
DerechoDDS: Efficiently leveraging RDMA for fast
and consistent data distribution

Lorenzo Rosa
University of Bologna

Bologna, Italy
lorenzo.rosa@unibo.it

Sagar Jha
Cornell University

Ithaca, New York, USA
srj57@cornell.edu

Ken Birman
Cornell University

Ithaca, New York, USA
ken@cs.cornell.edu

Abstract—Safety-critical applications have always struggled
to balance strong consistency with high performance. Kernel-
bypassing technologies like RDMA (Remote Direct Memory
Access) promise to ease this tension by offering fast commu-
nication options that can fully leverage modern hardware. We
introduce DerechoDDS, an OMG-compliant data distribution
service layered over Derecho, an open-source C++ library that
combines the consistency guarantees of atomic multicast with
the speed of RDMA networks. In adopting this layering, we
encountered a significant challenge: DDS is dominated by small
messages, whereas Derecho was optimized for large ones. Hence,
we identified a set of optimization techniques for small-message
atomic multicast over RDMA, obtaining significant performance
improvements both for the Derecho library and for DerechoDDS.

Index Terms—DDS, RDMA, consistency, performance

I. INTRODUCTION

In safety-critical settings such as automotive or avionics,
applications rely on communication middleware solutions to
enable fast and robust data distribution. The increasing adop-
tion of IP-based networking even in critical settings makes it
possible for applications to leverage standard interfaces such
as the OMG Data Distribution Service (DDS) [1], a publish-
subscribe middleware specification that guarantees predictable
data delivery configurable through QoS policies. The QoS
options permit developers to select communication properties
matched to the requirements of their applications. For example,
an automotive or avionics DDS that will support safety-critical
system-management applications for vehicle or aircraft control
might require a costly but strongly assured option, whereas a
cheaper but less assured QoS level suffices for the passenger
entertainment tasks. It is appealing to adopt a single API but
then vary the QoS settings as needed.

The DDS communication model is based on the abstraction
of a global data space, where topics are represented by objects
of a given type. Each application can access the data space
via an API that maps a region of local memory. Under the
covers, the DDS intercepts updates, sending messages that will
replicate the action on remote nodes. QoS options allow the
developer to control the level of consistency for each topic:
eventual consistency or weak consistency. Under the eventual
consistency model, DDS guarantees that all subscribers to the
topic will eventually see the same data as in the publisher’s
local data store. Weak consistency is used when the main goal
is low latency and some message loss is acceptable.

In the current OMG standard, there is no way to obtain
stronger consistency, such as the classic state machine repli-
cation guarantee that every member of a subscriber group
will apply the identical updates in the identical order. This
reflects a technical limitation at the time the OMG standards
were debated: with the prevailing hardware of that period,
and the known protocols for achieving stronger properties, the
overheads were felt to be too high.

Modern hardware brings this assumption into question.
Kernel-bypassing techniques such as Remote Direct Memory
Access (RDMA) achieve high throughput (> 200 Gbps) and
low latency (∼ 1-2µs), enabling direct data transfers between
the virtual memory of processes on remote machines with
no operating system involvement and no extra copying. Once
available only on supercomputers, today this hardware is an
enabling technology for next-generation autonomous systems.
Our work begins with the insight that these developments
make it feasible to offer stronger DDS QoS options.

This paper presents DerechoDDS, a DDS implementation
that leverages RDMA to offer high consistency at high speed.
DerechoDDS layers the standard DDS API over a mature,
RDMA-capable, open-source library, Derecho [2], which of-
fers point-to-point and multicast communication options, sup-
porting failure atomicity, total ordering, and optional message
logging with durability [2]. The Derecho protocols have been
proved correct using standard techniques and the implementa-
tion checked using the Ivy protocol verifier. Derecho can run
on fast datacenter TCP but is optimized for RDMA. It sends
small messages with one-sided RDMA writes, and large ones
in a binomial tree pattern using two-sided RDMA transfers [3].

Our initial finding was that although highly efficient when
exchanging large messages, Derecho was less efficient for
small ones. This posed a problem, because most DDS up-
dates are a few KB or less. We microbenchmarked our
solution to understand the performance-limiting code paths,
then introduced a set of optimization techniques that yielded
substantial speedups. Interestingly, the techniques required
were quite general, and hence should also be of value in other
coordination-based middleware components. They include a
new model for coupling application threads to an underlying
platform thread, an innovative and highly general form of
opportunistic batching, and the use of zero-sized message
sends to avoid pauses.



II. DERECHO BACKGROUND

We start with a quick introduction to Derecho. The system
was created as a C++ library that can be used to organize
a group of processes (nodes) as a distributed service that
can execute either on physical servers or in a virtual envi-
ronment. Derecho manages the group’s membership, which
evolves through a series of views using partition-free state
machine replication. Derecho applications are constructed
around “replicated objects,” each of which maps to a subgroup
consisting of some subset of the top-level group membership.
An operation that mutates the state of such an object occurs
as a multicast carrying the parameters to the operation, and
then will be performed by all replicas.

