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Abstract—Applications with internal substructure are common
in the cloud, where many systems are organized as independently
logged and replicated subsystems that interact via flows of objects
or some form of RPC. Restarting such an application is difficult: a
restart algorithm needs to efficiently provision the subsystems by
mapping them to nodes with needed data and compute resources,
while simultaneously guaranteeing that replicas are in distinct
failure domains. Additional failures can occur during recovery,
hence the restart process must itself be a restartable procedure.
In this paper we present an algorithm for efficiently restarting a
service composed of sharded subsystems, each using a replicated
state machine model, into a state that (1) has the same fault-
tolerance guarantees as the running system, (2) satisfies resource
constraints and has all needed data to restart into a consistent
state, (3) makes safe decisions about which updates to preserve
from the logged state, (4) ensures that the restarted state will
be mutually consistent across all subsystems and shards, and (5)
ensures that no committed updates will be lost. If restart is not
currently possible, the algorithm will await additional resources,
then retry.

I. INTRODUCTION

We are seeing a shift from a query-dominated cloud in
which most operations are read-only and use data acquired
out-of-band, to a real-time control cloud, hosting increasingly
complex online applications, in which near-continuous avail-
ability is important. Such needs arise in stream processing for
banking and finance, IoT systems that monitor sensors and
control robots or other devices, smart homes, smart power
grids, smart highways, and cities that dynamically manage
traffic flows, etc. These applications often have multiple sub-
systems that interact, and that bring safety requirements which
include the need for fault-tolerance and consistency in the
underlying data-management infrastructure.

Traditional transactional database methods scale poorly if
applied naively [1]. Our work adopts a state machine replica-
tion model, using key-value sharding for scaling. Such models
are relatively easy to program against and hence increasingly
popular, but pose challenges when crashes occur.

To maintain the basic obligations of the state machine
replication methodology, updates must be applied to replicas
exactly once, in the same order, and should be durable despite
damage a failure may have done. For a given replication factor
the system should also guarantee recoverability if fewer than
that number of crashes occur. Subsystems may being further
constraints: numbers of cores, amounts of memory, etc. A
further consideration is that datacenter hardware can exhibit
correlated failures due to shared resource dependencies. To

ensure high availability, replicas must be placed into distinct
failure correlation sets.

Performance considerations further shape the design of
modern cloud systems, which often migrate artificially intelli-
gent behavior into the edge [2]. This may entail use of machine
learned models for decision-making or event classification, as
well as real-time learning in which new models are trained
from the incoming data stream. For example, a smart highway
might need to learn the behavior of vehicles, and adapt the
acquired models as vehicles change their behavior over time.
The large data sizes (photos, videos, radar, lidar) and intense
time pressure (guidance is of little value if based on stale data)
compel the use of accelerators, such as RDMA (which offloads
data transport to hardware and achieves zero-copy transfers),
NVM (which offers durable memory-mapped storage), GPU
and TPU, and FPGA, without which applications would often
be unable to meet performance demands [3, 4, 5].

The Derecho library [3] was created to support this new
class of demanding edge applications. Derecho models the
application as a collection of subgroups where each subgroup
is partitioned into shards (subgroups can overlap, but shards of
the same subgroup are disjoint). Each shard is a replicated state
machine. The membership of the entire system is managed
in a top-level group, which consists of all the nodes in the
system. Figure 1 shows an example application. Derecho
makes several key design decisions that are necessary to
achieve high performance:

• Consensus off the critical path: Derecho adopts a virtual
synchrony approach [6]. The top-level group membership
moves through epochs (or views) where each epoch is a
failure-free run of the system. Each failure triggers a re-
configuration (or view change) of the group membership.
The view change involves agreement on pending updates
and recomputation of the membership of each shard.

• Update all, read any single replica: An update is only
committed in a shard if it has been logged at every non-
failed member. Every replica has full state, enabling fast
single-replica queries that do not interfere with updates.
In this model, a shard can survive the failure of all but one
member without losing any committed updates. This is in
contrast to quorum-based protocols [7], where it suffices
to update a majority of replicas, but where a query or
a restart involves merging state from multiple replicas.
Moreover, Derecho pipelines updates, such that each log
consists of a prefix of committed updates followed by
a suffix of pending updates. A reconfiguration results in
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Fig. 1: A Derecho service spanning 16 (or more) machines
and containing several subsystems that employ a mix of point-
to-point RPC and multicast. The ovals represent subgroups
and shards within which data is replicated. Independent use
of state machine replication isn’t sufficient: after a shutdown,
components must restart in a mutually-consistent state.

a distributed log cleanup where updates that cannot be
committed are discarded.

• Distributed logs: For safety, each shard member needs to
log updates before they are committed. In this class of
services, the “state of the application” is decentralized.

Services sometimes shut down and must later be restarted,
for example when the application is migrated to different
nodes, software is updated or the datacenter as a whole
is serviced. Clearly we must recover each individual SMR
subgroup or shard, but notice that the recovered states also
need to correspond to a state the service as a whole could
have experienced, while also preserving every committed
update. This obligation is not unique to Derecho: systems like
vCorfu [8] (the multi-log version of Corfu [9]) and Ceph [10]
also have multiple subsystems that use sharding. Nonetheless,
the problem has not previously been studied. For example,
although the Derecho paper is detailed, it focuses on the
efficiency of its protocols, their mapping to RDMA, and the
resulting performance.

There are several factors that make restarting non-trivial:
• Failures during restart complicate the problem. We need

to ensure safety under all circumstances and restore the
system to a consistent, running state, equivalent to the
last committed state before total failure.

• Some nodes that were once part of the system may never
recover. Moreover, some restarting nodes may have failed
in a view preceding the last view before the restart, in
which case they will not be aware of the last member-
ship of the top-level group. We need to determine the
conditions under which a restart is possible and reconcile
incomplete logs stored by shard members.

• We need to satisfy application constraints related to
deployment. For example, shards may require that the
members belong to different failure regions of the data-
center, impose a minimum on the number of members,
and specify hardware configurations (such as number of
cores, amount of memory, GPUs, etc).

