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Abstract 
 

The most commonly deployed web service applications 

employ client-server communication patterns, with clients 

running remotely and services hosted in data centers. In 

this paper, we make the case for Service-Oriented Colla-

boration (SOC) applications that combine service-hosted 

data with collaboration features implemented using peer-

to-peer protocols. Collaboration features are awkward to 

support solely based on the existing web services technol-

ogies. Indirection through the data center introduces high 

latencies and limits scalability, and precludes collabora-

tion between clients connected to one-another but lacking 

connectivity to the data center. Cornell’s Live Distributed 

Objects platform combines web services with direct peer-

to-peer communication to eliminate these issues.  

 

1. Introduction 
 

There is a growing opportunity to use Service-Oriented 

Collaboration (SOC) applications in ways that can slash 

health-care costs, improve productivity, permit more ef-

fective search and rescue after a disaster, enable a more 

nimble information-enabled military, or make possible a 

world of professional dialog and collaboration without 

travel. SOC applications will need to combine two types 

of content: traditional web service hosted content, such as 

data from databases, image repositories, patient records, 

and weather prediction systems, with a variety of collabo-

ration features, such as chat windows, white boards, peer-

to-peer video and other media streams, and replica-

tion/coordination mechanisms.  

Existing web service technologies make it easy to build 

applications in which all data travels through a data cen-

ter. Implementing collaboration features using these tech-

nologies is problematic because collaborative applications 

can generate high, bursty update rates and yet often re-

quire low latencies and tight synchronization between 

collaborating users.  One can often achieve better perfor-

mance using direct client-to-client (also called peer-to-

peer, or P2P) communication, but in today’s SOA plat-

forms, “side-band” communication is hard to integrate 

with hosted content. This problem is reflected by a grow-

ing number of publications on the integration of web ser-

vices with peer-to-peer platforms, e.g., [2], [4], [8], [9], 

[10], [14], [15], [16], [20], [21]. Yet the issue remains 

unresolved (see Section 6 for more details).  

Cornell’s Live Distributed Objects platform [12] (Live 

Objects for short) allow even a non-programmer to con-

struct content-rich solutions that blend traditional web 

services and peer-to-peer technologies, and to share them 

with others. This is like creating a slide show: drag-and-

drop, after which the solution can be shared in a file or via 

email and opened on other machines. The users are im-

mersed in the resulting collaborative application: they can 

interact with the application and peers see the results in-

stantly.  Updates are applied to all replicas in a consistent 

manner.  Moreover, in contrast to today’s web service 

platforms, P2P communication can coexist with more 

standard solutions that reach back to the hosted content 

and trigger updates at the associated data centers.  Thus, 

when an application needs high data rates, low latency, or 

special security, it can use protocols that bypass the data 

center to achieve the full performance of the network. 

This paper makes the following contributions. 

 We describe a new class of Service-Oriented Collabo-

ration (SOC) applications that integrate service hosted 

content with peer-to-peer message streams. We analyze 

two important examples of SOC applications (search 

and rescue mission and virtual worlds), identifying 

shared characteristics. We list the key challenges that 

SOC applications place on their runtime environments. 

 We describe a new class of multi-layered mashups and 

contrast them with more traditional, minibrowser-based 

approach to building mashups, characteristic of today’s 

web development. We discuss the relative advantages 

of these two approaches for building SOC applications. 

 We discuss the advantages of decoupling transport and 

information layers as a means of achieving reusability, 

customizability, ability to rapidly deploy SOC applica-

tions in new environments and adapt them dynamically 



to the changing needs. We discuss the resulting object-

oriented perspective, in which instances of distributed 

communication protocols are modeled uniformly as ob-

jects similar to those in Java, .NET, COM or Smalltalk.  

 We discuss our Live Distributed Objects platform as an 

example of a technology that fits well with the layered, 

componentized model we derived through our analysis. 

 We compare performance of hosted Enterprise Service 

Bus (ESB) solutions with peer-to-peer communication 

protocols as an underlying communication substrate for 

SOC applications. The relative strengths of each of the 

solutions tested and the lack of a clear winner serve as 

a further justification for the decoupling of information 

and transport layers advocated above. 

 

2. Limitations of the existing model 
 

There are two important reasons why integrating peer-

to-peer collaboration with server-hosted content is diffi-

cult.   The first is not strictly limited to collaboration and 

peer-to-peer protocols; rather, it is a general weakness of 

the current web mashup technologies that makes it hard to 

seamlessly integrate data from several different 

sources.The web developers’ community has slowly con-

verged towards service platforms that export autonomous 

interactive components to their clients, in the form of what 

we’ll call minibrowser interfaces. A minibrowser is an 

interactive web page with embedded script, developed 

using AJAX, Silverlight, Caja, or similar technology, op-

timized for displaying a single type of content, for exam-

ple interactive maps from Google Earth or Virtual Earth.  

