

Operating Systems

Windows 2000 Research Edition
Where the Academic Knights meet the Evil Empire…

Werner Vogels

The rivalry in the operating system market place has a severe impact on the academic world. Where in the
old days intellection quality and careful deliberation would prevail, nowadays discussions about operating
systems research appear to be more like the battlefield of a holy war, with objectivity as its main victim. We
have tried to side step the emotional current, and select an operating system that could bring our research
into the next century, based on objective technical and organizational criteria. This paper describes how this
evaluation lead to the insight that Microsoft’s Windows NT is the operating system that is best prepared for
the future.

Introduction
Until recently there was no doubt in academia which operat-

ing system to use for systems research: Unix, whether it was a
BSD or System V derivative, was the predominant choice.
Unix, which had its roots in research, was used since its incep-
tion to investigate fundamental system research, and the accu-
mulated knowledge in academia about its internals and opera-
tions was significant. Other available operating systems such as
VMS and MVS, had their roots in the commercial world and
knowledge about these systems never accumulated to the criti-
cal mass were these systems could be considered for wide-
spread research tasks. Although new research operating sys-
tems have been developed, none have found the following that
the established Unix’s received. Solaris, Linux, FreeBSD and
others continue to dominate the academic landscape, but slow-
ly but surely Windows NT is now entering the academic world
as a viable, alternative platform for research.

Although academia looked with fascination at Dave Cutler’s
attempt to build a new operating system from the ground up
[Custer 95]. All expected that Windows NT would go the same
way as the other commercially designed operating systems
before it and remain in the dark corner from a research use
point of view.

About four years ago, not long after the final major release of
academic version of the Unix operating system (BSD 4.4)
[McKusick et al. 96], the farewell of the Berkeley systems

group and the early demise of Mach as the last of the research
operating systems, the operating system research world was at
a crossroads. Intel based personal computers were becoming
ubiquitous, and a myriad of Unix operating systems was avail-
able for this platform. Eventually many moved to use Linux, a
popular architectural clone of the traditional Unix. At the Com-
puter Science department at Cornell University we made the
decision to conduct our research on Windows NT. By that time
we had learned enough from the early design of Windows NT
to realize that it was a major step forward in operating system
design. It would provide us with a platform on which we could
perform research more effectively and it would allows us to
focus on the future directions without having to worry whether
the operating system was capable of supporting innovation.

By now our complete educational operation and the majority
of our research projects have switched to using Windows NT,
or Windows 2000 as it now officially has been christened [Solo-
mon 98]. The ride has been rocky and fascinating, but certainly
rewarding. In this article I want to share some of the reasoning
behind our choice for Windows NT and to share some our
experiences with Windows NT as a research platform.

OS research as religion
The biggest hurdle in starting research on Windows NT was

not technical. It was to overcome the skepticism of our
colleagues who were convinced that it would not be possible to
use Windows NT as a good platform for research. The predic-
tions were fascinating: we would turn into a bug-fixing factory,
Microsoft would sue the department for every technical publi-
cation, Microsoft would hide the pieces of buggy code from us
or Bill Gates would personally tell us where and how we should
do our research [Welsh 99].

The operating systems research community has not remained
untouched by the market place rivalry between Microsoft and
the group lead by Sun Microsystems. It is even more unfortu-
nate that the positions taken are not based on intellectual delib-
eration but purely on emotional grounds. Many see Microsoft

Werner Vogels is a research scientist at the Department of Computer
Science of Cornell University. His research targets high-availability in
distributed systems, with a particular focus on enterprise cluster sys-
tems. He is co-founder and vice-president of Reliable Network Solu-
tions, Inc., which specializes in building solutions for very large-scale
reliable distributed systems. He is co-chair of the 1999 Usenix
Windows NT Symposium. His personal homepage is at http://www.cs.
cornell.edu/vogels
12 INFORMATIK • INFORMATIQUE 2/1999

Operating Systems

as the Evil Empire, out to squash every attempt at innovation,
and working with them is seen as collaboration with the enemy
of free academic speech. The pros and cons are often discussed
with a righteous zeal that is frightening.

Our own experiences with Microsoft can only be described
as extremely positive, never before have we had such a positive
relation with a vendor, without any pressure from their side. We
can only conclude that the reasons for the controversy must be
found in a sort of traditional emotional bonding of academia
with the “underdog” and that no real experiences drive the dis-
cussion.