The restart process should also be highly efficient to min-
imize application downtime. Thus we need to minimize the
data transferred during restart and optimize data movement.

In this paper, we describe our restart algorithm for such sys-
tems, with configurable parameters as follows. Our algorithm
requires the restarting service to designate a restart leader; it
can be any restarting node. We model the failure characteristics
of the nodes by organizing them into failure correlation sets.
The application specifies the minimum number of failure
correlation sets that the members of a shard should come
from, for each shard of every subgroup. The application pro-
vides mappings from nodes to failure correlation sets through
configuration files, making the process highly flexible; it can
choose to distinguish nodes that belong to different racks or
different regions of the datacenter altogether.

Our paper makes the following contributions:
1) Characterization of the state recovery problem for ser-

vices composed of stateful subsystems, including a def-
inition of correct recovery for replicated state machines
that share a configuration manager.

2) An algorithm for restarting such a system from durable
logs, including reasoning that argues why the algorithm
is safe in the presence of any number of crashes, and
live as long as any quorum of the last live configuration
eventually restarts.

3) An algorithm that provably assigns nodes to shards in a
way that satisfies deployment constraints and minimizes
state transfer.

4) An experimental evaluation showing that a structured
service can be recovered quickly and efficiently using
this algorithm.

An implementation is available in the Derecho system.
In section II, we describe the restart problem at length,

discussing our desirable goals for any algorithm that solves
it. In section III, we discuss our restart algorithm and the
accompanying algorithm for assigning nodes to shards while
satisfying deployment constraints. In section IV, we reason
about the correctness of the restart algorithm and prove the
node assignment algorithm correct. We show the feasibility
of our approach in section V and discuss related work in
section VI. Finally, we summarize our findings and conclude
in section VII.

II. PROBLEM DESCRIPTION

The essence of our problem is that independent recovery
of state-machine replicated components is not sufficient. SMR
guarantees that a service with 2f + 1 members can tolerate
f crash failures. However a complex service with multiple
subsystems and shards has many notions of f . For the service
as a whole, Derecho’s virtually synchronous membership
protocol requires that half the members remain active from
one view to the next; this prevents “split brain” behavior. But
notice that in Figure 1 some shards have as few as 2 members.
A log instance could be lost in a crash, hence such a shard
must not accept updates if even a single member has crashed.
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We can distinguish two cases. One involves continued
activity of a service that experiences some failures, but in
which many nodes remain operational. This form of partial
failure has been treated by prior work, including the Derecho
paper. In summary, if the partial failure creates a state in which
safety cannot be maintained, the service must halt (“wedge”)
and cannot install a new view or accept further updates until
the damage has been repaired.

The second case is our focus here: a full shutdown, which
may not have been graceful (the service may not have
been warned). To restart, we must first determine the final
membership of the entire service, and the mapping of those
nodes to their shard memberships in the restarted service.
Then we must determine whether all the needed durable state
is available, since recovery cannot continue if portions of
the state are lacking, even for a single shard. Furthermore,
intelligent choices must be made about the mapping of nodes
to shard roles in the restarted service. On the one hand, this
must respect constraints. Yet to maximize efficiency it is also
desireable to minimize “role changes” that entail copying
potentially large amounts of data from node to node.

In what follows, we will describe the restart problem and
our algorithm for its solution in terms of a more generic
system, with the hope that our techniques will be useful even
in systems where Derecho is not employed.

A. System Setup

We consider a distributed system of nodes (i.e. processes)
organized into subgroups partitioned into shards, in which
each shard implements a virtually synchronous replicated state
machine. In general, we will refer to a shard without men-
tioning which subgroup it belongs to, unless the distinction
is important for clarity. Each shard maintains a durable log
of totally ordered updates to its partition of the system state,
and an update is considered committed once it is logged at
every replica in the current view. As is standard in the virtual
synchrony approach [6], each update records the view in which
it was delivered. Also, each reconfiguration (view change)
event requires every node to commit to an epoch termination
decision which must contain, at a minimum, the highest update
sequence number that can be committed in each shard, as well
as the ID of the view that it terminates.

We believe this model to be quite general. Obviously, it is
a natural fit for services implemented using Derecho, but it
can also be applied to the materialized stream abstraction in
vCorfu [8]. A vCorfu stream abstracts the action of applying
a sequence of updates to a single replicated object (what we
would call a shard). Moreover, vCorfu has multiple subsys-
tems: it stores the system’s configuration in a separate layout
server, rather than having replicas store their own configura-
tion. Turning to the Ceph file system [10], we find a meta-
data service, a cluster mapping service, and a sharded SMR-
replicated object store (RADOS). Again, the requirements are
analogous to the ones we described for Derecho, with the
cluster map playing the role of the view. To our knowledge,
neither vCorfu nor Ceph currently addresses the issue of

consistency across different shards and subsystems in the event
of a full shutdown; our methods would thus strengthen the
recoverability guarantees offered by these systems.

B. The Restart Problem

Our task is to ensure that the committed state of this system
can be recovered in the event that every node in the system
crashes in a transient way. This could be the result of a power
failure or network disconnection, or an externally-mandated
shutdown caused by datacenter management policies. When
the system begins restarting after such a failure, we can assume
that most of the nodes that crashed will resume functioning
and can participate in the restart process. However, some nodes
may remain failed. The system should be able to restart as
long as enough of its former members participate in the restart
process to guarantee that its state has been correctly restored.

Specifically, we need to restore the system to a consistent,
running state, that is equivalent to its last committed state
before the total failure. The restarted system must also have the
same fault tolerance guarantees as it did before. This means
that the restarted distributed service must (1) include every
update in every shard that had reached a durably-committed
state before the crash, (2) adopt a configuration that is the
result of a valid view-change procedure from the system’s last
installed configuration, and (3) assign nodes to shards such that
each shard meets its constraint of having nodes from different
failure correlation sets.

The service must also be resilient against failures during the
restart process, since the same transient crashes that caused it
to stop can also occur during restart. It must tolerate the failure
of any node in the system, detect it, and revert the system to a
safe state until recovery can continue. Recovery must be able
to continue from any intermediary state.