To support this, Derecho implements a version of Paxos op-
timized for RDMA, but modified to use the traditional quorum
interaction only for membership updates. Data delivery is via
atomic multicast, and offers a critical path free of locks and
that avoids copying. All messages are delivered to the appli-
cation by every member in the same order with consistency
maintained across failures. Message delivery employs a round-
robin ordering, one message per sender per round, ordered by
the sender ordering in the subgroup membership list. Members
deliver a message only when every other subgroup member has
confirmed its reception. Cleanup after a failure is automatic
and transparent: either the operation is completed in the current
view, or any pending messages are deleted, and the entire
multicast is resent in the next membership view.

Derecho transports data over a data plane, which is imple-
mented differently for large and small messages. In the case of
the small messages that arise in Derecho DDS, the key library
components are a control layer, modeled as a shared state table
(SST), a data layer protocol (Small-Message Multicast, SMC),
and a polling framework that orchestrates the two.

Derecho’s protocols look quite different from a classic
Paxos protocol. A standard Paxos protocol is structured as
a 2-phase exchange of information in which a leader proposes
a message (or batch of messages) and a delivery “slot”, par-
ticipants respond, and then the leader commits after a quorum
is achieved. In Derecho, the same information is shared, but
the communication pattern is completely different. Rather than
have leaders that make decisions, all nodes exchange status
information through the SST using a direct remote memory
update to report new events. Every node sees the evolving state
of all its peers, and independently deduces protocol progress.

Each node runs a predicate thread that polls a series of
predicates, using its local copy of the SST as input, invoking
the corresponding triggered code if a predicate is satisfied.
For example, if node p has received reports from every node
that all messages have been received through message k, p
can independently deduce that it is safe to deliver its local
copies of the messages up to k in the predetermined round-
robin order. In this example we see how monotonicity is useful
in Derecho: SST data is expressed using counters that only
increase, booleans that flip from false to true but never back,
etc. The consequence is that predicates often can discover a

property (such as deliverability) in a single action that may
cover multiple messages.

The SMC protocol is the workhorse for DerechoDDS. It
manages a set of ring-buffers within the SST: one per sender.
To send a message, an application must wait until a slot is
free, fill it with relevant data, and then increment a “messages
ready” counter. SMC will then issue the corresponding RDMA
write to first push the data to the remote subgroup members,
and then the counter. Ideally, the size of the buffer (a config-
uration parameter) should be large enough to avoid senders
running out of free slots, thus enabling continuous sending.

Although all of this logic is expressed using predicates, three
are of special interest when exchanging small messages. A
send predicate detects whether the application has prepared
new messages that are ready to be sent. A receive predicate
monitors the SMC slots to discover new messages, and the
corresponding trigger acknowledges the reception of these
messages to the other members. Finally, a delivery predicate
checks the SST for messages whose reception has been
acknowledged by all the members, and thus are ready to
be delivered to the application. The performance of these
predicates is crucial for the performance of the applications,
hence we targeted them in our optimization work.

III. SMALL MESSAGE OPTIMIZATIONS

As a first step, we evaluated the performance of Derecho
with sending patterns and message sizes typical of DDS:
messages of up to a few KBs, a few dozen topics with
overlapping subgroups. We noticed that the system was un-
expectedly slow, and identified three main causes for this
poor performance and three optimization techniques to address
them. Those solutions turned out to have general applicability
in other coordination-based distributed middlewares running
on high-speed networks. Due to page-limit constraints, we
limit ourselves to a summary.

Opportunistic batching. A key source of inefficiency in
SMC was that the latency of sending control data (e.g., acks
for receiving a message) is comparable to the latency of
sending the application messages themselves. Figure 1 shows
that the RDMA write latency for small messages increases
only marginally with the data size, rising from 1.73 µs for 1-
byte data to 2.46 µs for 4KB data. This behavior particularly
affects the Derecho predicate thread described in Sec. II, which
generates an ack for every new receive and delivery event.
Worse, posting each RDMA request to the NIC takes ∼1µs

22 24 26 28 210 212 214 216 218 220

1.73
2.46

10

20

50

100

200

500

Dominated by
minimal wire delay

Dominated
by

message size

Message size (in Bytes)

L
at
en
cy

(i
n
µ
s)

RDMA writes

Figure 1: RDMA latency vs data size. Latency remains almost
constant for up to 4KB message size.



