into a probabilistic one can sometimes slow convergence if the underly-
ing topology has a slow information-dissemination time, but would not have this
impact when running on a topology with the properties of an expander graph, of
which the complete graph is an extreme example. We plan to continue studying
dilation in the future, with the goal of fully characterizing the classes of proto-
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Fig. 9. Effect of dilation for an anti-entry protocol on intervals between gossip ex-
changes. The labels indicate the degree of dilation: d0 is no dilation, d2 is two nested
operators, etc.

cols and topologies that are guaranteed to be immune to this effect. We are also
exploring other ways to implement the composition operators that incorporate
mechanisms for limiting or otherwise bounding the effects of dilation.

8 Related Work

Work related to MiCA falls into several general categories: gossip-specific frame-
works (Opis [6], Gossip Objects [28]); object-oriented distributed system libraries
(Bast [13], Jini [29]); compositional network transport protocol systems (Ap-
pia [18], Cactus [31]); and languages and abstractions for distributed program-
ming (P2 [16], MACEDON [21], BLOOM [1]). In this section, we discuss each of
these in turn. It should also be noted that MiCA’s core abstraction—the pairwise
representation of gossip protocols—was originally presented in a short workshop
paper [19]. This earlier work did not define gossip protocols precisely and did
not include an implementation or experiments.

The first of these categories contains systems closest to MiCA, namely, those
concerned specifically with gossip. Opis [6] is an OCaml-based framework for
gossip. It offers a formal definition of gossip similar to that used in MiCA. In
Opis, gossip protocols are event-driven programs that react to user-defined ex-
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Fig. 10. Effect of dilation for an anti-entropy protocol in a complete topology. The
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ternal network events and internal timer events. This is an interesting contrast
to MiCA’s protocol representation, which could also be regarded as using events
to drive state changes, but has only a small, fixed number of state transitions
exposed to the programmer. Like MiCA, Opis leverages object-oriented com-
position for protocols, but with added benefit from OCaml’s rich type system.
However, Opis offers no analog to MiCA’s compositions, which consider not
only the object-oriented composition of classes, but also explore strategies for
semantic-preserving combination of protocol views.

The Gossip Objects framework [28] offers a compositional infrastructure for
publish-subscribe gossip protocols. Unlike MiCA, Gossip Objects is an imple-
mentation specifically for publish-subscribe gossip, and not a general framework.
Like MiCA, Gossip Objects has optimizations for running many concurrent sys-
tems. Composition takes the form of speculative message delivery, bundling mes-
sages to non-subscribers in an effort to have them delivered indirectly and ac-
celerate the overall gossip rate. Gossip Objects does not preserve the relative
rates of protocols being combined. This is a design decision, not a bug: Gossip
Objects’ purpose is to improve the efficiency of message delivery.

The next category of related work consists of general-purpose, object-oriented
approaches to building distributed systems. These works do not share MiCA’s
gossip-centric world view, but have a common philosophy for protocol composi-
tion. Bast [13] is an object-oriented library of distributed system components,
with goals of modular protocol composition and code reuse. Bast’s Java im-
plementation is similar to MiCA’s in representing protocol classes and object-
oriented composition mechanisms such as inheritance to compose protocol layers,
each providing different functionality. MiCA and Bast differ in scope. Bast is a
general-purpose distributed systems toolkit, whereas MiCA is a domain-specific
framework for gossip systems. MiCA’s novelty lies in its gossip-specific abstrac-
tions and execution; what makes MiCA interesting for gossip protocols makes it
unsuitable for general distributed systems.



Apache River [29] (originally Jini) is a Java framework for client-server dis-
tributed services, originally created by Sun Microsystems. It provides extensi-
ble components for service registration and discovery for distributed systems,
and other utilities to facilitate distributed systems programming such as remote
method invocation and mobile code. Less broad than Bast, it is a good example
of an off-the-shelf component available to Java developers building distributed
systems. River’s services are good examples of the protocol layers that could be
implemented in a MiCA stack.

Cactus [31] and Appia [18] both undertake the challenge of transport protocol
composition. Recognizing that transports like TCP and UDP are not ideal for
all situations, these two systems provide ways to modularly compose a transport
protocol that has desired properties; for example, Cactus could be used to satisfy
the statement “I need a transport protocol with congestion control, but I don’t
need reliable ordering”. Cactus includes a library of “micro-protocols”, each of
which implements a particular functionality; the philosophy of composition is
similar to MiCA’s. Although MiCA gossip protocols run at a layer above the
transport, some functionality, such as quality-of-service, could be implemented
either in transport or as a MiCA gossip layer.

Finally, there are languages designed for directly programming an entire dis-
tributed system. Although MiCA is not a language, its distribution of the update
function onto a pair of nodes is similar to what these whole-system languages
accomplish. P2 [16] and Bloom [1] are declarative languages that approach dis-
tributed systems programming from a databases perspective. P2 allows program-
mers to specify properties of distributed system state and compiles to a dataflow-
oriented runtime system. Bloom is a Ruby-like language, designed for efficient
and concise query execution on distributed data tables. MACEDON [21] is a
language for building P2P-style overlay networks. Like MiCA, it uses a domain-
specific language extension to describe its systems; unlike MiCA, its domain
is not gossip, but overlay networks. The programmer writes from a single-node
perspective, but MACEDON includes tools for analyzing whole-system behavior.

9 Future Work

Today’s data center operators lack tools for creating new services to manage
networks and applications, both within enterprise networks and even in the new
class of wide-area enterprise VLANs that span between today’s massive cloud-
computing data center systems. This paper presents MiCA, a new compositional
architecture and system for building network management protocols. The sys-
tem assists developers in creating applications from micro-protocols implemented
using gossip or self-stabilization mechanisms, which can then be composed in a
property-preserving manner to build sophisticated functionalities. Unlike proto-
cols built in a more classical manner, which have been known to misbehave in un-
expected and disruptive ways when deployed on a very large scale, MiCA yields
scalable solutions with absolutely predictable, operator-controlled, worst-case
message rates and sizes. Using the techniques of the gossip and self-stabilization



communities, the developer creates components that are provably convergent
under the MiCA run-time model. Moreover, the framework provides abstrac-
tions for composing protocols in a manner that preserves their semantics while
optimizing across components to make the best possible use of available commu-
nication resources. In this manner, MiCA makes it easy to build the massively
scalable applications needed to efficiently operate today’s data centers.
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A Artifact Description

Authors of the artifact. Lonnie Princehouse

Summary. The artifact is a prototype implementation of the MiCA gossip
framework. It includes the runtime and libraries used to develop and experiment
with MiCA. It also includes implementations of the protocol composition opera-
tors and examples given in the paper. The implementation is able to run MiCA
protocols on a real network or on a simulated network with a variety of network
topologies.

Content. The artifact package includes:

– A runnable jar with bundled dependencies
– Source code
– Documentation and examples

Start with index.html

Getting the artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. The latest version of our code is available at: https://github.com/mica-
gossip/mica.

Tested platforms. The artifact requires Java 6 or greater to run the compiled
jar, or a recent version of Eclipse to use the pre-built Eclipse workspace.

License. BSD 3-Clause License (http://opensource.org/licenses/BSD-3-Clause)

MD5 sum of the artifact. 68988b8c4623a529366a01d89113ec66

Size of the artifact. 26521350
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