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Building Scalable Solutions to Distributed Computing Problems

using Probabilistic Components

Indranil Gupta (Dept. of Computer Science, University of Illinois, Urbana-Champaign)

Ken Birman (Dept. of Computer Science, Cornell University, Ithaca)∗

Abstract

We present a composable methodology that designs a new class of reliable and scalable protocols for dis-

tributed computing problems. The methodology generates solutions for failure detection, group membership,

variants of reliable multicast, leader election, data aggregation, and distributed indexing. These operations are es-

sential in the design of distributed systems such as massive decentralized clusters, peer to peer systems and sensor

networks. By using (and reusing, through composition) randomization, message redundancy, and decentralized

algorithms, these new “probabilistic protocols” offer high probability reliabilities to distributed applications. The

overhead imposed on participating hosts is either independent of scale, or grows very slowly with system size

(often a polylogarithmic function). Deterministic reliability can then be achieved by backing up a probabilistic

protocol with a recovery protocol. All the above protocols (viz., from failure detection to distributed indexing) can

be generated by starting with a set of seven building block protocols, and by gluing them using three composition

techniques. We discuss the preservation of liveness, scale and reliability properties under protocol composition.

1 Introduction

Large-scale distributed applications such as those in the Grid, peer to peer file sharing, publish-subscribe, cooperative

web caching, replicated databases, etc. 1 require support from middleware. Middleware design has to employ

protocols that ensure reliability of performance in spite of end point failures (which could either be permanent,

e.g., host crashes, or transient, e.g., unresponsive applications), transient packet losses within the communication

∗The authors were supported in part by DARPA/AFRL-IFGA grant F30602-99-1-0532 and in part by a MURI grant AFOSR F49620-

02-1-0233, with additional support from the AFRL-IFGA Information Assurance Institute, from Microsoft Research and from the Intel

Corporation.
1Sensor network applications also form part of the list, but are excluded since we do not focus on them in this paper.
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network, and continuous arrival and departure of end points. In addition, scalability is a requirement; the algorithms

should achieve reliable operation by imposing light overheads on end points and on the network.

While many algorithms have been developed for such middleware, the design of these algorithms remains a

challenge. A high level question is: what are the principles that underlie the design of distributed protocols, and

that could be reused to generate further protocols. At first glance, this appears similar to code composition, e.g.,

object-oriented software. However, the above question addresses a much higher level - it is directed at the time and

energy spent behind the intellectually challenging task of design (as opposed to the implementation) of protocols.

We have previously designed a class of probabilistic protocols to implement core services for large-scale dis-

tributed applications. In this paper, we are able to present a design methodology for this protocol class. The method-

ology is informal, and provides guidelines by which probabilistic protocols can be composed to preserve correctness,

scale and reliability. We do not attempt to present a science of design, but hope this paper is perhaps a step in a larger

direction.

Large-Scale Distributed Systems and Probabilistic Protocols: Both deterministic and randomized algorithms

have been used to design distributed protocols. Deterministic state machine-based approaches such as centralization

and two phase commit may be disadvantageous in certain settings. Two drawbacks are that they: (a) impose over-

heads on end points that grow linearly with group size, or (b) degrade overall group throughput due to perturbation

at a single end point. See [4] for such a study in the realm of reliable multicast protocols.

Randomization is a useful technique to overcome the asymptotic limits of deterministic algorithms. The text by

Raghavan and Motwani [26] contains an extensive collection of randomized algorithms. In the distributed systems

community, randomized strategies were first extensively used after the FLP result [11] showed the impossibility

of achieving consensus in a process group over an asynchronous network (inclusive of lossy networks). Besides

eventual consensus protocols such as Lamport’s Paxos approach [27], Ben-Or [2] and Rabin [28] were the first to

use randomization to achieve probabilistic consensus. Chor et al [7] used randomization to construct a protocol

that achieves consensus in a constant number of rounds, where a round involves all-to-all communication among

the members of a group. 2 Randomization is also a cornerstone in the design of scalable and reliable peer-to-peer

systems. For example, distributed hash tables such as Chord, Pastry, Tapestry, CAN, etc. [10], use consistent hash

functions (e.g., SHA-1) and random selection of peer pointers for routing.

Our research effort has been directed at the design, analysis, implementation, and experimentation of a class of

2Randomization has also been used to implement consensus protocols tolerant to Byzantine members - we refer the reader to reference

[6] for a good summary.
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probabilistic protocols that provide important services to large-scale distributed applications such as those mentioned

earlier in the introduction. These services include decentralized group membership maintenance, reliable multicast,

leader election, data aggregation, and distributed resource location and discovery. The description and evaluation of

these protocols were previously published in references [8, 13, 14, 15, 16, 17, 18, 19, 23]. Applications built using

these services include cooperative web caching [23] and reliable multicast [18].

