
Building Collaboration Applications That Mix

Web Services Hosted Content with P2P Protocols1

Ken Birman, Jared Cantwell, Daniel Freedman, Qi Huang, Petko Nikolov, Krzysztof Ostrowski

Cornell University, Dept of Computer Science, Ithaca, NY, USA

{ken, dfreedman, qhuang, krzys}@cs.cornell.edu, {jmc279, pn42}@cornell.edu

1
This work was supported, in part, by the NSF, AFRL, Intel and Cisco. Qi Huang is a visiting scientist from the School of

Computer Sci & Tech; Huazhong University of Sci & Tech, supported by the Chinese NSFC, grant 60731160630.

Abstract

The most commonly deployed web service applications

employ client-server communication patterns, with clients

running remotely and services hosted in data centers. In

this paper, we make the case for Service-Oriented Colla-

boration (SOC) applications that combine service-hosted

data with collaboration features implemented using peer-

to-peer protocols. Collaboration features are awkward to

support solely based on the existing web services technol-

ogies. Indirection through the data center introduces high

latencies and limits scalability, and precludes collabora-

tion between clients connected to one-another but lacking

connectivity to the data center. Cornell’s Live Distributed

Objects platform combines web services with direct peer-

to-peer communication to eliminate these issues.

1. Introduction

There is a growing opportunity to use Service-Oriented

Collaboration (SOC) applications in ways that can slash

health-care costs, improve productivity, permit more ef-

fective search and rescue after a disaster, enable a more

nimble information-enabled military, or make possible a

world of professional dialog and collaboration without

travel. SOC applications will need to combine two types

of content: traditional web service hosted content, such as

data from databases, image repositories, patient records,

and weather prediction systems, with a variety of collabo-

ration features, such as chat windows, white boards, peer-

to-peer video and other media streams, and replica-

tion/coordination mechanisms.

Existing web service technologies make it easy to build

applications in which all data travels through a data cen-

ter. Implementing collaboration features using these tech-

nologies is problematic because collaborative applications

can generate high, bursty update rates and yet often re-

quire low latencies and tight synchronization between

collaborating users. One can often achieve better perfor-

mance using direct client-to-client (also called peer-to-

peer, or P2P) communication, but in today’s SOA plat-

forms, “side-band” communication is hard to integrate

with hosted content. This problem is reflected by a grow-

ing number of publications on the integration of web ser-

vices with peer-to-peer platforms, e.g., [2], [4], [8], [9],

[10], [14], [15], [16], [20], [21]. Yet the issue remains

unresolved (see Section 6 for more details).

Cornell’s Live Distributed Objects platform [12] (Live

Objects for short) allow even a non-programmer to con-

struct content-rich solutions that blend traditional web

services and peer-to-peer technologies, and to share them

with others. This is like creating a slide show: drag-and-

drop, after which the solution can be shared in a file or via

email and opened on other machines. The users are im-

mersed in the resulting collaborative application: they can

interact with the application and peers see the results in-

stantly. Updates are applied to all replicas in a consistent

manner. Moreover, in contrast to today’s web service

platforms, P2P communication can coexist with more

standard solutions that reach back to the hosted content

and trigger updates at the associated data centers. Thus,

when an application needs high data rates, low latency, or

special security, it can use protocols that bypass the data

center to achieve the full performance of the network.

This paper makes the following contributions.

 We describe a new class of Service-Oriented Collabo-

ration (SOC) applications that integrate service hosted

content with peer-to-peer message streams. We analyze

two important examples of SOC applications (search

and rescue mission and virtual worlds), identifying

shared characteristics. We list the key challenges that

SOC applications place on their runtime environments.

 We describe a new class of multi-layered mashups and

contrast them with more traditional, minibrowser-based

approach to building mashups, characteristic of today’s

web development. We discuss the relative advantages

of these two approaches for building SOC applications.

 We discuss the advantages of decoupling transport and

information layers as a means of achieving reusability,

customizability, ability to rapidly deploy SOC applica-

tions in new environments and adapt them dynamically

to the changing needs. We discuss the resulting object-

oriented perspective, in which instances of distributed

communication protocols are modeled uniformly as ob-

jects similar to those in Java, .NET, COM or Smalltalk.

 We discuss our Live Distributed Objects platform as an

example of a technology that fits well with the layered,

componentized model we derived through our analysis.

 We compare performance of hosted Enterprise Service

Bus (ESB) solutions with peer-to-peer communication

protocols as an underlying communication substrate for

SOC applications. The relative strengths of each of the

solutions tested and the lack of a clear winner serve as

a further justification for the decoupling of information

and transport layers advocated above.