The embedded script is often tightly integrated with 

backend services in the data center, making it awkward to 

access the underlying services directly from a different 

script or a standalone client. As a result, the only way such 

services can be mashed up with other web content is by 

either having the data center compute the mashup (so that 

it can be accessed via the minibrowser), or by embedding 

the entire minibrowser window in a web page. But an em-

bedded minibrowser can’t seamlessly blend with the sur-

rounding content; it is like a standalone browser within its 

own frame, and runs independent of the rest of the page. 

To illustrate this point, consider Figure 1 and Figure 2. 

The figures are screenshots of web applications, with con-

tent from multiple sources mashed-up together. Figure 1 

was constructed using a standard web services approach, 

pulling content from the Yahoo! maps and weather web 

services and assembling it into a web page as a set of tiled 

frames. Each frame is a minibrowser with its own interac-

tive controls, and comes from a single content source. To 

illustrate one of the many restrictions: if the user pans or 

zooms in the map frame, the associated map will shift or 

zoom, but the other frames remain as they were – the 

frames are not synchronized.  

Now consider Figure 2. Here we see a similar applica-

tion constructed using Live Objects. In this case, content 

from different sources is overlaid in the same window and 

synchronized. We used white backgrounds to highlight the 

contributions of different sources, but there are no frame 

boundaries: elements of this mashup (which can include 

map layers, tables showing buildings or points of interest, 

icons representing severe weather reports, vehicles or in-

dividuals, etc.) co-exist layers within which the end user 

can easily navigate. Data can come from many kinds of 

  

Figure 1: Standard Minobrowser-Style Mashup Figure 2:  Live Objects Multi-Layered Mashup 

 



data centers. Our example actually overlays weather from 

Google on terrain maps from Microsoft’s Virtual Earth 

platform and extracts census data from the US Census 

Bureau: the lion coexists with the lamb. 

The second problem is that with the traditional style of 

web development, content is assumed to be fetched from a 

server, either directly over HTTP, or by interacting with a 

web service. Web pages downloaded by clients’ browsers 

contain embedded addresses of specific servers. Technol-

ogies such as AJAX allow for asynchronous, fine-grained 

client-server interactions, but traffic is still always routed 

through a data center: the clients don’t talk to one another. 

In contrast, Live Objects allow visual content and up-

date events to be communicated using any sort of proto-

col, including client-server, but also overlay multicast, 

peer-to-peer replication, even a custom protocol designed 

by the content provider. As noted earlier, this makes it 

possible to achieve extremely high levels of throughput 

and latency.  It also enhances security: the data center 

server can’t “see” data exchanged directly between peers. 

The above discussion motivates our problem statement: 

 Allow web applications to overlay content from mul-

tiple sources in a layered fashion, such that the distinct 

content layers share a single view and remain well syn-

chronized: zooming, rotating, or panning should cause 

all layers to respond simultaneously, and an update in 

any of the layers should be reflected in all other layers. 

 Allow updates to be carried by the protocol best 

matched to the setting in which the application is used. 

As noted earlier, the solutions discussed here are based on 

Live Objects. These support drag-and-drop application 

development. Of course, new types of components must 

be created for each type of content, but the existing collec-

tion of components provides access to several different 

types of web services hosted content (including all the 

examples given above). Once constructed, the resulting 

live application is stored as an XML file. The file can be 

moved about and even embedded in email. Users that 

open it find themselves immersed into the application. 

Several transport protocols optimized for various set-

tings are or will be available in a near future, including 

support for WAN networks with NATs and firewalls 

(SOLO [6]), low latency (Ricochet [1]), high throughput 

and very large numbers of nodes (QSM [11]), large num-

bers of irregularly overlapping multicast groups (Gossip 

Objects [3]), and strong reliability properties (Properties 

Framework [13]).   

 

2. Service Oriented Collaboration (SOC) 
 

Before saying more about our approach, we analyze a 

concrete example of a SOC application more carefully to 

expose the full range of needs and issues that arise. 

Consider a rescue mission coordinator: a police or fire 

chief coordinating teams who will enter a disaster zone in 

the wake of a catastrophe to help survivors, control dan-

gerous situations (electrical wires down, chemical leaks, 

fires, etc.), and move supplies as needed. The coordinator, 

a non-programmer, would arrive on the scene, build a new 

collaboration tool, and distribute it to his/her team. Each 

team member would carry a tablet-style device with wire-

less communication capabilities. The application built by 

the coordinator would be installed on each team member’s 

mobile device, and in the offices in mission headquarters.  

The coordinator would then deploy teams in the field. 