However, the design of protocols is a challenging task in itself, and is the direction of this paper. This paper

is a retrospective look at the technique of designing the above class of probabilistic protocols. Many researchers

believe protocol design to be an art. This paper does not seek to define a formal framework for design. The design

methodology presented is intended to serve as guidelines to a designer of distributed protocols. To draw an analogy,

this paper’s approach to protocol is more similar to design patterns used in software development [12] rather than a

formal composition framework such as probabilistic I/O automata [32] (the latter of which produces a different class

of protocols than in this paper).

We present a composable methodology for probabilistic protocol design. We are able to specify three composi-

tion techniques for gluing together probabilistic protocols, and analyze how these techniques preserve liveness, scale

and reliability of component protocols. The methodology also delineates seven categories of building blocks, each

of which is either a probabilistic protocol or strategy. This allows one to build hierarchies of probabilistic protocols

through the application of these composition techniques. Seen a different way, a base protocol’s properties can be

enriched by composition with other building blocks, e.g., a failure detector and a multicast protocol can be combined

into a membership protocol, a probabilistic reliable multicast protocol can be backed up with a recovery protocol to

guarantee deterministically reliable multicast. For the studied set of building blocks, we find that the composition

rules preserve the scale, reliability and liveness properties of the components.

Probabilistic Protocols of Interest in this paper: The probabilistic protocols we focus on [8, 13, 14, 15, 16,

17, 18, 19, 23] offer a probabilistic notion of reliability. Decentralization, randomization and message redundancy

are used to achieve scale and fault-tolerance. “Scale” means that the overhead on participating members required

in order to achieve a given level of probabilistic reliability grows very slowly with the total number of members.

The dependence varies from being a polylogarithmic function of, to being independent of the group size. “Fault-

tolerance” means that the reliability offered by the protocol is not drastically affected by continuous perturbation

and failure of members, and point to point message delivery losses. Instead, the reliability degrades gracefully as

the rates of these failures are increased.
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Different global operations can have different notions of probabilistic reliability - in the case of an aggregation

protocol [17], reliability refers to the accuracy of the global aggregate calculated by a run of the protocol, whereas

in the case of a group membership system [8, 15], reliability pertains to such features as expected times taken to

detect member failures, and frequency of inaccurate failure detections. In the former case, the probabilistic protocol

for aggregation would calculate a highly complete estimate of the aggregate (i.e., one that includes a fraction of

individual member votes that is close to 1.0). In the latter case, the the probabilistic protocol for group membership

would detect member failures within a time interval that is constant on expectation (i.e., invariant with group size).

A probabilistic reliable multicast protocol disseminates multicasts to a large fraction of participants (very close to

1.0). A leader election protocol [19] would elect exactly one leader in the group with very high probability.

In order to achieve this reliability, the overhead imposed on group members in order to achieve these levels of

probabilistic reliability grows slowly as a function of group size. For example, the aggregation and reliable multicast

protocols have a polylogarithmic dependence, while the membership protocol has a constant scale-independent cost.

Probabilistic Protocol Composition: To summarize, the main advantages of probabilistic protocols of our interest

are (a) correctness (i.e., liveness) properties, (b) probabistic reliability, and (c) scalability of overhead in order to

achieve the reliability in (b). As such, our study of the composition rules will be directed at the extent of preservation

or inheritance of these properties in spite of composition.

There are many advantages to being able to compose such protocols. One can implement a variety of specifi-

cations for distributed tasks using appropriately chosen building blocks and rules, e.g., a membership protocol can

be constructed out of a failure detector protocol and a multicast protocol. An existing protocol can be augmented

to improve certain characteristics such as stress imposed on core network routers, adaptivity to fault-free scenarios,

etc. Perhaps most importantly, probabilistic protocols can be backed up with a Recovery protocol to provide a more

classical deterministic reliability guarantee. We expand on these through the rest of the paper.

The rest of the paper is organized as follows. Section 2 presents the model used to analyze our protocols.

Section 3 discusses related work. Section 4 motivates the discussion of the methodology through a case study;

Section 5 presents the methodology. Section 6 briefly describes the protocols generasted by the design methodology.

We summarize in Section 7.
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2 Model Used in Analysis

To make the paper self-contained, we include the network model used in protocol analyses. This model is a hybrid

between the synchronous and asynchronous models used in literature.

The group consists of participants called members. We denote as N the size of the group, and clarify its exact

meaning where needed (e.g., whether it is actual or estimated). Each member has a unique identifier. Each member

maintains a membership list, also called a view. Members may undergo crash-stop failures, whereby they cease all

operations after the failure. If a member rejoins the group, it does so under a different identifier.