We assume that some simple external process triggers the
restart procedure, such as a datacenter-management system
that re-runs each interrupted program after a shutdown event.
As a preliminary design choice, we will also assume that the
restart procedure will be leader-based. The restarting system’s
first task, then, is to choose a restart leader. While we could
elect a restart leader using standard techniques, we found it
simpler and just as effective to use a preconfigured list of
restart leaders installed on all nodes in the system (e.g. through
a settings file). We have designed our protocol such that any
node that was a member of the system at any time can serve
as the restart leader, so the choice of restart leader is arbitrary
and does not depend on the state of the system at the time
of the total failure. As we will see in section IV-B, this also
means that it is easy for another node to take over for the
restart leader if it fails during recovery.

In order to restart to a consistent state, several subproblems
must be addressed. First, when the restart leader starts up, it
does not know whether it was a member of the last installed
configuration, or whether it crashed much earlier but was
nonetheless set as the restart leader; thus, its logs of both
system state and the group membership could be arbitrarily out
of date. Second, when the restart leader communicates with
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other restarting nodes, it must determine whether those nodes’
configuration and state data is newer or older than its own,
and whether it represents the last known state of the system,
without knowing in what order the other nodes crashed. Third,
for each node that restarts and has logged state updates, the
restart leader must determine which updates in that log might
have been externally visible and acted upon, and which were
still in-progress and might never have reached a majority
of replicas. Answering this question requires knowing what
configuration was active at the time the update was logged, and
what configuration was active at the time the system crashed.
Finally, during the restart process any node could experience
another transient crash, including the restart leader itself, and
these crashes should not result in the system restarting in an
inconsistent state or prevent the system from restarting when
it has a sufficient number of healthy replicas.

The restarted system must also install a configuration that
meets each shard’s fault-tolerance constraints. To avoid shard
shutdowns due to correlated failures, each shard is statically
configured to require a minimum number of nodes from
different failure correlation sets. Here, a distinction between
shards of different subgroups is important, since only shards
of the same subgroup are disjoint. Given a number of restarted
nodes and their failure correlation sets, the restart leader must
not only partition them between each subgroup’s shards, but it
must also (1) satisfy the minimum number of nodes required
from different failure correlation sets for each shard, (2) assign
as many nodes as possible to their original shards, in order to
minimize the number of state transfers between nodes, and (3)
compute the new assignment in a timely manner. Section II-C
gives a detailed example of what is required.

The log-recovery system we describe here addresses all
of these concerns, and restarts the system as efficiently as
possible by allowing each shard to complete state transfer
operations in parallel.

C. Failure-Domain-Aware Assignment
Suppose that a system has failure correlation sets f1, f2,

f3, such that f1 contains nodes a and b, f2 contains nodes
c, d, and e, and f3 contains nodes f and g. It has just one
subgroup with three shards s1, s2, s3, which require 2, 3, and
1 node(s) from different failure correlation sets respectively.
A valid initial configuration for this system would be s1 =
{a, c}, s2 = {b, e, g}, s3 = {f}, leaving d unassigned to any
shard. This can be represented in the following diagram, in
which colors correspond to failure correlation sets:

a c b e g d f

s1 s2 s3

Now suppose a shutdown occurs and all nodes except g
restart. Shard s2 is no longer in a valid configuration because
it has 1 less node than it requires, but it would not suffice for
the restart leader to simply add the unassigned node d to the
shard because d is from the same failure correlation set as c.

a c b e g d f

s1 s2 s3

An optimal reassignment is to move f from s3 to s2, and
add d to s3, resulting in the post-restart configuration s1 =
{a, c}, s2 = {b, e, f}, s3 = {d}. This reassigns only 2 nodes
to new roles, which is the minimum that can be achieved while
satisfying each shard’s requirements.

a c b e f g d

s1 s2 s3

III. RESTART ALGORITHM

Having established the parameters of the restart problem,
we now present our algorithm for solving it. At a high level,
this algorithm has seven steps:

1) Find the last-known view by inspecting persistent logs
2) Wait for a quorum of this view to restart
3) Find the longest replicated state log for each shard
4) Compute new shard assignments and complete epoch

termination from the last view, if necessary
5) Trim shard logs with conflicting updates
6) Update replicas with shorter logs
7) Install the post-restart view

However, this is not a linear process, because failures at
any step after 2 can force the algorithm to return to step
2 if the quorum is lost. Also, in practice, steps 1-3 are
executed concurrently by the restart leader, because it can
gather information about the longest update log available for
each shard while it is waiting to reach a restart quorum.

In order for log recovery to be possible, we must add a few
requirements to the system described in Section II-A. First,
during a reconfiguration, all nodes which commit to a new
view must log it to nonvolatile storage before installing it.
Furthermore, in order to ensure that no updates are used in
the restarted state of the system that would have been aborted
by the epoch termination process, live nodes must log each
epoch termination decision to persistent storage before acting
upon it. Before committing to a new view, the new members
of each shard must download and save the epoch termination
information for the prior view in addition to the logged updates
that they download during the state-transfer process.

The pseudocode for our algorithm is shown in Algorithms
1, 2, 3, and 4, where Algorithms 1 and 2 show the code
that runs on the restart leader, Algorithm 3 shows the code
that runs on a non-leader node, and Algorithm 4 shows the
STATE TRANSFER function that is common to both nodes.
For brevity, we have factored out the leader’s failure-handling
code into a macro called HANDLE FAILURE, which should be
inserted verbatim wherever it is named.