Our rescue workers now use the solution to coordinate 

and prioritize actions, inform each other of the evolving 

situation, steer clear of hazards, etc. As new events occur, 

the situational status would evolve, and the team member 

who causes or observes these status changes would need 

to report them to the others. For example, removing debris 

blocking access to a building may enable the team to 

check it for victims, and fire that breaks out in a chemical 

storage warehouse may force diversion of resources. As 

rescue workers capture information, their mobile devices 

send updates that must be propagated in real-time. 

Having defined the scenario, now let’s analyze in more 

detail the requirements it places on our collaboration tool.  

First, note that, the collaboration tool pulls data from 

many kinds of sources. It makes far more sense to imagine 

that weather information, maps, traffic, sensors data, posi-

tions of units, buildings, messages and alerts come from a 

dozen providers than to assume that one organization 

would be hosting services with everything we need in one 

place. Data from distinct sources could have different 

format and one will often need to interface to each using 

its own protocols and interfaces.  

 Second, as conditions evolve the team might need to 

be modify the application, for example adding new types 

of information, changing the way it is represented, or even 

modifying the way team members communicate (for ex-

ample, if reach-back network links fail). Whereas a mini-

browser would typically be prebuilt with all the available 

features in place, our scenario demands a much more flex-

ible kind of tool that can be redesigned while in use.    

 Third, depending on the location and other factors, the 

best networking protocols and connectivity options may 

vary.  In our rescue scenario, the workers may have to use 

wireless P2P protocols much of the time, reaching back to 

hosted services only intermittently when a drone aircraft 

passes within radio range.  More broadly, the right choice 

of protocol should reflect the operating conditions, and if 

these change, the platform should be capable of swapping 

in a different protocol without disrupting the end user.  

This argues for a decoupling  of functionality.  Whereas a 

minibrowser packages it all into one object, better is a 

design in which the presentation object is distinct from 

objects representing information sources and objects 



representing transport protocols.  Decoupling makes it 

possible to dynamically modify or even replace a compo-

nent with some other (compatible) option when changing 

conditions require it. 

We have posed what may sound like a very specialized 

problem, but in fact we see this as a good example of a 

more general kind of need that could arise in many kinds 

of settings. For example, consider a physician treating a 

patient with a complex condition, who needs collaboration 

help from specialists, and who might even be working in a 

remote location under conditions demanding urgent ac-

tion. The mixture of patient data, telemetry, image studies, 

etc., may be just as rich and dynamic as in our search and 

rescue scenario, and the underlying communication op-

tions equally heterogeneous and unpredictable.  A mini-

browser pre-designed for a wired environment might per-

form poorly or fail under such conditions.  With Live Ob-

jects, if there is a way to solve the problem, there is a way 

to build the desired mashup.  

Throughout the above we noted requirements; for clari-

ty, we now summarize them below. As noted, these needs 

are seen in many settings.  Indeed, we believe them to be 

typical of most SOC applications. 

 We would like to enable a non-programmer to rapidly 

develop a new collaborative application by composing 

together and customizing preexisting components. 

 We would like to be able to overlay data from multiple 

sources, potentially in different formats, obtained using 

different protocols and inconsistent interfaces. 

 We would like to be able to dynamically customize the 

application at runtime, e.g., by incorporating new data 

sources or changing the way data is presented, during a 

mission, and without disrupting system operation. 

 We would like to be able to accommodate new types of 

data sources, new formats or protocols that we may not 

have anticipated at the time the system was released. 

 Data might be published by the individual users, and it 

might be necessary for the users to exchange their data 

without access to a centralized repository. 

 Data may be obtained using different types of network 

protocols, and the type of the physical network or pro-

tocols may not be known in advance; it should be poss-

ible to rapidly compose the application using whatever 

communication infrastructure is currently available. 

 Users may be mobile or temporarily disconnected, in-

frastructure may fail, and the topology of the network 

and its characteristics might change over time. The sys-

tem should be easily reconfigurable. 

The requirements outlined above might seem hard to satis-

fy, but in fact, the solution is surprisingly simple. Our 

analysis motivates a component-oriented architecture, in 

which the web services and hosted content are modeled as 

reusable overlayed information layers backed by custo-

mizable transport layers: a graph of components.  A colla-

borative application is a forest: a set of such graphs.  

Our vision demands a new kind of SOC standard, in 

order to facilitate the side-by-side coexistence of compo-

nents that might today be implemented as proprietary mi-

nibrowsers: if we enable components to talk to one-

another, we need to agree on the events and representation 

that the dialog will employ. The decoupling of functionali-

ty into layers also suggests a need for a standardized 

layering: in the examples above, one can identify at least 

four (the visualization layer, the linkage layer that talks to 

the underlying data source, the update generating and in-

terpreting layer, and the transport protocol). We propose 

that this decoupling be done using event-based interfaces; 

a natural way of thinking about components that dates 

back to Smalltalk. 