A non-faulty member may perform the following operations. It can send unicast messages to another member,

whose identifier it knows, through the communication network. A unicast message is delivered either instantaneously

at the destination member, or is lost by the network with probability pml, independently and identically distributed

across messages. This assumption can be relaxed to one where the time-outs used in protocols are multiples of

an atomic time unit, and (1 − pml) is the probability of successful delivery of a message at the recipient within 1

atomic time unit of the message transmission. Also, some protocol analyses (e.g., gossip-based protocols) implicitly

assume pml = 0; the analysis for non-zero values of pml yields the same results, albeit with the per-member overhead

multiplied by a factor of 1
1−pml

. Each member performs operations according to a local clock. Clock rates at all

members are the same. Many of the protocols presented in the paper run at each member periodically - the clock

rate assumption then assures that the protocol period lengths are the same at all members. However, protocol period

start times may be unsynchronized across different members. The communication bandwidth and computational

power available to members is not limited. However, the protocols themselves do not require infinite bandwidth or

computational power. They work in fully asynchronous settings, and minimize bandwidth and computational power

usage - our previous experiments in [8, 13, 14, 15, 16, 17, 18, 19, 23] have borne this out.

Additional assumptions made while analyzing the protocols are stated where necessary.

3 Other Related Work

Epidemic-style multicast protocols such as those by Demers et al [9], Birman et al [4] spread information in a dis-

tributed group by using randomized and redundant peer-to-peer messaging. A notion of composition of probabilistic

I/O automata for distributed systems has been studied in the past by Lynch [25] and Wu et al [32]. The authors

defined I/O automata with probabilistic state transitions and specified how these automata can be composed. In

comparison, our study of probabilistic protocol composition is geared toward one designing protocols for distributed
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systems in large-scale scenarios, where the scalability and reliability offered by these protocols are primary concerns.

Stack-based communication architectures such as the Horus and Ensemble systems [31, 24] are designed to

allow network protocol layers to be stacked, with the glue between layers being a standard function call interface set.

This helps to provide different notions of reliability, message ordering, etc., to the end application. In comparison,

our protocol composition methodology is aimed at enhancing scalability and reliability properties of distributed

protocols rather than merely providing richer properties to the application.

Several toolkits are available for component-based software development and optimization, e.g., Knit. [29].

Components have been used for designing software for routers (Click system) and operating systems (e.g., Scout).

Object-oriented programming languages such as C++ and Java allow component-based program development. Soft-

ware components can also be glued together through higher-level scripting languages (e.g., Python, VB, Perl) [30]

to filter data streams among the different components. In object request brokerage (ORB) systems (e.g., COM,

CORBA, .Net), each component is an application connected to a communication network.

4 Case Study : A Protocol for Decentralized Membership Maintenance

We motivate discussion about the design methodology by presenting a case study that retrospectively looks at the

design of the SWIM protocol for weakly consistent and scalable membership maintenance. We choose this protocol

because it is familiar to the audience of DSN 2001 [8], and was based on the failure detector protocol presented in

[15]. Although those papers described the protocol and its evaluation, the current paper focuses on design. Repetition

of material is kept to a minimum, but is unavoidable in some places.

Distributed replica management, coordination, and gossip-based dissemination, require each member of the

group to maintain a local list of other members in the group. We call this a membership list (also a view). In a

dynamic group with members constantly joining, leaving and failing silently (crash-stop) failures, a membership

maintenance protocol keeps these lists up to date - scalability and reliability (including quickness of membership

change detection and dissemination) are requirements. A membership protocol has two main components: (a) a

failure detector protocol, and (b) a protocol for membership update dissemination. Any implementations for the

respective components can be fit into a template, as show in Figure 1, to generate a membership protocol. We first

describe the probabilistic building blocks for each of (a) and (b), and then illustrate how the composition rule is used.
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{remove,modify(member)}

Function calls

(update dissemination)

(failure detector)

Template 

{add,remove,modify(member)}

failed(member)

Building Blocks

Membership List

Figure 1: Group Membership Template. Template-based (also Modular) design of a group membership protocol is shown, with minimal

function interfaces for the failure detector and update dissemination components.

4.1 Building Block: Distributed Ping Protocol

A failure detector protocol runs constantly at each non-faulty member. It is required to satisfy a liveness property

called Eventual Strong Completeness (Completeness), i.e., crash-failure of any group member is detected by all

non-faulty members that knew of the member. The protocol performance is measured through its inaccuracy (rate

of false detections of failure of non-faulty nodes), speed (time between a crash and its failure detection), and scale

(overhead on non-faulty members and the network).