In our pseudocode’s syntax, the dot-operator accesses mem-
bers of a data structure by name, and the bracket operator
accesses members of a map by key, as in C++ or Java. Note
that there are three kinds of integer identifiers: node IDs
or NIDs, shard IDs or SIDs, and view IDs or VIDs. Each
node has a globally unique node ID, and, as is common in
virtual synchrony, view IDs are unique and monotonically
increasing. Shard IDs are unique identifiers assigned to each
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Algorithm 1 The restart leader’s behavior, part 1
1: Vc ← READ(view log)
2: restarted← {nidme}
3: ue ← READ(update log).end
4: LL← {Vc.my sid→ (nidme, ue.seqno)}
5: ET ← READ(epoch termination log)
6: while ¬ QUORUM(Vc, restarted) do
7: (Vi, nidn, sid, seqno)← RECEIVE from n
8: restarted← restarted ∪ {nidn}
9: if Vi.vid > Vc.vid then

10: Vc ← Vi

11: WRITE(view log, Vc)
12: ET ← {}
13: if LL[sid].seqno < seqno then
14: LL[sid]← (nidn, seqno)

15: et← RECEIVE from n
16: if et 6= {} ∧ et.vid = Vc.vid then
17: ET ← et
18: WRITE(epoch termination log, ET )
19: Vr ← CHANGE VIEW(Vc, restarted)
20: if ET = {} then
21: ET.vid← Vc.vid
22: for all s ∈ Vr.subgroups do
23: ET.last[s.sid]← LL[s.sid].seqno

24: sent← {}
25: for all s ∈ Vr.subgroups do
26: for all nidn ∈ s.members do
27: success← SEND(Vr, ET, LL[s.sid].nid) to n
28: if ¬success then
29: HANDLE FAILURE(nidn, sent)
30: sent← sent ∪ {nidn}

shard (globally, across all subgroups) of the system. In the
following sections, we will explain the details of the algorithm,
which should make the pseudocode more clear.

A. Awaiting Quorum

The restart leader’s first operation is to read its logged view,
which becomes the first “current” view, Vc, and its logged
epoch termination information, which becomes the currently-
proposed epoch termination, ET . It then begins waiting for
other nodes to restart and contact it; non-leader nodes will
contact the preconfigured restart leader as soon as they restart
and discover that they have logged system state on disk.

When a non-leader node contacts the leader, it sends a copy
of its logged view, Vi, its node ID, the ID of the shard it was
a member of during Vi, and the sequence number of the latest
update it has on disk. The joining node may optionally then
send a logged epoch termination structure, if it has one that is
as new as its logged view. The leader updates Vc and possibly
ET if the client’s view and epoch termination are newer, and
uses data structure LL (a map from shard IDs to pairs of
node IDs and update sequence numbers) to keep track of the
location of the longest log for each shard. Note that sequence
numbers from later views are always ordered after sequence
numbers from earlier views.

After each node restarts, the leader checks to see if it has a
restart quorum. A restart quorum consists of a majority of the
members of the system in the last known view that includes at

Algorithm 2 The restart leader’s behavior, part 2
31: if ET.vid = ue.vid then
32: success← SEND(∅) to LL[Vr.my sid].nid
33: trim seqno← ET.last[Vr.my sid]
34: else
35: success← SEND(ue.vid) to LL[Vr.my sid].nid
36: trim seqno← RECEIVE from LL[Vr.my sid].nid

37: if ¬success then
38: HANDLE FAILURE(LL[Vr.my sid].nid, restarted)
39: TRUNCATE(update log, trim seqno)
40: success← STATE TRANSFER(

LL[Vr.my sid].nid, nidme, Vr)
41: if ¬success then
42: HANDLE FAILURE(LL[Vr.my sid].nid, restarted)
43: sent← {}
44: for all nidn ∈ Vr.members do
45: success← SEND(“Prepare”) to n
46: if ¬success then
47: HANDLE FAILURE(nidn, sent)
48: for all nidn ∈ Vr.members do
49: SEND(“Commit”) to n

50: WRITE(view log, Vc)
51:
52: procedure HANDLE FAILURE(nid, notify set)
53: restarted← restarted− {nid}
54: for all nidm ∈ notify set do
55: SEND(“Abort”) to m

56: if ¬ QUORUM(Vc, restarted) then
57: goto 6
58: else
59: goto 19

least one member of every shard from that view. In addition,
the restart leader must be able to install a new post-restart view
in which the entire group has at least f+1 replicas to meet the
overall fault-tolerance threshold, and each shard is populated
by nodes that meet its failure-correlation requirements. Note
that the post-restart view can add new members that were
not part of the last known view, since nodes that failed in an
earlier view but restarted after the system-wide failure can still
participate in the recovery process.

Once the leader has reached a restart quorum, if the newest
epoch termination structure it has discovered is from an older
view than Vc, it makes its own decision about how to terminate
Vc’s epoch. Specifically, it synthesizes an epoch termination
structure by taking the sequence number of the latest update
for each shard, and marking it with the same VID as Vc. It
then computes Vr, the next view to install after restarting.

In practice, the leader waits for a short “grace period” after a
quorum is achieved to allow nodes that restarted at a slightly
slower rate to be included in Vr. This makes it less likely
that Vr will require many node reassignments (and hence state
transfers), and has only a minor effect on restart time.

B. Assigning Nodes to Shards

When testing for a restart quorum and computing Vr, the
leader must determine an optimal assignment from nodes to
shards. Since the shards of a subgroup must be disjoint, it can
consider each subgroup individually. For each subgroup, the
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Algorithm 3 A non-leader node’s behavior
1: Vc ← READ(view log)
2: et← READ(epoch termination log)
3: ue ← READ(update log).end
4: SEND(Vc, nidme, Vc.my sid, ue.seqno) to leader
5: if et 6= {} ∧ et.vid = Vc.vid then
6: SEND(et) to leader
7: commit← ⊥
8: while ¬commit do
9: (Vr, ET, nid`)← RECEIVE from leader

10: et← ET
11: if et.vid = ue.vid then
12: success← SEND(∅) to `
13: trim seqno← et.last[Vc.my sid]
14: else
15: success← SEND(ue.vid) to `
16: trim seqno← RECEIVE from `

17: if ¬success then
18: continue
19: TRUNCATE(update log, trim seqno)
20: success← STATE TRANSFER(nid`, nidme, Vr)
21: if ¬success then
22: continue
23: p← RECEIVE from leader
24: if p = “Prepare” then
25: d← RECEIVE from leader
26: commit← (d = “Commit”)
27: Vc ← Vr

28: WRITE(view log, Vc)

leader computes the assignment of nodes to shards in Vr by
solving an instance of the min-cost flow problem [11].