Thus, rather than having the data center developer offer 

content through proprietary minibrowser interface, he/she 

would define an event-based interface between transport 

and information layers; the visual events delivered by the 

transport could then be delivered to an information layer 

responsible for visualizing them. It, in turn, would capture 

end-user mouse and keyboard events and pass them down, 

also as events. With this type of event-based decoupling, 

either layer could easily be replaced with a different one. 

In this perspective, distributed peer-to-peer protocols 

would also be encapsulated within their respective trans-

port layers. Thus, for example, one version of a transport 

layer could fetch data directly from a server in a data cen-

ter, whereas a different version might use a peer-to-peer 

dissemination architecture, a reliable multicast protocol; it 

could leverage different type of hardware or be optimized 

for different types of workloads. Provided that the differ-

ent versions of the transport layer conform to the same 

standardized event-based interfaces, the application could 

then switch between them as conditions demand. 

In this event-oriented world, end-users interact through 

Live Objects that transform actions into updates that are 

communicated in the form of events that are shared via the 

transport layer. The protocol implemented by the transport 

layer might replicate the event, deliver it to the tablets of 

our rescue workers, and report it through the event-based 

interface back to the information layer at which the event 

has originated. Thus, the transport layer with the embed-

ded distributed protocol would behave very much like an 

object in Smalltalk: it would consume events and respond 

with events. This motivates thinking about communication 

protocols as objects, and indeed in treating them as ob-

jects much as we treat any other kind of object in a lan-

guage like Java or in a runtime environment like Jini or 

.NET. Doing so unifies apparently distinct approaches. 

Just as a remotely hosted form of content such as a map or 

an image of a raincloud can be modeled as an object, so 

can network protocols be treated as objects. 



Some P2P systems try to make everything a P2P inte-

raction.  But in the examples we’ve seen, several kinds of 

content would more naturally be hosted: maps and 3-D 

images of terrain and buildings, weather information, pa-

tient health records, etc. On the other hand, SOC applica-

tions are likely to embody quite a range of P2P event 

streams: each separate video object, GPS source, sensor, 

etc, may have its own associated update stream.  If one 

thinks of these as topics in publish-subscribe eventing 

systems, an application could have many such topics, and 

the application instance running on a given user’s machine 

could simultaneously display data from several topics. We 

have previously said that we’d like to think of protocols as 

objects.  It now becomes clear that further precision is 

needed: the objects aren’t merely protocols, but in fact are 

individual protocol instances.  Our system will need to 

simultaneously support potentially large numbers of trans-

port objects running concurrently in the end-user’s system, 

in support of a variety of applications and uses.   

All of this leads to new challenges.  The obvious one 

was mentioned earlier: today’s web services don’t support 

P2P communication.  Contemporary web services solu-

tions presume a client-server style of interaction, with data 

relayed through a message-oriented middleware broker. 

Even if clients are connected to one-another, if they lose 

connectivity to the broker, they can’t collaborate.   

Another serious issue arises if the clients don’t trust the 

data center: sensitive data will need to be encrypted.  The 

problem here is that web services security standards tend 

to trust the web services platform itself.  The standards 

offer no help at all if we need to provide end-to-end en-

cryption mechanisms while also preventing the hosted 

services from seeing the keys.  

Finally, we encounter debilitating latency and through-

put issues: hosted services will be performance-limiting 

bottlenecks when used in settings with large numbers of 

clients, as we will see in our experimental section.   

We are left with a mixture of good and bad news: 

 Web services standardize client access to hosted ser-

vices and data: we can easily build some form of multi-

framed web page that could host each kind of informa-

tion in its own minibrowser. 

 When connectivity is adequate, relaying data via a 

hosted service has many of the benefits of a publish-

subscribe architecture, such as robustness as the set of 

clients changes. 

 The natural way to think of our application is as an 

object-oriented mashup, but web services provide no 

support for this kind of client application development. 

 Our solution may perform very poorly, or fail if the 

hosted services are inaccessible. 

 All data will probably be visible to the hosted services 

unless the developer uses some sort of non-standard 

end-to-end cryptography. 

 

3. Using Live Objects for SOC Applications 
 

Cornell’s Live Objects platform supports componen-

tized, layered mashup creation and sharing, and over-

comes limitations of existing web technologies. The major 

design aspects are as follows: 

 The developer starts by creating (or gaining access to) 

a collection of components. Each component is an ob-

ject that supports live functionality, and exposes event-

based interfaces by which it interacts with other com-

ponents. Examples include: 

 Components representing hosted content 

 Sensors and actuators 

 Renderers that graphically depict events 

 Replication protocols 

 Synchronization protocols 

 Folders containing sets of objects 

 Display interfaces that visualize folders.  

 Mashups of components are represented as a kind of 

XML web pages; each describing a “recipe” for obtain-

ing and parameterizing components that will serve as 

layers of the composed mashup. We call such an XML 

page a live object reference. References can be distri-

buted as files, over email, HTTP or other means.  