2. Limitations of the existing model

There are two important reasons why integrating peer-

to-peer collaboration with server-hosted content is diffi-

cult. The first is not strictly limited to collaboration and

peer-to-peer protocols; rather, it is a general weakness of

the current web mashup technologies that makes it hard to

seamlessly integrate data from several different

sources.The web developers’ community has slowly con-

verged towards service platforms that export autonomous

interactive components to their clients, in the form of what

we’ll call minibrowser interfaces. A minibrowser is an

interactive web page with embedded script, developed

using AJAX, Silverlight, Caja, or similar technology, op-

timized for displaying a single type of content, for exam-

ple interactive maps from Google Earth or Virtual Earth.

The embedded script is often tightly integrated with

backend services in the data center, making it awkward to

access the underlying services directly from a different

script or a standalone client. As a result, the only way such

services can be mashed up with other web content is by

either having the data center compute the mashup (so that

it can be accessed via the minibrowser), or by embedding

the entire minibrowser window in a web page. But an em-

bedded minibrowser can’t seamlessly blend with the sur-

rounding content; it is like a standalone browser within its

own frame, and runs independent of the rest of the page.

To illustrate this point, consider Figure 1 and Figure 2.

The figures are screenshots of web applications, with con-

tent from multiple sources mashed-up together. Figure 1

was constructed using a standard web services approach,

pulling content from the Yahoo! maps and weather web

services and assembling it into a web page as a set of tiled

frames. Each frame is a minibrowser with its own interac-

tive controls, and comes from a single content source. To

illustrate one of the many restrictions: if the user pans or

zooms in the map frame, the associated map will shift or

zoom, but the other frames remain as they were – the

frames are not synchronized.

Now consider Figure 2. Here we see a similar applica-

tion constructed using Live Objects. In this case, content

from different sources is overlaid in the same window and

synchronized. We used white backgrounds to highlight the

contributions of different sources, but there are no frame

boundaries: elements of this mashup (which can include

map layers, tables showing buildings or points of interest,

icons representing severe weather reports, vehicles or in-

dividuals, etc.) co-exist layers within which the end user

can easily navigate. Data can come from many kinds of

Figure 1: Standard Minobrowser-Style Mashup Figure 2: Live Objects Multi-Layered Mashup

data centers. Our example actually overlays weather from

Google on terrain maps from Microsoft’s Virtual Earth

platform and extracts census data from the US Census

Bureau: the lion coexists with the lamb.

The second problem is that with the traditional style of

web development, content is assumed to be fetched from a

server, either directly over HTTP, or by interacting with a

web service. Web pages downloaded by clients’ browsers

contain embedded addresses of specific servers. Technol-

ogies such as AJAX allow for asynchronous, fine-grained

client-server interactions, but traffic is still always routed

through a data center: the clients don’t talk to one another.

In contrast, Live Objects allow visual content and up-

date events to be communicated using any sort of proto-

col, including client-server, but also overlay multicast,

peer-to-peer replication, even a custom protocol designed

by the content provider. As noted earlier, this makes it

possible to achieve extremely high levels of throughput

and latency. It also enhances security: the data center

server can’t “see” data exchanged directly between peers.

The above discussion motivates our problem statement:

 Allow web applications to overlay content from mul-

tiple sources in a layered fashion, such that the distinct

content layers share a single view and remain well syn-

chronized: zooming, rotating, or panning should cause

all layers to respond simultaneously, and an update in

any of the layers should be reflected in all other layers.

 Allow updates to be carried by the protocol best

matched to the setting in which the application is used.

As noted earlier, the solutions discussed here are based on

Live Objects. These support drag-and-drop application

development. Of course, new types of components must

be created for each type of content, but the existing collec-

tion of components provides access to several different

types of web services hosted content (including all the

examples given above). Once constructed, the resulting

live application is stored as an XML file. The file can be

moved about and even embedded in email. Users that

open it find themselves immersed into the application.

Several transport protocols optimized for various set-

tings are or will be available in a near future, including

support for WAN networks with NATs and firewalls

(SOLO [6]), low latency (Ricochet [1]), high throughput

and very large numbers of nodes (QSM [11]), large num-

bers of irregularly overlapping multicast groups (Gossip

Objects [3]), and strong reliability properties (Properties

Framework [13]).

2. Service Oriented Collaboration (SOC)

Before saying more about our approach, we analyze a

concrete example of a SOC application more carefully to

expose the full range of needs and issues that arise.

Consider a rescue mission coordinator: a police or fire

chief coordinating teams who will enter a disaster zone in

the wake of a catastrophe to help survivors, control dan-

gerous situations (electrical wires down, chemical leaks,

fires, etc.), and move supplies as needed. The coordinator,

a non-programmer, would arrive on the scene, build a new

collaboration tool, and distribute it to his/her team. Each

team member would carry a tablet-style device with wire-

less communication capabilities. The application built by

the coordinator would be installed on each team member’s

mobile device, and in the offices in mission headquarters.