Gaining knowledge
The foremost reasons why Unix was such a powerhouse in

operating system research was the great amount of knowledge
accumulated over the years about the internal operation of the
operating system. Many of us had become gurus about some
part of the OS kernel and could recite the fields of an I-node
structure at late night meetings or discuss which data structures
to modify to add a new protocol at runtime over an early morn-
ing cappuccino. Many of us were and still are afraid to leave
this bastion of safety behind and trade it in for working on an
operating system that at first sight had nothing in common with
our beloved Unix. And our annotated version of the Unix
version 6 code [Lions 96] wouldn’t be of much help any more
either…

It took more then a year of immersion in the technology to
get a level where I felt confident again to direct others in our
research group. Together with the overall organizational issues
I think we lost one and a half year worth of research time to
make the switch in the most fundamental way. Others are mak-
ing the switch more gradually and are experiencing a more
smooth transition.

All Operation Systems are created equal
Our experiences with switching to Windows NT have made

us somewhat more philosophical about the nature of operation
systems. The most fundamental observation is that, when
stripped to their core, all operating systems are equal. The func-
tionality of the Windows NT kernel is just as all other kernels:
it abstracts the hardware in the usual sense: processor, process
and threads hide the CPU complexity, volumes, file systems
and files hide the storage devices, protocols hide the network,
shared memory and messages are used to allow sharing of
resources.

What we often call operating systems has nothing to do with
the real core of the system. Unix for most of us is a collection
of shell commands and development libraries. David Korn’s
UWIN [Korn 97] and Softway’s Interix [Walli 97] both show
that you can give users and developers a 100% Unix experience
including X-windows and multi-user rlogin servers, while run-
ning on an Windows NT kernel.

Windows NT for most of us is the Windows Explorer and
point-and-click, and according to Microsoft it includes a web
browser. Although I have not seen a complete re-implementa-
tion of the Explorer for Unix, the Win32 compatible libraries
from Mainsoft [MainWin] used in the port of Internet Explorer

show that you do not need a Windows NT kernel to get to the
same user experience.

Many see the rich Win32 programming interface as the
native programming model for Windows NT, and although
most Windows applications are designed using this interface, it
is not the Windows NT kernel interface. Almost no applications
are built using the kernel interface, and you would have a hard
time finding the complete documentation for all the system
calls. Describing Windows NT as a micro-kernel, feels awk-
ward, as the kernel is certainly not small, but it is does describe
the abstraction correctly in which the kernel provides base
services and the specific application context is provided
through subsystem servers or personalities. Win32 is one of the
personalities running on top of Windows NT, OS/2 and Posix
are others delivered by Microsoft. One can run Windows NT
without these standard personalities and build your own.

What is an Operating System?
This question seems to be on the mind of many people these

days, infused by the Microsoft Trial. Academics in general
have taken a very narrow view of what an operating system is.
David Faber at Microsoft trial defined an operating system as
“the software that controls the execution of programs on com-
puter systems and may provide low-level services such as
resource allocation, scheduling and input-output control in a
form which is sufficiently simple and general so that these serv-
ices are broadly useful to software developers” [Faber 98].

In research community this strict distinction serves to distin-
guish the “real men” from the “boys”. Researchers and hackers
that work in the area defined by this narrow definition of oper-
ating systems, consider themselves part of the select circle of
people working on the core of the systems area of computer
science. Once you are in this circle you will become part of the
secret society that practices the black art of OS research and
will start to regard any other activity of systems development
as irrelevant to the future of computer science.

For a long time the line was drawn at the kernel / user space
boundary, and one could only consider himself a true OS
researcher after having developed at least two device drivers
and hacked on the terminal driver of the BSD 2.9 kernel code.
In modern operating systems such as Windows NT, the notion
of where exactly operating systems services are located is not
that simple any more. Fundamental services are split between
kernel and user space in attempts to optimise their efficiency
and avoid uncontrolled growth of kernel services.

The pervasiveness of distributed services in modern systems
can be considered a threat to the traditional notion of operating
systems. Many support services are required to make distribut-
ed systems work efficiently and effectively and these services,
such as security and directory services or distributed object
support and cluster management, are not part of a traditional
view of operating systems, but they are essential to the opera-
tion of modern operating systems. This results in that an oper-
ating system no longer is a simple division between kernel and
user space, but consist of a myriad of services, of which some
are kernilized, some are local and others are remote. Operating
systems that address the needs of current and future clients and
INFORMATIK • INFORMATIQUE 2/1999 13

Operating Systems

servers no longer span a single computer and they abstract serv-
ices away from physical nodes allowing user to be part of a
larger, potential global operating environment.