 An SOC application is created by building a forest 

consisting of graphs of references that are mashed to-

gether. At design time, an automated tool lets the de-

veloper drag and drop to combine references for indi-

vidual objects into an XML mashup of references de-

scribing a graph of objects.  

 The platform type-checks mashups to verify that they 

compose correctly. For example, a 3-D visualization of 

an airplane may need to be connected to a source of 

GPS and other orientation data, which in turn needs to 

run over a data replication protocol with specific relia-

bility, ordering or security properties. 

 When activated on a user’s machine, an XML mashup 

yields a graph of interconnected proxies. A proxy is a 

piece of running code that may render, decode, or 

transform visual content, encapsulate a protocol stack, 

and so on. Each sub-component in the XML mashup 

produces an associated proxy. The hierarchy of proxies 

reflects the hierarchical structure of the XML mashup. 

 If needed, an object proxy can initialize itself by copy-

ing the state from some active proxy (our platform as-

sists with this sort of state transfer). 

 The object proxies then become active (“live”), for 

example by relaying events from sensors into a replica-



tion channel, or by receiving events and reacting to 

them (e.g. by redisplaying an aircraft).  

Our approach shares certain similarities with the existing 

web development model, in the sense that it uses hierar-

chical XML documents to define the content. On the other 

hand, we depart from some of the de-facto stylistic stan-

dards that have emerged. For example if one pulls a mini-

browser from Google Earth, it expects to interact directly 

with the end user, and includes embedded JavaScript that 

handles such interactions. In Live Objects, the same func-

tionality would be represented as a mashup of a compo-

nent that fetches maps and similar content with a second 

component that provides the visualization interface.  

Although the term mashup may sound static, in the 

sense of having its components predetermined, this is not 

necessarily the case. One kind of live object could be a 

folder including a set of objects, for example extracted 

from a directory in a file system or pulled from a database 

in response to a query. When the folder contents change, 

the mashup is dynamically updated, as might occur when 

a rescue worker enters a building or turns a corner.  

Thus, Live Objects can easily support applications that 

dynamically recompute the set of “visible” objects, as a 

function of location and orientation, and dynamically add 

or remove them from the mashup. A rescuer would auto-

matically and instantly be shown the avatars of others who 

are already working at that site, and be able to participate 

in conference-style or point-to-point dialog with them, 

through chat objects that run over multicast protocol ob-

jects. This model can support a wide variety of collabora-

tion and coordination paradigms. 

In summary, the Live Objects platform makes it easy 

for a non-programmer to create the needed SOC applica-

tion. The rescue coordinator pulls prebuilt object refer-

ences from a folder, each corresponding to a desired kind 

of information. Hosted data, such as weather, terrain 

maps, etc, would correspond to objects that “point” to a 

web service over the network. Peer-to-peer objects would 

implement chat windows, shared white boards, etc. Event 

interfaces allow such objects to coexist in a shared display 

window that can pan, zoom, jump to new locations, etc. 

The relative advantages and disadvantages of our mod-

el can be summarized as follows: 

 Like other modern web development tools, our plat-

form supports drag-and-drop style of development, 

permitting fast, easy creation of content-rich mashups. 

 The resulting solutions are easy to share. 

 By selecting appropriate transport layers, functionality 

such as coordination between searchers can remain ac-

tive even if connectivity to the data center is disrupted. 

 Streams of video or sensor data can travel directly and 

won’t be delayed by the need to “ricochet” off a remote 

and potentially inaccessible server. 

 New event-based interoperability standards are needed.  

Lacking them, we could lose access to some of the so-

phisticated proprietary interactive functionality opti-

mized for proprietary minibrowser-based solutions 

with an embedded JavaScript.   

 Direct peer-to-peer communication can be much harder 

to use than relaying data through a hosted service that 

uses an Enterprise Service Bus (ESB) model. Further-

more, the lack of a “one size fits all” publish-subscribe 

substrate forces the developers to become familiar with 

and choose between a range of different and incompat-

ible options. An wrong choice of transport could result 

in degraded QoS, inferior scalability, or even data loss. 

 

4. Second Life


 as a SOC Application 
 

Up to now, we have focused on a small-scale example. 

But our longer term goal is to support a large-scale next-

generation collaboration system similar to Second Life


, a 

virtual reality immersion system created by Linden Labs. 

A hosted system, Second Life is implemented with a data 

center including a large number of servers storing the state 

of the virtual world, the locations of all users, etc. Users 

(represented by avatars) customize the environment, then 

move about and interact with others. For example, one can 

create a cybercafé, customize its music, furniture, wall 

treatments, etc. As other Second Life users enter the room, 

they can interact with the environment and one-another. 