The coordinator would then deploy teams in the field.

Our rescue workers now use the solution to coordinate

and prioritize actions, inform each other of the evolving

situation, steer clear of hazards, etc. As new events occur,

the situational status would evolve, and the team member

who causes or observes these status changes would need

to report them to the others. For example, removing debris

blocking access to a building may enable the team to

check it for victims, and fire that breaks out in a chemical

storage warehouse may force diversion of resources. As

rescue workers capture information, their mobile devices

send updates that must be propagated in real-time.

Having defined the scenario, now let’s analyze in more

detail the requirements it places on our collaboration tool.

First, note that, the collaboration tool pulls data from

many kinds of sources. It makes far more sense to imagine

that weather information, maps, traffic, sensors data, posi-

tions of units, buildings, messages and alerts come from a

dozen providers than to assume that one organization

would be hosting services with everything we need in one

place. Data from distinct sources could have different

format and one will often need to interface to each using

its own protocols and interfaces.

 Second, as conditions evolve the team might need to

be modify the application, for example adding new types

of information, changing the way it is represented, or even

modifying the way team members communicate (for ex-

ample, if reach-back network links fail). Whereas a mini-

browser would typically be prebuilt with all the available

features in place, our scenario demands a much more flex-

ible kind of tool that can be redesigned while in use.

 Third, depending on the location and other factors, the

best networking protocols and connectivity options may

vary. In our rescue scenario, the workers may have to use

wireless P2P protocols much of the time, reaching back to

hosted services only intermittently when a drone aircraft

passes within radio range. More broadly, the right choice

of protocol should reflect the operating conditions, and if

these change, the platform should be capable of swapping

in a different protocol without disrupting the end user.

This argues for a decoupling of functionality. Whereas a

minibrowser packages it all into one object, better is a

design in which the presentation object is distinct from

objects representing information sources and objects

representing transport protocols. Decoupling makes it

possible to dynamically modify or even replace a compo-

nent with some other (compatible) option when changing

conditions require it.

We have posed what may sound like a very specialized

problem, but in fact we see this as a good example of a

more general kind of need that could arise in many kinds

of settings. For example, consider a physician treating a

patient with a complex condition, who needs collaboration

help from specialists, and who might even be working in a

remote location under conditions demanding urgent ac-

tion. The mixture of patient data, telemetry, image studies,

etc., may be just as rich and dynamic as in our search and

rescue scenario, and the underlying communication op-

tions equally heterogeneous and unpredictable. A mini-

browser pre-designed for a wired environment might per-

form poorly or fail under such conditions. With Live Ob-

jects, if there is a way to solve the problem, there is a way

to build the desired mashup.

Throughout the above we noted requirements; for clari-

ty, we now summarize them below. As noted, these needs

are seen in many settings. Indeed, we believe them to be

typical of most SOC applications.

 We would like to enable a non-programmer to rapidly

develop a new collaborative application by composing

together and customizing preexisting components.

 We would like to be able to overlay data from multiple

sources, potentially in different formats, obtained using

different protocols and inconsistent interfaces.

 We would like to be able to dynamically customize the

application at runtime, e.g., by incorporating new data

sources or changing the way data is presented, during a

mission, and without disrupting system operation.

 We would like to be able to accommodate new types of

data sources, new formats or protocols that we may not

have anticipated at the time the system was released.

 Data might be published by the individual users, and it

might be necessary for the users to exchange their data

without access to a centralized repository.

 Data may be obtained using different types of network

protocols, and the type of the physical network or pro-

tocols may not be known in advance; it should be poss-

ible to rapidly compose the application using whatever

communication infrastructure is currently available.

 Users may be mobile or temporarily disconnected, in-

frastructure may fail, and the topology of the network

and its characteristics might change over time. The sys-

tem should be easily reconfigurable.

The requirements outlined above might seem hard to satis-

fy, but in fact, the solution is surprisingly simple. Our

analysis motivates a component-oriented architecture, in

which the web services and hosted content are modeled as

reusable overlayed information layers backed by custo-

mizable transport layers: a graph of components. A colla-

borative application is a forest: a set of such graphs.

Our vision demands a new kind of SOC standard, in

order to facilitate the side-by-side coexistence of compo-

nents that might today be implemented as proprietary mi-

nibrowsers: if we enable components to talk to one-

another, we need to agree on the events and representation

that the dialog will employ. The decoupling of functionali-

ty into layers also suggests a need for a standardized

layering: in the examples above, one can identify at least

four (the visualization layer, the linkage layer that talks to

the underlying data source, the update generating and in-

terpreting layer, and the transport protocol). We propose

that this decoupling be done using event-based interfaces;

a natural way of thinking about components that dates

back to Smalltalk.