Will the real Dinosaur please come forward?
Until the spring of 1995 we were deeply committed to

SunOS (and other BSD derivatives). At that moment its vendor
was discontinuing the operating system, and had designated
Solaris, which had its root in AT&T’s System V as the succes-
sor. This event forced us to take a step back and evaluate our
research directions and our expectations with respect to the
operating systems to use.

If one issue in our discussions was dominant, it was the fact
that most of the operating systems we were looking at were
actually very old fashioned, in design, in structure and in
implementation. Most of these operating systems had their
conception in the 1970s and did not change much in structure
since then. Linux could be seen as an exception since it was
developed in the second half of the 1980s, but its structure mir-
rored that of the traditional Unix systems, and as such it could
be considered one of them.

The significant advances made in academic computer sci-
ence, in OS research and in system software engineering, have
had only minimal impact on the design and implementation of
commercial operating systems. The design of all Unix systems
violates almost all of the software engineering principles pre-
sented to first year’s Computer Science students. The design is
monolithic with almost no modular structure, and the internal
kernel interfaces are not strictly enforced which introduces
dependencies on the actual implementation of data structures,
making it impossible to upgrade or replace modules without
also redesigning several other modules. For example to replace
the scheduler in any of the BSD’s one needs to spend two
weeks searching for all dependencies and fixing other sources.

At the top of our long wish list for an ideal research operating
system, were three important general points:
1. The design and implementation of the operating system

should comply with modern software engineering princi-
ples, allowing researchers to introduce new components, and
replace core components without redesigning the complete
system.

2. The overall structure of the operating system, user and kernel
space components, should be designed towards the future:
distribution and multi-computer awareness, for example,
should be pervasive throughout the whole system.

3. The operating system vendor should be open to innovation.
Our experiences in the past had been that vendors always
ignored important research results and only followed very
narrow paths of incremental improvements.
Windows NT was the only operating system that came close

to matching most of our requirements, with a handful of oper-
ating systems such as QNX and Utah’s OS-kit trailing close.
None of the Unix based operating systems came close to fulfill-
ing our requirements. As noted before the core of those operat-
ing systems is based on 20–30 year old designs and these oper-
ating systems still treat computers as single entities without a
coherent, integrated distributed approach.

Although from a 30,000 feet high Windows NT looked like
the proverbial dinosaur, a closer look revealed a truly modern
operating system. Object oriented design is pervasive through
the system including the kernel, there is a complete distributed
strategy with at its core a distributed object technology and
includes a complete integration of distributed services such as
security, directory, message queuing, distributed transactions
etc. And last no but least, there is a real desire by the vendor to
continuously innovate its operating system and the overall
services. Microsoft doesn’t hesitate to incorporate academic
results into operating system, and is open for new directions.

Innovation as a life style
Microsoft is not conservative in its OS development. While

most vendors only consider changes to their core OS services
under extreme market pressure, the core of Windows NT has
changed significantly over the past years to accommodate the
demands of modern computing. Especially the upcoming
release of Windows 2000, formerly known as Windows NT 5,
makes that the Microsoft takes the operating system function-
ality to “the next level”.

The advances in Windows 2000 are too numerous to enumer-
ate here: They range from a file system cache for disconnected
operation, which was originally developed at CMU in the
CODA project; to a remote storage service that automatically
moves old data from your hard disk to remote servers if you are
running out of disk space, from tight security integration, with
Kerberos (developed at MIT) as the dominant security provid-
er, to a complete integration of network quality of services tools
including data transmission shapers and priority scheduling
and queuing, and from attributed based distributed component
programming to indexing support integrated in the file system
[Microsoft].

We are witnesses of a unique process: never before have we
seen such a radical overhaul of an operating system targeted for
the enterprise market. In general this market is very conserva-
tive and not interested in taking risks. However the problems of
scale, management and distribution are asking for radical solu-
tions to get to a computing base that can bring us into the next
century. One of the markets where we will see the main com-
petitive battle between Microsoft and others will be that of the
E-Commerce servers. Web farms with hundreds of nodes, with
support services for load balancing, replication, light-weight
transactions, in-memory database caches, distributed and sin-
gle image management, etc., are really pushing the envelope of
all operating systems that are currently on the market. Windows
NT is still considered to be the new kid on the block in the
Internet services world, but it is clear that the risks that are
taken now are the right moves to prepare the operating system
for operation in these emerging massive computing environ-
ments.