In the Second Life architecture, whenever an avatar 

moves or performs some action in the virtual world, a 

request describing this event is passed to the hosting data 

center and processed by servers running there. Clients do 

perform a variety of decoding and rendering functions 

locally, but the data center must be in the loop to ensure 

that all users observe consistent state. When the number of 

users in a scenario isn’t huge, Second Life can easily keep 

up using a standard workload partitioning scheme in 

which different servers handle different portions of the 

virtual world. However, when loads increase, for example 

because large numbers of users want to enter the same 

virtual discotheque, the servers can become overwhelmed 

and are forced to reject some of the users or reduce their 

frame-rendering rates and resolution. Under such condi-

tions, Second Life might seem jumpy and unrealistic. 

Second Life as a Live Objects application poses some 

new challenges. On the one hand, many aspects of the 

application can be addressed in the same manner we’ve 

outlined for the search and rescue application. One could 

use Microsoft Virtual Earth, or Google Earth, as a source 

of 3D textures representing landscapes, buildings, etc. The 

built-in standards for creating mashups could be used to 

identify sensors and other data sources, which could then 

be wrapped as Live Objects and incorporated into live 

scenes. On top of this, streaming media sources such as 



video cameras mounted at street level in places such as 

Tokyo’s Ginza can be added to create realistic experience.  

The more complex issue is that a search and rescue ap-

plication can be imagined as a situational state fully repli-

cated across all of its users. In this model, all machines 

would see all the state updates (even if the user is zoomed 

into some particular spot within the overall scene). One 

can contemplate such an approach because the aggregate 

amount of information might not be that large. In contrast, 

Second Life conceptually is a whole universe, unbounded 

in size and hence with different users in very distinct parts 

of the space. It would make no sense for every user to see 

every event. 

With Live Objects, we would solve this problem using 

the dynamic database querying approach outlined in Sec-

tion 3. Each user would see only the objects within some 

range, or within line of sight. As a user moves about, the 

platform would recompute the query result, and then up-

date the display accordingly. Notice, however, that since 

some Live Objects uses P2P protocols that might organize 

user’s machines into groups forwarding streams of data to 

one another, we end up in a situation where each user be-

longs to a potentially large number of such groups, and 

the groups that one user is a part of might be very differ-

ent from the groups that other users belong to. To support 

such a model, we need to be able to support very large 

numbers of publish-subscribe topics, and with different 

users subscribed to very different sets of topics. 

Up to now we have been fairly negative about the trend 

to standardize client access to hosted content through web 

minibrowsers that make the Javascript running on a user’s 

machine virtually inseparable from the data center. Our 

core criticism was that for most SOC applications, a mini-

browser approach would lack the flexibility to seamlessly 

combine content from different sources, and to customize 

the underlying communication substrate.. Our earlier con-

cerns carry over to the Second Life scenario. To see this, 

consider a 3D texture representing terrain in some region: 

1. In a minibrowser approach, the minibrowser generates 

the texture from hosted data (say, a map) and displays 

it. This model makes it difficult (not impossible) to su-

perimpose other content over the texture; generally, we 

would need to rely on a hosting system’s mashup tech-

nology to do this. For example, if we wanted to blend 

weather information from the National Hurricane Cen-

ter with a Google Map, the Google map service would 

need to explicitly support this sort of embedding. 

2. In our Second Life scenario, the visible portion of the 

scene – the part of the texture being displayed – will 

often be controlled by events generated by other Live 

Objects that share the display window, perhaps under 

control of users running on machines elsewhere in the 

network. These remote sources won’t fit into the inte-

raction model expected by the minibrowser. 

3. The size and shape of the display window and other 

elements of the runtime environment should be inhe-

rited from the hierarchy structure of the object mashup 

used to create the application. Thus our texture should 

learn its size and orientation and even the GPS coordi-

nates on which to center from the parent object that 

hosts it, and similarly until we reach the “root” object 

hosting the display window. A minibrowser isn’t a 

component: it runs the show. 

Despite all of the above criticism, minibrowsers retain one 

potential advantage over the layered architecture we pro-

posed earlier. Since all aspects of the view are optimized 

to run together, the interaction controls might be far more 

sophisticated and perform potentially much better than a 

solution resulting from mashing up together multiple lay-

ers developed independently. Furthermore, in many realis-

tic examples event-based interfaces could get fairly com-

plex, and difficult for most developers to work with.  

This observation highlights the importance of develop-

ing component interface and event standards for the 

layered architecture we’ve outlined.  The task isn’t really 

all that daunting: the designers of Microsoft’s Object 

Linking and Embedding (OLE) standard faced similar 

challenges, and today, their OLE interfaces are pervasive-

ly used to support thousands of plugins that implement 

context menus, virtual folders and various namespace ex-

tensions, and drag and drop technologies. 