It first creates a bipartite graph from shards to failure
correlation sets as follows: For each shard there is a vertex
si, and for each failure correlation set (FCS) there is a vertex
fcsj . There is one “shard” vertex u representing unassigned
nodes, one source vertex, and one sink vertex. If mi is the
required number of nodes from different failure correlation sets
for shard i, then there is an edge from the source vertex to si
with cost 0 and capacity mi. An edge with cost 0 and capacity
0 extends from the source vertex to u. An edge extends from
each shard vertex si to each FCS vertex fcsj , with cost 0 if
shard i contained a node from FCS j in Vc, cost 1 otherwise,
and capacity 1. For vertex u, these edges always have cost 0
and capacity 1. Finally, there is an edge from each FCS vertex
fcsj to the sink vertex with cost 0 and capacity equal to the
number of nodes in FCS j in Vr.

The leader solves min-cost flow on the generated bipartite
graph, increasing flow along augmenting paths until all shard
vertices si have at least mi flow and a solution is generated,
or no augmenting path can be generated for the graph. If a
solution is generated, then the leader translates that solution
into a node assignment, where shard i is assigned one node
from failure correlation set j if an edge contains flow between
vertices si and fcsj . If min-cost flow halts without a solution,
then there is no solution that satisfies mi for all shards, and
there is not yet a restart quorum.

Algorithm 4 The state-transfer function
1: function STATE TRANSFER(nid`, nidme, Vr)
2: if nid` = nidme then
3: UL← READ(update log)
4: for all n ∈ Vr.shards[Vr.my sid] do
5: vidn ← RECEIVE from n
6: if vidn 6= ∅ then
7: seqnon ← FIND MAX(UL, vidn).seqno
8: succ1 ← SEND(seqnon) to n

9: seqnoe ← RECEIVE from n
10: succ2 ← SEND({UL[seqnoe], . . . UL.end}) to n
11: if ¬succ1 ∨ ¬succ2 then
12: return ⊥
13: else
14: ue ← READ(update log).end
15: success← SEND(ue.seqno) to `
16: if ¬success then
17: return ⊥
18: {ue+1, ue+2, . . . , u`} ← RECEIVE from `
19: APPEND(update log, {ue+1, ue+2, . . . , u`})
20: return >

C. Completing Epoch Termination

For each shard, the restart leader sends to each node that
will be a member in Vr the identity of the node on which the
latest update for that shard resides (denoted node `), as well
as Vr itself and the epoch termination information.

When sending this information to node n, the restart leader
might discover that n has crashed because it does not re-
spond to the leader’s connection attempts (we assume TCP-
like semantics for our network operations). In this case, the
leader removes n from the set of restarted nodes, sends an
“Abort” message to all the nodes that have already received
its message, and recomputes whether it has a restart quorum.
If there is still a restart quorum, the leader recomputes Vr and
starts over at sending ET and Vr to each live node. If not, it
returns to step 2 and waits for additional nodes to restart.

Meanwhile, when a non-leader node receives Vr, ET , and
nid`, it compares ET ’s view ID to the view ID associated with
its last logged update. If these IDs match, the node completes
epoch termination by deleting from its update log any updates
with a sequence number higher than the last commit point for
its shard. If the epoch termination structure is from a later
view, though, all the updates in the node’s log are from an
earlier view that might have had its own epoch termination.
In order to ensure that it also trims any updates that were
aborted by the earlier epoch termination, the node contacts
node ` and sends it the VID of its last logged update. Node
`, upon receiving this message, inspects its update log and
finds the last update with that VID, then replies with that
update’s sequence number. The sending node then deletes
from its log any updates with a higher sequence number.
(Node `’s behavior in this exchange is implemented in the
STATE TRANSFER function).

D. Transferring State

Once each node, including the leader, has truncated from
its log any updates that would have aborted, it must download
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any committed updates that are not in its log. Each node that
has been designated as the location of the longest log must,
conversely, listen for connections from the other nodes that
will be members of its shard in Vr and send them the updates
they are missing. This is shown in the STATE TRANSFER
function in Algorithm 4. In this phase, a non-leader node may
discover that the node with the longest log has failed when it
attempts to contact it. In that case, the node can conclude that
the Vr it has received from the leader will not commit, and
return to waiting to receive a new Vr and longest-log location
from the leader.

E. Committing to a Restart View

When a non-leader node finishes its state transfer operations,
it awaits a “prepare” message from the leader. Meanwhile,
when the leader has finished its own state transfer operations,
it begins sending “prepare” messages to each node. If it
discovers while sending these that a node has crashed (because
the connection is broken), it sends an “abort” message to
all nodes that it has already sent “prepare” messages to, and
recomputes the post-restart view to exclude the crashed node.
The leader might then discover that it no longer has a sufficient
quorum for restart without the crashed node, in which case it
returns to step 2 and waits for additional nodes to restart. If
it still has a quorum, however, the leader can return to step 3,
calculating the new shard membership and sending the new
Vr and longest log location to all nodes. Once the leader has
successfully sent “prepare” messages to all nodes in Vr, it
can send a “commit” message to all of them confirming that
this view can be installed. Once a non-leader node receives the
leader’s commit message, it can install Vr and begin accepting
new messages and committing new updates. At this point,
the restart leader no longer has a leader role, and all future
failures and reconfigurations can be handled by the normal
view-change protocol for a running system.

IV. ANALYSIS

We will now prove that this protocol satisfies the goals
we set out in section II-B. We first show that the protocol
is correct in the case where there are no failures during the
restart process, and then show that failures of any node do not
affect its correctness.

Regardless of which view the restart leader has logged on
disk when it first starts up, it is guaranteed to discover the last
view that was installed in the pre-crash system before it exits
the await-quorum loop, because a restart quorum requires a
majority of nodes from the current view Vc to contact it. The
view-change protocol in virtual synchrony requires a majority
of the members of the current view to be members of the next
view, which means that if the restart leader starts with some
obsolete view Vk, a majority of members of Vk were also
members of Vk+1, and the restart leader will discover at least
one member of Vk+1 by waiting for a majority of members of
Vk. When a member of Vk+1 restarts, it will send Vk+1 to the
leader, which will then use Vk+1 as Vc and begin waiting for
a majority of Vk+1’s members. If Vk+1 is not the latest view,

then by the same logic, the leader is guaranteed to discover
Vk+2 on at least one of the members of this majority. Thus,
the leader must have discovered and installed the last known
view V` by the time it has satisfied the quorum condition of
contacting a majority of Vc.