Chandra et al show in [5] that it is impossible to design failure detector protocol for a failure-prone network that

is both complete and accurate. Consequently, middleware has typically chosen to tolerate a low false positive rate

(inaccuracy) but require that completeness be maintained. Traditional heartbeat-based failure detection protocols are

based on this approach.

Figure 2 gives pseudocode for the probabilistic failure detector protocol called Distributed Ping [15]. The main

idea in this protocol is for each member to periodically attempt to ping one other member chosen uniformly at

random, directly first, then indirectly if this does not succeed. If the target member remains unresponsive, it is

marked as failed.
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V iewMs
/* Membership List at member Ms */

Member Ms: Distributed Ping(T ′, k)

/* T ′: Protocol period */

/* k: Fanout for indirect pinging */

int round num=0

Every T ′ time units:

round num := round num + 1

pick a node Mtarget uniformly at random from V iewMs

send a ping(Ms, Mtarget, round num,dir) message to Mtarget

if (not received ack(Ms,Mtarget, round num,dir) within T ′

3
time units)

pick k members pingreqtargs[1 . . . k] uniformly at random from V iewMs

for i = 1 to k

send a ping-req(Ms, Mtarget, round num) message to pingreqtargs[i]

if (not received ack(Ms,Mtarget, round num,*) within 2·T ′

3
time units)

delete Mtarget from V iewMs

Anytime:

• on receiving a ping(Mt,Ms,r,dir) message

send ack(Mt,Ms,r,dir) message to Mt

• on receiving a ping-req(Mt,Mj,r) message

send ping(Mt,Mj,r,Ms,indir) message to Mj

• on receiving a ping(Mt,Ms,r,Mi,indir) message

send ack(Mt,Ms,r,indir) message to Mi

• on receiving an ack(Mt,Mj,r,indir) message

send ack(Mt,Mj,r,indir) message to Mt

Figure 2: Distributed Ping Protocol for Failure Detection.

Member Ms:Uniform Epidemic(N, b, V iewMs
)

/* N : estimate of group size */

/* b: gossip fanout */

/* V iewMs
: Membership List at member Ms */

on receipt of a new multicast m

for logN gossip rounds

for i := 1 to b

pick a node Mtarget uniformly at random

from V iewMs

send m to Mtarget

Figure 3: The Uniform Epidemic Multicast Protocol.
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Under the model of Section 2, Distributed Ping has the following properties.

Correctness: (Eventual Strong Completeness) After a member Mj fails, for each non-faulty member Mi that knows

of Mj , Mi will eventually chose Mj as a ping target, find it unresponsive, and delete Mj from its membership list.

Analysis: • (Speed) The mean time to detection of failure (at a first other non-faulty member) is T ′ · 1

1−e
−qf

, where

T ′ is the protocol period.

• (Accuracy, Scale) Let L be the per-member overhead (messages/time unit) due to Distributed Ping. Reference [15]

calculates the minimal per-member load L∗ that a failure detector needs to impose in order to satisfy application-

defined failure detection time T , false positive probability PM(T ) (likelihood of a given non-faulty process being

marked as failed within a time interval T ), when a fraction qf of members are non-faulty and the message receipt

probability is qml. It can then be shown that L
L∗ = [2 + 4 ·

log[
PM(T )

(qf ·(1−q2
ml

)· e
qf

e
qf −1

)
]

log(1−qf ·q4
ml

)
] × [ e

qf

e
qf −1

·
log(pml)

log(PM(T )) ], a term

independent of N . This makes the Distributed Ping protocol an asymptotically optimal failure detector (w.r.t. N ).

Overhead-Reliability Knob: k can be varied to trade between message overhead and false positive rate. Tuning

the protocol period T ′ trades off between message overhead and failure detection time.

4.2 Building Block: Uniform Epidemic

We now describe a second building block called Uniform Epidemic, based on the epidemic (also “gossip”) protocols

in [4, 9]. Given a multicast at a sender member, a Uniform Epidemic disseminates the multicast message w.h.p. to

the group, i.e., for any particular member in the group, the probability of it receiving the multicast is known and is

very close to 1. The protocol Figure 3 can be shown to satisfy:

Correctness: (Eventual Dissemination) If the membership knowledge graph among non-faulty members stays

connected and Figure 3 is modified so members never cease gossiping about a multicast, any member that stays

non-faulty will eventually receive the multicast.

Analysis: (Reliability and Overhead) References [1, 9, 22] show that the probability of a given member receiving

the multicast through the protocol in Figure 3 is 1 − 1
Nb · (1 + o(1)). This is the probabilistic reliability achieved by

the protocol.

(Latency) References [4, 20] show that the completes w.h.p. within a number of rounds that varies as O(logb(N)).

Overhead-Reliability Knob: Increasing the gossip fanout b improves reliability and latency by trading a higher

message overhead per gossip round3.