Lacking the needed standards, we’ve compromised: the 

Live Objects platform supports both options today. In 

addition to allowing hosted content to be pulled in and 

exposed via event interfaces, components developed by 

some of our users also use embedded minibrowsers to 

gain access to a wide range of platforms, including 

Google, Yahoo, MSN, Flickr, YouTube, and FaceBook.  

 

5. Performance Evaluation 

 
Central to our argument is the assertion that  hosted 

event notification solutions scale poorly and stand as a 

barrier to collaboration applications, and that developers 

will want to combine hosted content with P2P protocols to 

overcome these problems. In this section we present data 

to support our claims. Some of the results (Figure 3, Fig-

ure 4) are drawn from a widely cited industry whitepaper 

([7]) and were obtained using a testing methodology and 

setup developed and published by Sonic Software ([18]). 

The remainder was produced in our own experiments. 
The first graph (Figure 3), from the industry white pa-

per, analyzes the performance of several commercial En-

terprise Service Bus (ESB) products. Shown is the maxi-

mum throughput (msgs/sec) for 1024 byte messages. The 

experiment varies the number of subscribers while using a 

single publisher that communicates through a single 

hosted message broker on a single topic. Brokers are con-



figured for message durability: even if a subscriber expe-

riences a transient loss of connectivity, the publisher re-

tains and hence can replay all messages. As the number of 

subscribers increases, performance degrades sharply. Al-

though not shown, latency will also soars because the 

amount of time the broker needs to spend sending a single 

message increases linearly with the number of subscribers.   

In collaboration applications, durability is often not re-

quired. The second graph (Figure 4) shows throughput in 

an experiment in which the publisher does not log data. 

Here, a disconnected subscriber would experience a loss. 

We find that while the maximum throughput is much 

higher, the degradation of performance is even more dra-

matic. Clearly, developers of collaboration applications 

that need good scalability might discover that hosted ESB 

options won’t achieve this goal.  

Next, we report on some experiments we conducted on 

our own at Cornell, focusing on scalability of event notifi-

cation platforms that leverage peer-to-peer techniques for 

dissemination and recovery. On the first graph (Figure 5), 

we compare the maximum throughput of two decentra-

lized reliable multicast protocols, again with 1024-byte 

messages, a single topic and a single publisher. Unlike in 

the previous tests, which ran on 1Gbit/sec LANs, these 

experiments used a 100Mbit/sec LAN; this limits the peak 

performance to 10,000 messages/second. QSM [11] 

achieves stable high throughput (saturating the network). 

JGroups, a popular product, runs at about a fifth that 

speed, collapsing as the number of subscribers increases. 

Also, at small loss rates, latency in QSM is at the level of 

10-15ms irrespectively of the number of subscribers. 
When the number of topics is varied, QSM maintains 

its high performance. On the second graph (Figure 6), we 

report performance for 110 subscribers, but performance 

for other group sizes is similar. JGroups performance was 

higher with smaller group sizes, but erodes as the number 

of topics increases. JGroups failed when we attempted to 

configure it with more than 256 topics.  
Finally, we look at two scalable protocols under condi-

tions of “stress”, with a focus on delivery latency (y axis) 

as a fixed message rate is spread over varying numbers of 

topics. 64 subscribers each join some number of topics, a 

publisher sends data at a rate of 1000 messages/second, 

selecting the topic in which to send at random. Our expe-

rimental setup, on Emulab, injects a random 1% message 

loss rate. In Figure 7 we see that Ricochet [1], a Cornell-

developed protocol for low-latency multicast, maintains 

steady low-latency delivery (about 10ms; y-axis) as the 

number of topics increases to 1024 (x-axis). In contrast, 

latency soars when we repeat this with the industry-

standard Scalable Reliable Multicast (SRM), widely used 

for event notification in their datacenters. As can be seen 

in the graph, SRM’s recovery latency rises linearly in the 

number of topics, reaching almost 8 seconds with 128 

groups.  

To summarize, our experiments confirm that: 

 Hosted enterprise service bus architectures can achieve 

high levels of publish-subscribe performance for small 

numbers of subscribers, but performance degrades very 

sharply as the number of subscribers or topics grows. 

 The JGroups and SRM platforms, which don’t leverage 

peer-to-peer techniques, scale poorly in the number of 

subscribers or topics. QSM and Ricochet, where sub-

scribers cooperate, scale well in these dimensions. 

 Ricochet achieved the best recovery latency when mes-

sage loss is an issue (but at relatively high overhead, 

not shown on these graphs). QSM at small loss rates 

achieves similar average latency with considerably 

lower network overheads, but if a packet is lost, it may 

take several seconds to recover it, making it less ap-

propriate for time-critical applications. 

We don’t see any single winner here: each of the solutions 

tested has some advantages that its competitors lack.  