Furthermore, by the time the leader exits the await-quorum
loop, it is guaranteed to discover at least one log containing
all committed updates for each shard in the system. This is
because an additional condition of a restart quorum is that
the leader must contact at least one member of each shard
according to Vc. As we have just shown, Vc must equal V`

before the majority condition of the quorum can be satisfied,
so the leader will contact at least one member of each shard
in V`. Since updates that commit in a view are by definition
logged on every member of a shard in that view, any node
that was a member of a shard in V` will have a log containing
all committed updates for that shard up to the point of the
total crash. Thus, every shard will have a designated longest-
log location that contains all of its committed updates by the
time the leader exits the await-quorum loop. Recovery into a
mutually consistent state follows because membership epochs
are totally ordered with respect to SMR events in shards or
subgroups: the end of each epoch is a consistent cut [12].

The epoch termination decision ET that the leader sends out
after achieving quorum is guaranteed to preserve any decision
made by the group prior to the crash, and to include only
updates that were safe to commit. Since the system’s epoch
termination process (as augmented in section III) requires all
members of a view to log the epoch termination decision
before acting on it, by the time the leader reaches a majority
of V`, it must find at least one copy of the epoch termination
information that was computed for V` if any node acted upon
it. Using this epoch termination structure as ET preserves
the decision made by V`’s reconfiguration leader about which
updates to include. Conversely, if the leader does not find any
epoch termination information for V`, then no node had yet
delivered or aborted any updates that were in-progress at the
time of the crash. This means it is safe for the restart leader
to construct ET using the longest sequence of updates that is
available on at least one node in each shard, and unilaterally
decide to commit any pending updates at the tail of that log.
Before any node installs a view in which those updates are
committed (Vr), the state transfer process ensures that any
pending updates are fully replicated to all members of their
shard. Thus, for each shard, every update up to the last commit
point in ET will be present on all members of that shard in
the new view, which is the same guarantee provided by the
epoch termination process during a normal run of the system.

Finally, the post-restart view Vr that the leader installs is
guaranteed to have the same stability and durability guarantees
as any other view in the running system. As we just showed,
all nodes that will be members of a shard in Vr will have the
exact same update log for that shard before Vr is installed,
which means that the updates committed in Vr are just as fault-
tolerant as updates in any prior view. Vr itself is also durable,
and guaranteed to be recovered by a future restart leader during
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the recovery process, because a majority of members of V` are
also members of Vr.

A. Tolerance of Failures of Non-Leaders

Our approach to failed non-leader nodes is to treat them as
nodes that have not yet restarted. Upon detecting a failure at
any point after reaching a restart quorum, the leader removes
the failed node from its restarted set, and recomputes both Vr

and whether it has a restart quorum. By sending an “abort”
message to all other nodes that may already have received
Vr, the leader ensures that they will return to waiting for
Vr and the epoch termination information. Regardless of how
many times nodes fail and restart during the restart process,
the leader still cannot proceed past the await-quorum loop
until it has reached a restart quorum, which means it must
reach at least one node from each shard that has all the
committed updates for that shard. Since nodes never truncate
updates from their logs that had actually committed in V` (due
to the correctness of the epoch termination procedure), and
committed updates were present on every member of their
shard in V`, this will always be possible as long as enough
members of V` eventually restart.

It is safe for the nodes that received ET and Vr from
the leader before it detected a failure to begin the epoch
termination and state transfer process, because at the point
the leader started sending Vr it had reached a restart quorum.
This means that ET only included updates that were safe to
commit, and only excluded updates that had definitely aborted.
Although Vr will change whenever there is a failure, the
only way that ET could change after a failure is to include
or exclude a different number of pending-but-uncommitted
updates at the tail of a shard’s log, and that will only happen
if the node that failed was the location of the longest log for
a shard. In that case, the new ET may include fewer of the
uncommitted updates at the tail of the shard’s log, but it is
equally safe to abort these updates, since they had not yet
committed at the end of V`. Nodes that had downloaded some
of these updates at the time of the failure will simply truncate
them when they re-run the epoch termination process.

The two-phase commit at the end of the state-transfer
process ensures that all of the nodes in Vr are still live and
have finished state transfer before any of them can commit to
Vr. This ensures that no node can begin acting on Vr until all
of the updates committed by ET are fully replicated.

B. Tolerance of Failure of the Leader

Much of our restart protocol seems to depend on correct
operation of the restart leader, but in fact it can tolerate the
failure of the restart leader: a subsequent restart leader would
always select a state that is a safe extension of the state of
the original leader (in fact it will be the identical state if the
original leader’s proposal might have been acted upon, and
otherwise will be a safe choice with respect to the state the
system was in when it crashed). One caveat is that our solution
is correct only with a single leader running at a time. Since no
fault-tolerant configuration management system is yet in place

while the system is restarting, choosing a restart leader with
an election protocol would be quite difficult. However, a small
amount of manual configuration can to be used both to choose
the initial leader and to select one to take over if the initial one
fails. This can be accomplished by, for example, specifying
both a default restart leader and an ordered list of fallback
restart leaders in a configuration file. Handling the failure
of the leader in an efficient manner may also require some
manual intervention, specifically in the case where the leader
fails during the await-quorum loop, because non-leader nodes
can expect to wait a rather long time for the leader to reach a
quorum (depending on how long it takes nodes in the system
to restart after a total crash). They can eventually conclude that
the leader has failed if it does not send ET after a suitably long
timeout, but the restart process can complete faster if a system
administrator or other outside process forcibly restarts them if
the leader fails while awaiting a quorum. Failures of the leader
during the 2-phase commit are easier to detect, because the
leader should send the prepare and commit messages shortly
after sending the ragged trim information, so the non-leader
nodes can safely use much shorter timeouts on these messages.