3Notice that a small value of b(≥ 2) suffices to guarantee that all members receive the multicast w.h.p.
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V iewMs
/* Membership List at member Ms */

Member Ms: SWIM Membership (T ′, k, λ, α)

/* T ′: Protocol period */

/* k: Fanout for indirect pinging */

/* λ : Timeout parameter for purging buffer of latest membership updates */

/* α: Number of piggybacked elements */

var LatestUpdsMs
; /* Latest Membership Updates at Ms */

message mupdates

var round num=0;

Every T ′ time units:

round num := round num + 1

create the payload data message mupdates by selecting α entries

uniformly at random from LatestUpdsMs

piggyback message mupdates on all outgoing messages during this

round

pick a node Mtarget uniformly at random from V iewMs

send a ping(Ms, Mtarget, round num,dir) message to Mtarget

if (not received ack(Ms,Mtarget, round num,dir) within T ′

3
time units)

pick k members pingreqtargs[1 . . . k] uniformly at random from V iewMs

for i = 1 to k

send a ping-req(Ms,Mtarget, round num) message to

pingreqtargs[i]

if (not received ack(Ms,Mtarget, round num,*) within 2·T ′

3
time units)

delete Mtarget from V iewMs

add {Mtarget, leave} to LatestUpdsMs

purge LatestUpdsMs
of all entries older than λ · log(|V iewMs

|) rounds

Figure 4: SWIM Group Membership Protocol. A member joins

(resp. voluntarily leaves) the group by sending a join-request

(resp. leave-request) message to a member of the group.

Figure 4 (Continued)

Anytime:

• on receiving a ping(Mt,Ms,r,dir) message

retrieve payload mupdates

send ack(Mt,Ms,r,dir) message to Mt

• on receiving a ping-req(Mt,Mj,r) message

retrieve payload mupdates

send ping(Mt,Mj,r,Ms,indir) message to Mj

• on receiving a ping(Mt,Ms,r,Mi,indir) message

retrieve payload mupdates

send ack(Mt,Ms,r,indir) message to Mi

• on receiving an ack(Mt,Mj,r,indir) message

retrieve payload mupdates

send ack(Mt,Mj,r,indir) message to Mt

Member received payload mupdates. Process each entry as follows:

• on receiving a join-request(Mt) message

or piggybacked {Mt,join} in mupdates

if (entry for Mt not present in both V iewMs
and

LatestUpdsMs
)

add Mt to V iewMs

add {Mt, join} to LatestUpdsMs

• on receiving a leave-request(Mt) message

or piggybacked {Mt,leave} in mupdates

if (entry for Mt not present in both V iewMs

and LatestUpdsMs
)

remove Mt from V iewMs

add {Mt, leave} to LatestUpdsMs

10



Distributed 
   Ping Epidemic

 Uniform 

Group Membership

choose random 

choose k random
members

ack

ack

ping

M
    j

T’

TIME

...
ping-req(Mj)

ack

ping

M
    i

M
    j

ping

Piggybacked information about
recent membership updates

Figure 5: SWIM Group Membership Protocol. A scalable group membership protocol, composed from the Distributed Ping and Uniform

Epidemic building blocks (box diagram on left).

4.3 Composition: SWIM Protocol for Weakly-Consistent Membership Maintenance

As mentioned earlier, a protocol for membership maintenance consists of (a) a failure detector protocol and (b) a

protocol to disseminate membership updates. These can be combined modularly within a template as shown in

Figure 1. Notice that any combination of implementations of a failure detector and a multicast protocol, each of

which export the appropriate interfaces, can be fit into this template.

When the Distributed Ping and Uniform Epidemic protocols are fit into the failure detector and update dissem-

ination components of Figure 1, the resultant protocol (when optimized) has the pseudocode shown in Figure 4.

Figure 5 illustrates a protocol run. We call the composition rule as the Template or Modular Composition rule. The

effect of this, and of the subsequent optimization, is to piggyback information about recently heard membership

updates on all outgoing ping and ack messages in Distributed Ping, as well as to update membership lists based on

such received information.

The SWIM protocol can be shown to satisfy [8, 15]:

Correctness: (Eventual Strong Completeness) If a member Mi fails, each other Mj that has Mi in its membership

list eventually detects the failure.

(Eventual Dissemination of Updates) If the view graph among non-faulty members stays connected after the mem-

bership update first occurs in the group, and the buffer of latest updates is never purged, the update is eventually

disseminated to all members that stay non-faulty.