The Bugs
Innovation comes at a price. One of the costs of introducing

a significant amount of new code is the number of software
defects per lines of codes increases. While measurements actu-
ally let us believe that Microsoft products are quite reliable at
14 INFORMATIK • INFORMATIQUE 2/1999

Operating Systems

.5 defects per KLOC (thousand lines of code), introduction of
new, fresh code has a disastrous effect on this number. The out-
look becomes even more worrisome when we realize that
Microsoft is not only introducing new code, but is also chang-
ing all of its old code. An automated process is converting all
of the Windows NT code to be 64 bit safe. This process con-
verts 30 thousand lines of code per day and is believed to catch
all pointer arithmetic cases.

An important question is whether the introduced functional-
ity is worth the unavoidable initial instability that is bound to
occur. Whenever taking risks to achieve major improvements,
there is always the down side that there is some change of fail-
ure and it is likely that we will see a number of components of
NT coming under intense scrutiny from industry and academia.
Some components, such as the directory services, may become
a performance bottleneck in the overall distributed operation,
or the wide spread security integration could introduce a criti-
cal dependency on the high-availability of the security servers.

From a research point of view, these problems do not really
bother us. The advantage of performing research on a system,
which has distribution at its core greatly outweighs the conse-
quences of working with a cutting edge operating system.
However I must admit that at more then one occasion my
students had to control their murderous intentions towards the
IIS or MTS developers or were they kept their good spirits by
contemplating the horrible tortures one could perform on the
person that had designed the COM security architecture.

Windows Research
There are some properties of Windows NT that make it par-

ticularly suitable for research purposes. The operating system
kernel for example is designed with extensibility in mind, to
allow developers of hardware based services, new protocols
and file systems to add their functionality to the system without
much effort. All kernel code is developed following a strict
object oriented paradigm and its functionality can only be
accessed through interfaces, none of its implementation is
visible.

One of the designs abstractions of the Windows NT kernel I
find it particularly fascinating to work with is the device object.
A device object in an instance created by driver objects, which
encapsulates a unit of kernel based software, whether this is a
device driver, a network protocol or a file system filter. These
objects have the interesting property that they can be “at-
tached” to other device objects, and as such can intercept and
manipulate all requests flowing to and from the original device
object. This way it is relatively simple to add for example a file
system object that compresses or encrypts data before the data
reaches the under laying file system, to redirect disk requests to
a replication volume, or to trace device object interaction dur-
ing development phases.

The strict object oriented approach is very well done from a
design point of view, but every old-style hacker’s heart starts
bleeding when he or she realizes that he can no longer do a
quick fix, inspect a few data structures and secretly swivel some
pointers to make things work better or make more informed
decisions. The internal kernel interfaces are elaborate, but it

appears there are always some things one cannot do as efficient
as possible. However, in four years of NT kernel hacking only
on one occasion we needed to break through the standard ker-
nel interface: we wanted to add a fast trap into the kernel for
fast user-level protocol processing, and the pages which hold
the trap dispatch tables were protected after the system boot.

Another example of what makes Windows NT particular
suitable for research is the fundamental manner in which
advanced distributed services are integrated into Windows NT.
It allows us to rely on ubiquitous support services and concen-
trate on advancing the state of the art where it is really needed.
Windows NT Security provides a complete set of services inte-
grated into all sections of the operating system. Researchers
who are developing an advanced multi-node replicated transac-
tion server can use off-the-shelf authentication, authorization,
key management, data signing, and encryption mechanisms
into their system without much pain.

The use of the COM object model in all the Windows NT
services allows research projects to import these services in a
very simple manner. The existence of COM makes it trivial for
research projects to export their interfaces in a language inde-
pendent manner. The Ensemble project for example has devel-
oped a protocol environment for distributed operations in the
ML programming language, and by using a COM interface are
the services offered by Ensemble available to C++, Java and
VB programmers. This allowed the researchers to side-step the
time consuming development of native language interfaces.

It helps of course to have all the tools, applications, servers,
operating system versions and their source code available.
Microsoft is very generous to academia and makes all their
tools from operating systems to compilers, including tons of
documentation as well as subscriptions to the developer net-
work, available to the departments free of charge.