When non-leader nodes detect that the leader has failed, they
restart the recovery process using the new restart leader. This
means that the new restart leader receives all of the same view,
epoch-termination, and update-log information as the previous
restart leader, and will reach the same conclusions. It will still
wait for majority of members of each view it discovers to
restart, meaning it must discover the last known view before
it concludes that it has a restart quorum. If the previous restart
leader was in fact required to achieve a quorum (because, for
example, it was the only member of some shard in V`), then
the new restart leader must wait for it to restart and rejoin the
system as a non-leader.

C. Correctness of Node Assignment to Shards

Next, we prove that our min-cost flow algorithm finds a
node assignment that satisfies each shard’s required number of
nodes from different failure correlation sets, given that a node
assignment exists that obeys this constraint. We also show that
our algorithm is optimal, generating an assignment where a
minimal number of nodes are moved to shards they were not
previously a part of. Thus, we minimize time spent on state
transfer between old and new members of each shard.

We prove correctness by reduction to min-cost flow. Our
solution is correct if it finds a feasible node assignment given
that one exists. Given capacities of edges from the source
vertex to shard vertices, shard vertices to failure correlation
set vertices, and failure correlation set vertices to the sink
vertex, any feasible flow in the graph can be translated into
a feasible assignment of nodes to shards. Each shard receives
exactly the number of nodes from different failure correlation
sets it requires, because that is the capacity of the edge from
the source to the shard vertex. No node from any failure
correlation set is assigned to more than one shard, because
the capacity of the edge from the failure correlation set vertex
to the sink is number of nodes in that failure correlation set.
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Fig. 2: Total time to start or restart a service. Error bars
represent 1 standard deviation.

All nodes assigned to any one shard are from different failure
correlation sets, because the capacity of the edges from shard
vertices to failure correlation set vertices is always 1. Thus a
solution to min-cost flow is a solution to the node assignment
problem. In fact, any solution to the node assignment problem
can also be translated into a flow.

Furthermore, the solution to min-cost flow represents an
optimal node assignment. We defined optimality above; a
solution is optimal if it minimizes the number of nodes whose
shard membership changes. By definition, the solution to min-
cost flow is a flow that minimizes the cost along all its edges.
Costs along edges are 0 except for edges from shard vertices
to failure correlation set vertices, where no member from the
failure correlation set belonged in the shard in the previous
view. That is the definition of optimality. Thus any solution to
min-cost flow is optimal.

Note that we opted to reduce to min-cost flow, which
can be solved in polynomial time, instead of integer linear
programming, which can be used to satisfy more generic
constraints but might not find a solution efficiently.

D. Efficiency and Generality

Our restart protocol is designed for a particular form of state
machine replication (the one implemented by Derecho), which
allows us to take advantage of some efficiencies built into this
SMR protocol. Specifically, Derecho’s SMR enforces a read
quorum of 1 within each shard, which means that reading the
log of one up-to-date replica is sufficient to learn the entire
committed state of that shard. Thus, the restart quorum only
requires a single member of each shard from the last known
view, and when new or out-of-date replicas are added to a
shard during restart, they only need to contact and transfer state
from a single up-to-date member. Furthermore, uncommitted
updates only occur at the tail of a log, and there are no “holes”
in the committed prefix of the log because updates are only
aborted during a reconfiguration (which also trims them from
the log). This allows us to easily make the correct decision
about whether to accept these updates during recovery: they
can safely be committed unless a logged epoch termination
decision is found that proves they will be aborted.
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Fig. 3: Total metadata sent/received during the restart process.

Nevertheless, our protocol could be applied to other forms
of SMR with a few relaxations of these optimizations. For
example, a read quorum > 1 would merely increase the size
of the restart quorum, as long as reconfiguration was still
handled via virtual synchrony. In a system with a per-shard
read quorum of ri, the restart leader would need to contact
at least ri members of shard i in the current view in order
to ensure it found both the next view (if one exists) and the
longest sequence of committed updates in shard i; the restart
quorum would include a read quorum of every shard in the last
known view. Any nodes added to a shard in the restart view
would also need to contact all the members of the most-recent
read quorum in order to complete state transfer.

Some SMR systems, such as vCorfu [8], separate config-
uration information from the replicated state itself, using a
separate “layout” service and “data” service. In this case, our
protocol would need to explicitly separate step 1 (finding the
last configuration) from step 3 (finding the longest log), rather
than executing them concurrently. The restart leader would
first need to contact a quorum of the layout service in order to
find the last active configuration, then use that configuration
to compute and wait for a restart quorum of the data service.

V. EXPERIMENTS

We have implemented our restart algorithm as part of the
Derecho library, and in this section we measure its per-
formance when restarting sample Derecho applications. All
experiments were carried out on our local cluster, which
contains 12 servers running Ubuntu 16.04, using SSD disks for
storage. In summary, we found that our recovery logic scales
well, and adds only a small delay compared to the costs of
process launches and initial Derecho platform setup.

Our first experiment was a straightforward end-to-end
benchmark. We used our algorithm to restart a simple Derecho
service with a single subgroup and shards of 2 or 3 nodes
each, after an abrupt crash in which all nodes failed near
the same time, and measured the time from when the restart
leader launched to when the first update could be sent in the
recovered service. For comparison, we also measured the time
required to start a fresh instance of the same service, with no
logged state to recover. Figure 2 shows the results.
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Fig. 4: Breakdown of time spent in each phase of starting or restarting a service, when 1 node per shard is out of date upon
restart. Upper bars show fresh start, lower bars show restart.

We find that the restart algorithm adds only minimal over-
head compared to the fresh-start case, and that the assignment
of nodes into more or fewer shards does not have a noticeable
effect on restart time, owing to the polynomial run time of
min-cost flow. In both cases, the time to launch the service
increases as the system scales up due to the fixed costs of
initializing more distributed processes. For example, there is
an increasingly variable delay in the time it takes each server to
actually start the Derecho process after being given a command
to do so.