Analysis: The composition has analytical properties that is a concatenation of the analytical properties of the

Distributed Ping and the Uniform Epidemic described in Sections 4.1 and Section 4.2, i.e., w.r.t. the average fail-
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(a) Seven Probabilistic Building Blocks; (b) Some Possible Compositions generated by the Methodology

Figure 6: Designing Probabilistic Protocols by Composition of Building Blocks.

ure detection time, false positive frequency, as well as the latency and reliability of dissemination of membership

updates. The latter two depend on the parameters α and λ in Figure 4 - please see reference [8] for details.

Overhead-Reliability Knobs: Parameters T ′, k as in the component protocols.

In summary, this first case study has shown that the first protocol composition rule we described (Template-

based or Modular Composition) inherits in situ the the specified correctness, scale and reliability properties from the

constituent protocols.

5 Composition Methodology

This section describes the overall protocol design methodology. It provides (the designer with) a collection of

(a) building blocks - seven categories of probabilistic protocols/strategies with well-studied liveness, scalability

and reliability properties - and (b) three composition techniques that generate protocols with richer semantics, by

preserving scale, reliability and liveness properties of the components.

5.1 Probabilistic Building Blocks

Figure 6(a) shows the main building block types; Sections 4.1-4.2 covered two of them. We describe the remainder

briefly and informally below.

Weak Overlay: A weak overlay is a scheme that each member uses to select its (partial) membership lists. In effect,

a weak overlay scheme specifies a set of rules that imposes an overlay graph among the members present in the

group. Examples include the Leaf Box Hierarchy [16], and peer to peer overlays Pastry and Chord.
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Topology Awareness Strategies: A topology awareness scheme imbibes knowledge of round-trip time estimates or

network locations (exact or approximate). It is typically used in composition with another building block, e.g., with

the Leaf Box Hierarchy (as in [16]), or Uniform Epidemic (as in [21]).

Tree Dissemination: A multicast spanning tree is constructed among the nodes in a dynamic and distributed fashion

[16]. A consistent map function is used; examples include the Contiguous Mapping [16], and SHA-1.

K-committee selection: This protocol selects and maintains a subgroup of members, that, w.h.p. (a) has a size

within a constant factor of parameter K , and (b) has the view subgraph connected. An example is reference [19].

Recovery: Recovery protocols buffer information (e.g., recent multicasts) and supply them to requesting members

that have missed receiving the information. An example is the recovery block used to implement reliable multicast

and membership (virtual synchrony) in [18]. Section 6.1 expands on this protocol.

5.2 Composition Techniques

A pair of probabilistic protocols can composed using one of the following composition techniques. These are not

formally defined, but are presented as design guidelines. The guidelines also hint at which pairs of protocols could

be composed.

• Use in Protocol Template (“Template Technique” or “Modular composition”): A “template” for a protocol

can generated from a problem specification (e.g., a group membership template in Figure 1) or from the informal

specifications of two protocols one wishes to combine to achieve a protocol with collective properties. A template

will typically specify the minimal interface/function calls to be exported by each component. When appropriate

protocols are plugged into the template (followed by necessary optimizations), the final protocol is generated. This

protocol can then be optimized appropriately. An example w.r.t. the group membership protocol was discussed in

Section 4.

• Augmentation - through Fashioning or Constraining: A base composition C1 could be augmented with another

composition C2 to derive a modified protocol that solves the same problem specification as C1. Yet, the composition

imparts to the (augmented) C1 certain additional properties.

There are two types of augmentation - fashioning and constraining. We clarify the distinction through an exam-

ple. For example, a Uniform Epidemic protocol can be augmented with a component that selects epidemic targets

from a membership list according to (a) a probability distribution function, e.g., based on round-trip-time estimates

(fashioning), or (b) a set of constraints, e.g., eliminating certain types of members from ever being selected as targets

(constraining). Figure 8 shows an augmented version of the Uniform Epidemic Protocol from Figure 3. Reference
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[16] studies an augmentation of Figure 8 where the function SelectionCriterion is a composition of a weak overlay

(Leaf Box Hierarchy) and a topology aware scheme (i.e., Contiguous Mapping). One can then show corresponding

properties to those in Section 4.2 - the same Correctness property (Eventual Dissemination) holds still. However,

the analytical properties are modified compared to the base protocol - the Reliability is 1− 1√
N

, and the Latency is

sublinear. Overhead-reliability knobs remain the same.

Some more examples of augmentation follow. Distributed Ping (Figure 2) can be fashioned with a topology

aware building block, that uses a probability distribution function, effectively preferring ping targets that are topo-

logically close by. Uniform Epidemic can be constrained to operate within the Leaf Box Hierarchy weak overlay,

thus producing the probabilistic protocol for data aggregation described in [17]. The Uniform Epidemic can be

constrained within a weak overlay to produce a resource location and discovery protocol (or a distributed hash table

- DHT) [14]. Similarly, ping target choices can be chosen from a partial membership list in the Distributed Ping

protocol, giving a constrained Distributed Ping protocol.