 
Figure 3: Scalability of Commercial ESBs 

 
Figure 4: Scalability of Commercial ESBs 

 

 
 



Indeed, we’re currently developing new P2P protocol 

suite, called SOLO [6]; it builds an overlay multicast tree 

within which events travel, and is capable of self-

organizing in the presence of firewalls, network address 

translators (NAT) and bottleneck links. A separate project 

is creating a protocol suite that we call the Properties 

Framework [13]. The goal is to offer strong forms of re-

liability that can be customized for special needs.  

Thus, speed and scalability are only elements of a 

broader story. Developers will need different solutions for 

different purposes. By offering a flexible yet structured 

component mashup environment, Live Objects makes it 

possible to create applications that mix hosted with P2P 

content, and that can adapt their behavior, even at run-

time, to achieve desired properties in a way matched to 

the environment. 
 

6. Prior Work 
 

The idea of integrating web services with peer-to-peer 

platforms is certainly not new ([2], [4], [8], [9], [10], [14], 

[15], [16], [20], [21]). The existing work falls roughly into 

two categories. The first line of research is focused on the 

use of peer-to-peer technologies, particularly JXTA, as a 

basis for scalable web service discovery. The second line 

of research concentrates on the use of replication proto-

cols at the web service backend to achieve fault-tolerance. 

In both cases, P2P platforms such as JXTA are treated not 

as means of collaboration or media carrying live content, 

but rather as a supporting infrastructure at the data center 

backend. In contrast, our work is focused on blending the 

content available through P2P and web service protocols; 

neither technology is subordinate with respect to the other. 

Technologies that use peer-to-peer protocols to support 

live and interactive content have existed earlier; an excel-

lent example of such technology is the Croquet [17] colla-

boration environment, in which the entire state of a virtual 

3D world is stored in a peer-to-peer fashion and updated 

using a two-phase commit  protocol. Other work in this 

direction includes [19]. However, none of these systems 

supports the sorts of componentized, layered architectures 

that we have advocated here. The types of peer-to-peer 

protocols these systems can leverage, and the types of a 

traditional hosted content they can blend with their P2P 

content, are limited. In contrast, our platform is designed 

from ground up with extensibility in mind; every part of it 

can be replaced and customized, and different components 

within a single mashup application can leverage different 

transport protocols. 

Prior work on typed component architectures includes 

a tremendous variety of programming languages and plat-

forms, including early languages such as SmallTalk along-

side modern component-based environments such as Java, 

.NET or COM, specialized component architectures such 

as MIT’s Argus system, flexible protocol composition 

stacks such as BAST [5], service-oriented architectures 

such as Juni, and others. None of these, however, has been 

used in the context of integrating service-hosted and peer-

to-peer content. Discussion of component integration sys-

tems and their relation to live objects, however, is beyond 

the scope of this paper. More details can be found in [12]. 

Finally, much relevant prior work consists of the script-

ing languages mentioned in the discussion above: Java-

Script, Caja, Silverlight, and others. As explained earlier, 

 
Figure 7: Delivery latency (ms) for SRM and Ri-

cochet with varying numbers of topics. 
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our belief is that even though these languages are intended 

for fairly general use, they have evolved to focus on mini-

browser situations in which the application lives within a 

dedicated browser frame, interacts directly with the user, 

and cannot be mixed with content from other sources in a 

layered fashion. Live Objects can support minibrowsers as 

objects, but we’ve argued that by modeling hosted content 

at a lower level as components that interact via events and 

focusing on the multi-layered style of mashups as opposed 

to the standard tiled model, we gain flexibility. 

 

7. Conclusions 
 

To build ambitious collaboration application, the web 

services community will need ways to combine (to “mash 

up”) content from multiple sources. These include hosted 

sources that run in data centers and support web services 

interfaces, but also direct peer-to-peer protocols capable 

of transporting audio, video, whiteboard data and other 

content at high data rates, with low latency. A further need 

is to allow disconnected collaboration, without mandatory 

reach-back to data centers. 

Our review of the performance of enterprise service 

bus eventing solutions in the standard hosted web services 

model made it clear that hosted event channels won’t have 

the scalability and latency properties needed by many ap-

plications. P2P alternatives often achieve far better scala-

bility, lower latency, and higher throughput.  They also 

have security advantages: the data center doesn’t get a 

chance to see (and save) every event. 

The Live Objects platform can seamlessly support ap-

plications that require a mixture of data sources, including 

both hosted and direct P2P event-stream data. Further 

benefits include an easy to use drag-and-drop program-

ming style that yields applications represented as XML 

files, which can be shared as files or even via email. Users 

that open such files find themselves immersed in a media-

rich collaborative environment that also offers strong re-

liability, high performance, impressive scalability and (in 

the near future) a powerful type-driven security mechan-

ism. Most important of all, Live Objects are real: the plat-

form is available for free download from Cornell. 
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