Next, we measured the amount of metadata that was ex-
changed between the restart leader and the non-leader nodes
in order to complete the restart algorithm, using the same setup
as the experiment in Figure 2. (Metadata includes everything
sent during the restart process except for the missing updates
sent during state transfer). In Figure 3, we see that the restart
leader sends and receives more metadata as the size of the
overall group increases, increasing at an approximately linear
rate. This is because the restart leader must contact every
restarting node, both to receive its logged information and to
send out the proposed restart view. However, the non-leader
nodes exchange a nearly-constant amount of data regardless
of the size of the group, since they only need to contact the
leader and wait for its response. Note, also, that even at the
largest group sizes, the leader only needs to receive a few
kilobytes of data, aggregated over all of the restarting nodes.

In our next series of experiments, we evaluated the costs of
restarting a system with one or more significantly out-of-date
replicas (i.e. nodes whose logs are missing many committed
updates). To do this, we created a Derecho service organized
into shards of 3 nodes each, and allowed two out of three
replicas in each shard to continue committing updates for some
time after one replica had crashed. We then crashed the rest
of the replicas, and restarted all of the nodes at once. Each
update in this service contained 1KB of data.

Figure 4 shows a detailed breakdown of the amount of time
spent in the four major phases of the restart algorithm in this
situation: (1) awaiting quorum, (2) truncating logs to complete

epoch termination, (3) transferring state to out-of-date nodes,
and (4) waiting for the leader to commit a restart view. It
also shows a fifth phase, which is the time spent in the setup
process of the Derecho library before the first update can be
sent; this includes operations such as pre-allocating buffers
for RDMA multicasts. For comparison, we also measured the
breakdown of time spent in a fresh start of the same service,
which has only two phases: Awaiting quorum (i.e. waiting for
all the processes to launch) and setting up the Derecho library.

This experiment shows even more clearly that our restart
process is quite efficient compared to the normal costs of
starting a distributed service. Even when one replica in each
shard is missing 10000 committed updates, state transfer
accounts for at most 120 ms, a small fraction of the overall
time. It also shows the benefits of allowing each shard to
complete state transfer in parallel: The 3-shard service spent
no more time on state transfer than the 2-shard service, even
though there were an additional 1000 or 10000 updates to send
to an out-of-date node.

We also measured the number of bytes of data received by
each out-of-date replica during the state-transfer process, and
varied the amount of data contained in each update as well
as the number of missing updates. The results are shown in
Figure 5, and are fairly straightforward: the amount of data
transferred to each out-of-date replica increases linearly with
the size of an update, and with the number of updates that
the out-of-date replica has missing from its log. Moreover,
it is almost exactly equal to the number of missing updates
multiplied by the size of each update, because the node did not
need to download and merge logs from multiple other replicas.
It is also important to note that this data is sent in parallel for
each shard, so unlike the metadata in Figure 3, there is no
difference in how much data any one node must send as the
number of shards increases.

Finally, we measured the amount of time required to restart
a service with out-of-date replicas as the size of each update
scales up, shown in Figure 6. We found that for updates of
sizes below 1 MB, neither the size of the update nor the
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Fig. 5: Data downloaded by each out-of-date node, in a system
with 3 shards of 3 members each.

number of missing updates on the out-of-date replicas had
much of an effect on the restart time. For update sizes of
1MB and larger, the increasing amount of data that needed
to be transferred to the out-of-date replicas had the expected
effect of slowing down the restart process.

VI. RELATED WORK

The algorithms implemented by Derecho combine ideas
first explored in the Isis Toolkit [13, 6] with the Vertical
Paxos model [14]. Other modern Paxos protocols include
NOPaxos [4] and APUS [5]. Recent systems that offer a
more durable form of Paxos, such as Spinnaker [15] and
Gaios [16], include mechanisms for restarting failed nodes
using their persistent logs. However, these papers generally
do not consider the case in which every replica must be
restarted at once. “Paxos Made Live” [17] explores a number
of practical challenges (including durability) seen in larger
SMR systems, a motivation shared by our work.

Bessani et al. looked at the efficiency of adding durability
to SMR in [18], including the problem of minimizing state
transfer during replica recovery. They provided a solution for
recovering a non-sharded service in a Byzantine setting, and
also showed how to lower the runtime overhead of logging
and checkpointing. Their work did not look at services with
complex substructure, which was a primary consideration here.

Corfu [9] is a recent implementation of SMR that uses a
different approach from classic Paxos, distributing the com-
mand log across shards of storage-only nodes. Clients use
Paxos to reserve a slot, then replicate data using a form of
chain replication [19]. vCorfu [8] extends this by offering
virtual sublogs on a per-application basis. However, if multiple
subsystems use Corfu separately, recovery of the Corfu log
might not recover the application as a whole into a consistent
state. As we mentioned in sections II-A and IV-D, our protocol
could be adapted to vCorfu to ensure that a quorum of replicas
from each sublog of the last known layout is contacted before
the system is restarted. Other replicated cloud services, such
as Hadoop [20], Zookeeper [21], and Spark [22], employ an
alternative approach to durability by ensuring that any state
lost due to an unexpected failure can always be recomputed
from its last checkpoint, but this is not an option in our setting.
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Fig. 6: Time to restart a service with 3 shards of 3 members
each, with 1 out-of-date node per shard. Error bars represent
1 standard deviation.

Our work is inspired by a long history of distributed check-
pointing and rollback-recovery protocols, many of which are
summarized in [23], but updates these principles to the modern
setting of replicated services and SMR. Rather than rely on an
explicitly coordinated global checkpoint, as in [24] and [25],
or attempt to record a dependency graph between locally-
recorded checkpoints, as in [26], our system incorporates the
dependency information already recorded in SMR updates to
derive a globally consistent system snapshot from local logs.

Recovery of the final state of a single process group was
first treated in Skeen’s article “Determining the Last Process
to Fail” [27]. Our scenario, with potentially overlapping sub-
groups, is more complex and introduces an issue of joint
consistency they did not explore.

VII. CONCLUSION

Modern datacenter services are frequently complex, and
may employ SMR mechanisms for self-managed configura-
tion, membership management, and sharded data replication.
In these services, application data will be spread over large
numbers of logs, and recovery requires reconstruction of a
valid and consistent state that preserves all committed updates.
We showed how this problem can be solved even if fur-
ther crashes occur during recovery, implemented our solution
within Derecho, and evaluated the mechanism to show that it
is highly efficient.
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