The reader would notice from this discussion that for augmentations of Uniform Epidemic or Distributed Ping,

constraining can indeed be seen as a special case of fashioning where certain members are assigned a probability

zero of being selected as targets. The distinction is made from a designer’s point of view where a constrained

composition does not require the membership protocol (that will be orthogonally present in the overall middleware

design) to maintain any knowledge of the zero target probability members.

Figure 6 depicts the compositions that we have investigated - Section 6 summarizes them. Incremental applica-

tion of composition techniques yields a hierarchy of protocols with richer properties. Figure 7 shows the hierarchy

that generates a class of epidemic-style reliable multicast protocols.

It will be evident from our description of compositions that a protocol designer writing code for distributed

system middleware still has to choose the right type of building blocks and write code for them, to use appropriately

chosen composition techniques, and write extra filler code besides that of the building blocks in order to complete

the design of the protocol. In fact, these requirements (especially the filler code) prevents us from being able to

formally specify the protocol design methodology. For example, the protocols for Group Membership, Topology

Aware Reliable Multicast, and Adaptive Epidemic Multicast are straightforward instantiations of specific building

blocks and composition techniques. The design of the remainder Leader Election, Virtually Synchronous Multicast,

Data Aggregation, and Resource Location and Discovery, involve writing filler code.
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Member Ms:Uniform Epidemic(N, b, V iewMs
)

/* N : estimate of group size */

/* b: gossip fanout */

/* V iewMs
: Membership List at member Ms */

on receipt of a new multicast m

for logN gossip rounds

for i := 1 to b

pick a node Mtarget

using the SelectionCriterion(V iewMs
)

send m to Mtarget

SelectionCriterion(V iewMs
) /* an example */

Pick a member from V iewMs
with probability

proportional to f(Ms)

/* e.g. 1, f(x) = 1
x2

where rttMs

is the network round trip time to Ms

e.g. 2, f is chosen as a composition of a

weak overlay and a topology aware scheme [16] */

Figure 8: Augmented Epidemic Multicast Protocol. See text for

discussion. Reference [16] studies an instantiation.
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5.3 Do Compositions Inherit Properties?

We discuss our observations about the preservation of protocol properties under (and in spite of) composition. This

discussion applies only to the compositions we have studied or mentioned in this paper, although general applica-

bility is a possibility4 . We differentiate between the correctness and analytical properties of probabilistic building

blocks. Correctness properties include liveness properties such as eventual guarantees, e.g., those regarding detec-

tion of failures or eventual dissemination of a multicast when the view graph is connected. Analytical properties

include performance metrics such as latency, probabilistic reliability, and per member message overhead.

Property Preservation via Composition - Correctness Properties: When two building blocks are combined

using the template or the augmentation techniques, correctness properties are inherited by the composition.

Property Preservation via Composition - Analytical Properties: When two building blocks are combined using

the template technique, analytical properties are inherited by the composition.

We present the reasoning behind these observations.

The template technique fits two components into a protocol framework (template) with specified function call

interfaces defining the interaction between components. The resultant composition can then be optimized to reduce

message complexity etc. (e.g., the SWIM protocol). However, the use of the protocol template implies that the

resultant composition is equivalent to the constituent protocols running side-by-side in the system. As such, their

original properties (both correctness and analytical) are carried over to the composition. For example, the SWIM

membership protocol inherits the properties from the Distributed Ping protocol that failures are detected eventually

and within an average of 1
1−e−1 protocol periods.

Augmentation does not affect the inheritance of correctness properties of a component C1 as long as the com-

posed protocol satisfies the set of preconditions specified in the original correctness property. For example, a cor-

rectness property for a uniform epidemic-based reliable multicast component says “a multicast is eventually dissem-

inated to all members in a group if the view graph in the group stays connected”. An augmentation of the uniform

epidemic with a topology aware component (e.g., where a probability distribution based on round trip time estimates

is used for gossip target selection) also satisfies the above correctness property as long as the probability distribution

function keeps the view graph connected.

4A discussion of this is beyond the scope of this paper.
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Although the analytical properties of an augmented composition may be different from those of its components,

we observe that the scale and reliability properties are similar to those of the components, in the sense that per-

member overheads that vary polylogarithmically with group size suffice to achieve very high probabilistic reliability.

An example is the augmented epidemic protocol discussed in Section 5.2.

6 Summary of Investigated Probabilistic Protocols

For lack of space, we summarize below the probabilistic protocols that are not discussed in detail in the current

paper. All are realizable from the composable methodology described5 .

Topology Aware Reliable Multicast: For an Internetwork-type hierarchical topology, members are inserted into

a weak overlay structure called the Leaf Box Hierarchy using a topology aware scheme called the Contiguous

Mapping [16]. Epidemic target choices are then fashioned using the positions of members in the Leaf Box hierarchy.