2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subgroup Size

B
a
n
d
w
id
th

(G
B
/
s)

fully optimized Derecho all senders

baseline one sender

(a) Average bandwidth utilization for different group sizes.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10−1

100

101

102

103

104

Subgroup Size

La
te
nc
y
(m

s)

fully optimized Derecho all senders

baseline one sender

(b) Average latency for different group sizes

Figure 2: Performance of the atomic multicast protocol with one subgroup and 10KB message size, before and after our proposed
optimizations.

in our setting, a significant delay in light of the critical role
of the predicate thread for Derecho. We address this issue
by batching events at different stages of the communication
pipeline: send, receive and delivery. Instead of letting the
system wait to accumulate a fixed-sized batch of messages,
which would disrupt performance, we adopt a form of self-
balancing opportunistic batching: a batch can be smaller or
larger depending on the number of events a predicate discovers
as it loops. For example, the send predicate checks to see if
multiple messages are ready. If so, it aggregates them on the
fly, and sends a batch. Interestingly, the opportunistic batching
of messages or acknowledgments leads to an improvement of
both throughput and latency. In contrast, traditional batching
mechanisms wait to collect each batch, hurting latency.

Null-send scheme. Recall that Derecho employs a fixed,
ordered membership for each epoch, delivering messages in
round-robin order by sender. However, this implies that if a
sender is not ready to send its next message, the delivery of
messages from other senders could be delayed. The problem is
that application sending rates might not be steady, and even if
they are, delays can be introduced by the OS (e.g., scheduling
or interrupt-servicing). To address this issue, we introduce a
null-send scheme: when a sender node detects that it is due
to send a message but has none ready, it sends a dummy
zero-sized message (called null), permitting continued delivery
of messages from other senders. In typical DDS use cases,
this scheme introduces a negligible bandwidth overhead while
making the system adapt very well to real-time delays.

Efficient thread synchronization. Applications access shared
data structures when accessing messages or preparing new
ones to send. Here, locking protects against concurrency
conflicts but can delay the predicate thread. Additionally, many
predicates were interleaving accesses to that state (SST) and
RDMA write operations. As the latter are costly (they can
consume 20-50% of the total predicate time), we refactored
the predicate code and placed RDMA operations only at the
end. Since the logic of a predicate does not depend on the
state at a remote node, but only on what is present in the
local SST, it is safe to release locks before proceeding with
the time-consuming communication operations. Moreover, this
optimization increases batch sizes.

We assess the performance impact of those three optimiza-

tions by comparing the optimized system against a baseline
version of Derecho protocols. Our performance tests employ
an application replicated on an increasing number of nodes
(subgroup size from 2 to 16). In one test every member is
a sender, whereas there is a single sender in the other test
case. Each sender node sends a total of 1 million messages
using the new, strongly consistent, QoS option. All members
receive every message, and deliver them in the same order.
In this graph we fix the message size at 10KB, but we
also evaluated smaller sizes and obtained very similar results.
The tests were executed on our local cluster equipped with
16 physical machines connected with a 12.5GB/s (100Gbps)
RDMA Infiniband switch. Each machine has 16 physical cores
and 100GB of RAM. Figure 2 plots the results. Overall,
we see that Derecho’s bandwidth utilization increased from
1GB/s to 9.7GB/s in the “all senders” case, and network
utilization improves from 10% to 77.6%. Even with just one
sender, where performance declines with the subgroup size
due to increased coordination overheads, our optimizations
significantly improved both bandwidth and latency.

IV. DERECHODDS

DerechoDDS is a prototype implementation of the OMG
DDS API, called Data-Centric Publish-Subscribe (DCPS) [1],
which uses Derecho as the underlying communication support.
To the best of our knowledge, this is the first attempt to layer
the DCPS API on a kernel-bypassing technology like RDMA.
Beyond the standard QoS options, DerechoDDS introduces
new consistency-related QoS policies to meet the requirements
of mission-critical uses, sustaining very high speeds even with
the most stringent QoS policy.

Applications use DerechoDDS through the standard DCPS
interface. DerechoDDS layers this interface over Derecho by
forming a single “top-level” group that includes all publishers
and subscribers. The user then defines data types and topics,
modeled as subgroups that include only those processes that
will publish or subscribe to them. Although our prototype also
supports “external clients”, nodes that are not in the group
but connect through an extra relaying step, space constraints
precluded evaluation of that configuration.

DerechoDDS supports a zero-copy data path by allowing
developers to build messages “in place,” i.e., directly in the



2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

50

100

250

500

1000
1500

4000
6000

Number of subscribers

B
an

dw
id
th

(M
B
/s
)

Unordered Volatile storage

Atomic multicast Persistent storage

Figure 3: DDS bandwidth for its 4 QoS levels.

memory area that Derecho will write via RDMA. This is
crucial: even a single data-copying step would sharply reduce
performance on high-speed networks. The system offers four
consistency QoS policies. 1. Unordered: This level corre-
sponds to the eventual consistency of the standard DDS. Data
is delivered without waiting for stability, and will not be
retained after delivery. 2. Atomic multicast: This is layered
directly on the Derecho’s atomic multicast. Again, data is
discarded after delivery. 3. Volatile storage: In addition to the
atomic multicast guarantees, the most recent data is retained
in receiver memory, allowing late subscribers to catch up. 4.
Persistent storage: Data is additionally appended to a log file
on persistent storage for debugging, additional fault tolerance
or time-series data analysis.