Source code availability turned out to be not crucial, and was
only once used to make actual changes to the operating systems
[von Eicken et al. 97]. The source is extremely useful as addi-
tional documentation, to examine unexpected behaviour or to
provide templates for similar projects. As one can perform
complete source code level debugging of all parts of the oper-
ating system including the kernel, source codes helps us to
develop experimental services faster and in tune with existing
functionality. Students are free to work with the source code
and are not prohibited in any way from applying the knowledge
they gained in their later careers.

Interactions with the Evil Empire
Microsoft realizes the potential of widespread adoption of

Windows NT for research purposes and there is dedicated aca-
demic relations team whose single task it is to facilitate the
technology transfer between Microsoft and academia and vice
versa. Source licensing is very liberal compared to other OS
vendors and several institutions are involved in active exchang-
es with product and research groups within Microsoft. Joint
projects are in progress, joint papers are starting to appear and
academics frequently present cutting edge result to Microsoft
developers and researchers.
INFORMATIK • INFORMATIQUE 2/1999 15

Operating Systems

There is a direct impact of academia on Microsoft products,
through involvement in the strategy phases of products as well
as through academic knowledge transfer into products and
design groups. Microsoft also provides research funding for
some relevant groups and fellowship and research internships
for students.

Summary
Four years of research on Windows NT have taught us that

we made the right choice in leaving the Unix behind. Windows
NT is an exiting, modern operating system, years ahead of its
competition, in design, in software engineering, in its imple-
mentation and in the actual services offered. It took quite some
time to reach the same level of knowledge and insight we used
to have of Unix systems, but now that we have arrived at that
same knowledge point, is it clear that our research is making
progress faster than ever before.

Working with Windows NT requires certain level of resil-
ience, not because of flaws in the operating system, but because
of the zealous attacks by colleagues and other researchers. Pub-
lishing papers about research performed on Windows NT is
still quite difficult as many of our peer still believe that no good
research can be performed on Windows NT. We hope that even-
tually the advanced technical nature of the operating system
will prevail in the discussion, and that we can have a commu-
nity where research results can be shared without sarcasm or
the risk of igniting yet another holy war.

References
[Custer 95]

Custer, Helen, “Inside Windows NT”, Microsoft Press, Seattle,
1995, ISBN 1-55615-481-X

[Faber 98]
Faber, David, “Expert Testimony of Professor David J. Farber”,

Department of Justice, Anti Trust Division, December 7, 1998,
http://www.usdoj.gov/atr/cases/f2000/2059.htm

[Korn 97]
Korn, David G.,”UWIN – UNIX for Windows”, The USENIX
Windows NT Workshop 1997, August 11–13, 1997, Seattle,
Washington, see also http://www.research.att.com/sw/tools/uwin

[Lions 96]
Lions, John, “Commentary on UNIX 6th Edition with Source
Code”, Peer-to-Peer communications, 1996, ISBN 1-57398-013-
7.

[MainWin]
MainWin, a MainSoft product, http://www.mainsoft.com

[McKusick et al. 96]
McKusick, Marshal Kirk, Keith Bostic, Michael J. Karels, John
S. Quarterman, “The Design and Implementation of the 4.4 BSD
Operating System”, Addison-Wesley, 1996, ISBN 0-201-54979-
4

[Microsoft]
Microsoft Corporation, “What’s New in Windows 2000 Server”
http://www.microsoft.com/ntserver/windowsnt5/exec/overview/
WhatsNew.asp

[Solomon 98]
Solomon, David, “Inside Windows NT, second Edition”, Micro-
soft Press, Seattle, 1998, ISBN 1-57231-677-2

[von Eicken 97]
von Eicken, Thorsten, Brian Bershad, Geoff Lowney, Todd Need-
ham, Margo Seltzer, Nick Vasilatos and Werner Vogels, “Do you
need source with that”, panel at the USENIX Windows NT Work-
shop 1997, August 11–13, 1997, Seattle, Washington. Summary
in Usenix Login, November 1997

[Walli 97]
Walli, Stephen R.”OPENNT™: UNIX Application Portability to
Windows NT™ via an Alternative Environment Subsystem”, The
USENIX Windows NT Workshop 1997, August 11–13, 1997,
Seattle, Washington, see also http://www.interix.com

[Welsh 99]
Welsh, Matt, “Boycott Microsoft, Protect the Future of Comput-
ing Technology”, http://www.boycott-ms.org/ last updated 10
Feb. 1999
16 INFORMATIK • INFORMATIQUE 2/1999