The resulting protocol is a probabilistic multicast dissemination scheme that, compared to the Uniform Epidemic,

achieves an order of magnitude reduction in the load on core network elements such as routers, links, etc. The load

across network domain boundaries is a constant, as opposed to a linear variation with N for Uniform Epidemic. In

turn, it suffers a small decrease in reliability and latency.

Adaptive Epidemic Multicast: A probabilistic multicast dissemination scheme (e.g., a Uniform Epidemic or a

topology aware multicast) can be modularly composed with a Tree Dissemination mechanism. This yields a multi-

cast dissemination protocol [16] that incurs low and constant overhead when failure rates (of messages and nodes)

are zero or small (in comparison, Uniform Epidemic imposes an overhead that is logarithmic with N at all failure

rates). The protocol automatically adapts the group overhead to increasing failure rates of members and message

deliveries.

Leader Election: A leader election protocol template consists of a protocol for selection of a committee of members,

for agreement among the committee members of a leader, and a multicast protocol that informs the group about

the elected leader. When instantiated with the K-committee selection and Uniform Epidemic building blocks, the

template generates the probabilistically correct leader election protocol of [19]. Each run of the election protocol

imposes a per-member overhead that is a constant number of unicasts and multicasts. With Uniform Epidemic, the

multicast overhead per run increases slowly with group size. The group overhead can be traded off for increased

probability of correctness of a run of the protocol.

5All these protocols have been implemented as C modules, mostly layered over the Windows socket API. Experimental results from

simulation and PC clusters can be obtained from the references mentioned.
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Data Aggregation: This protocol aggregates individual “votes” provided by members and calculates a global ag-

gregate, e.g., average, variance or maximum, at each of the members. Reference [17] studies a protocol that is a

constraining of Uniform Epidemic within the Leaf Box Hierarchy weak overlay. A one-shot run imposes has per-

member message overhead and running time that grow polylogarithmically with group size. The global estimate

obtained includes a fraction of votes that is close to 1.0 w.h.p. Overhead can be traded for reliability of the estimate.

Peer to peer distributed hash table (resource location and discovery system): The Kelips peer to peer routing

substrate [14] uses a multicast protocol (for disseminating heartbeats) that is obtained by constraining epidemic

target choices within a weak overlay (called the “affinity group scheme”) and by fashioning target choices using

round-trip time estimates (topology awareness).

6.1 Composition: Obtaining Deterministic Reliability

The design methodology is powerful enough to convert probabilistic behavior into a deterministic guarantee to ap-

plications. For example, a probabilistic multicast protocol (Uniform Epidemic) can be used to design a deterministic

multicast protocol (virtual synchrony) [18]. Virtual synchrony guarantees a global order on the receipt of member-

ship changes and multicasts at all non-faulty members [3].

The composition is shown in Figure 9. The basic idea is to select a K-committee that globally orders and

buffers all multicasts (and membership changes) before they go out into the group, where they are disseminated

using Uniform Epidemic. A non-faulty member that misses certain multicasts can query a committee member for

it, thus guaranteeing 100% reliability. Participation in the K-committee may be migratory. This is thus a modular

composition of three building blocks.

Reference [18] contains an experimental evaluation of an implementation of this protocol. The protocol is able

to achieve scalability by using the laziness of Uniform Epidemic, and yet guarantee reliability of multicasts. Peak

throughputs obtained were 20,000 batched messages per second, at group sizes of above 100.

7 Summary
The paper has investigated a methodology for designing a suite of probabilistic protocols. These protocols use

decentralization, randomization, redundancy and recovery to achieve scale and reliability. To use the methodology,

a protocol designer first selects the appropriate set of building block protocols (among seven we have defined) or

already-composed protocols. These are then composed using one of three techniques, and the resultant protocol is

optimized. Composition techniques include fitting protocols modularly within a template, or augmenting one with
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another (the latter through either fashioning or constraining). The composition techniques studied either inherit or

preserve to a large degree the scalability, reliability and liveness properties from the component building blocks.

Composition techniques can be used multiple times to generate a hierarchy of protocols with enriched properties.

The composable methodology can be used to design solutions to several problems that are central to the design large-

scale peer to peer (p2p) distributed systems in the Internet and sensor networks. These include group membership,

variants of reliable multicast, data aggregation, leader election, and a resource location and discovery system.

Future Work: Our retrospective work poses a couple of questions about the design of protocols in general. What

are the characteristics of protocol classes that impart to them an underlying design methodology such as the one this

paper (either informal or formal)? Can one design “protocol design toolkits” that a researcher can use to explore the

state space of protocols, while seated at her design table?
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