We evaluate the performance of DerechoDDS for a single
topic with one publisher and an increasing number of sub-
scribers. We define a Sequence data type representing a byte
sequence to be exchanged among the entities. The publisher
publishes 1 million samples of the same type, each of 10KB
size. Publishers and subscribers are all on different nodes to
stress the network performance. Figure 3 shows the bandwidth
of DerechoDDS for the offered levels of consistency, running
on the optimized version of the Derecho library. Interestingly,
we observe that for unordered and atomic multicast mode the
performance is very similar, and corresponds to the Derecho
atomic multicast performance showed in Figure 2a for the
single sender case. This means that the atomic multicast
consistency level does not add a significant overhead over
the eventually consistent mode. Moreover, that also demon-
strates that our DDS implementation is extremely efficient in
preserving Derecho’s high performance. Speed of the volatile
case is limited by memory copying, while the persistent case
is limited by DMA data rates to the storage device.

V. RELATED WORK

Traditionally, each application domain defines its own com-
munication middleware: e.g., SOME/IP [4] is prominent in the
automotive community. However, usually these solutions lack
the scalability and the extensive QoS support of DDS, which
is domain-agnostic and yet integrated with domain-specific
platforms, such as AUTOSAR for automotive.

All the major DDS implementations, either commercial or
open-source, provide a shared-memory, zero-copy data path
to applications co-located on the same host. However, they
cannot offer these features for inter-host communication since

they use the TCP/IP networking stack. Instead, DerechoDDS
leverages RDMA to share memory among remote applications,
and relies on the Derecho atomic multicast protocol to offer
much stronger consistency guarantees.

The formal model employed by DerechoDDS is discussed
in [5] and its protocols are proved correct in [2]. Work on
machine-checked proofs (using the Ivy protocol checker and
a Coq-based prover) is underway.

A significant part of our work was dedicated to optimiz-
ing Derecho for small messages. Prior work on improving
performance on RDMA networks was highly influential for
systems dominated by one-to-one interactions. In particular,
the technique of opportunistic batching was also explored in
Kalia et al. [6]. However, whereas Kalia focused on one-to-
one interactions in a key-value storage, DerechoDDS maps
to atomic multicast, requiring a more complex approach that
optimizes all stages of the communication pipeline.

VI. CONCLUSION

We presented DerechoDDS, an OMG-compliant automotive
and avionics data distribution service that leverages modern
RDMA hardware to offer a zero-copy data path for publish-
subscribe communication among remote hosts. DerechoDDS
offers strong consistency guarantees for message delivery
order and data durability, as required by safety-critical appli-
cations. We obtained these properties by layering the standard
OMG DDS interface on top of Derecho, a mature library
for state machine replication over RDMA that supports a
range of QoS options and employs provably correct Paxos-
based protocols. At the outset Derecho was poorly optimized
for the DDS traffic pattern, but we successfully improved
performance using a set of techniques that should also be
broadly useful in other systems that exchange small messages
via kernel-bypassing techniques. Finally, we evaluated the
performance of a simple DDS application to demonstrate its
effectiveness. In the future, we plan to compare DerechoDDS
with other DDS implementations, looking at both performance
and suitability for mission-critical tasks.
Acknowledgments The authors wish to acknowledge the sup-
port received from AFRL/RY (Wright-Patterson), Microsoft,
Siemens and Nvidia corporations. We additionally wish to
express our gratitude to the anonymous reviewers for their
constructive comments and suggestions.

REFERENCES

[1] “OMG Data Distribution Standard.” [Online]. Available: https://www.
dds-foundation.org/omg-dds-standard

[2] S. Jha et al., “Derecho: Fast state machine replication for cloud services,”
ACM Trans. Comput. Syst., vol. 36, no. 2, Apr. 2019.

[3] “Rdma aware networks programming user manual.” [Online]. Available:
https://www.mellanox.com

[4] AUTOSAR, “SOME/IP Protocol Specification.” [Online]. Available:
https://www.autosar.org/standards/foundation

[5] K.Birman et al., “Communication support for reliable distributed com-
puting,” in Proceedings of the Asilomar Workshop on Fault-Tolerant
Distributed Computing. London, UK: Springer-Verlag, 1990, pp. 124–
137.

[6] A. Kalia et al., “Using RDMA efficiently for key-value services,” in
Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM
’14. New York, NY, USA: ACM, 2014, pp. 295–306.