Thus, rather than having the data center developer offer

content through proprietary minibrowser interface, he/she

would define an event-based interface between transport

and information layers; the visual events delivered by the

transport could then be delivered to an information layer

responsible for visualizing them. It, in turn, would capture

end-user mouse and keyboard events and pass them down,

also as events. With this type of event-based decoupling,

either layer could easily be replaced with a different one.

In this perspective, distributed peer-to-peer protocols

would also be encapsulated within their respective trans-

port layers. Thus, for example, one version of a transport

layer could fetch data directly from a server in a data cen-

ter, whereas a different version might use a peer-to-peer

dissemination architecture, a reliable multicast protocol; it

could leverage different type of hardware or be optimized

for different types of workloads. Provided that the differ-

ent versions of the transport layer conform to the same

standardized event-based interfaces, the application could

then switch between them as conditions demand.

In this event-oriented world, end-users interact through

Live Objects that transform actions into updates that are

communicated in the form of events that are shared via the

transport layer. The protocol implemented by the transport

layer might replicate the event, deliver it to the tablets of

our rescue workers, and report it through the event-based

interface back to the information layer at which the event

has originated. Thus, the transport layer with the embed-

ded distributed protocol would behave very much like an

object in Smalltalk: it would consume events and respond

with events. This motivates thinking about communication

protocols as objects, and indeed in treating them as ob-

jects much as we treat any other kind of object in a lan-

guage like Java or in a runtime environment like Jini or

.NET. Doing so unifies apparently distinct approaches.

Just as a remotely hosted form of content such as a map or

an image of a raincloud can be modeled as an object, so

can network protocols be treated as objects.

Some P2P systems try to make everything a P2P inte-

raction. But in the examples we’ve seen, several kinds of

content would more naturally be hosted: maps and 3-D

images of terrain and buildings, weather information, pa-

tient health records, etc. On the other hand, SOC applica-

tions are likely to embody quite a range of P2P event

streams: each separate video object, GPS source, sensor,

etc, may have its own associated update stream. If one

thinks of these as topics in publish-subscribe eventing

systems, an application could have many such topics, and

the application instance running on a given user’s machine

could simultaneously display data from several topics. We

have previously said that we’d like to think of protocols as

objects. It now becomes clear that further precision is

needed: the objects aren’t merely protocols, but in fact are

individual protocol instances. Our system will need to

simultaneously support potentially large numbers of trans-

port objects running concurrently in the end-user’s system,

in support of a variety of applications and uses.

All of this leads to new challenges. The obvious one

was mentioned earlier: today’s web services don’t support

P2P communication. Contemporary web services solu-

tions presume a client-server style of interaction, with data

relayed through a message-oriented middleware broker.

Even if clients are connected to one-another, if they lose

connectivity to the broker, they can’t collaborate.

Another serious issue arises if the clients don’t trust the

data center: sensitive data will need to be encrypted. The

problem here is that web services security standards tend

to trust the web services platform itself. The standards

offer no help at all if we need to provide end-to-end en-

cryption mechanisms while also preventing the hosted

services from seeing the keys.

Finally, we encounter debilitating latency and through-

put issues: hosted services will be performance-limiting

bottlenecks when used in settings with large numbers of

clients, as we will see in our experimental section.

We are left with a mixture of good and bad news:

 Web services standardize client access to hosted ser-

vices and data: we can easily build some form of multi-

framed web page that could host each kind of informa-

tion in its own minibrowser.

 When connectivity is adequate, relaying data via a

hosted service has many of the benefits of a publish-

subscribe architecture, such as robustness as the set of

clients changes.

 The natural way to think of our application is as an

object-oriented mashup, but web services provide no

support for this kind of client application development.

 Our solution may perform very poorly, or fail if the

hosted services are inaccessible.

 All data will probably be visible to the hosted services

unless the developer uses some sort of non-standard

end-to-end cryptography.

3. Using Live Objects for SOC Applications

Cornell’s Live Objects platform supports componen-

tized, layered mashup creation and sharing, and over-

comes limitations of existing web technologies. The major

design aspects are as follows:

 The developer starts by creating (or gaining access to)

a collection of components. Each component is an ob-

ject that supports live functionality, and exposes event-

based interfaces by which it interacts with other com-

ponents. Examples include:

 Components representing hosted content

 Sensors and actuators

 Renderers that graphically depict events

 Replication protocols

 Synchronization protocols

 Folders containing sets of objects

 Display interfaces that visualize folders.

 Mashups of components are represented as a kind of

XML web pages; each describing a “recipe” for obtain-

ing and parameterizing components that will serve as

layers of the composed mashup. We call such an XML

page a live object reference. References can be distri-

buted as files, over email, HTTP or other means.

 An SOC application is created by building a forest

consisting of graphs of references that are mashed to-

gether. At design time, an automated tool lets the de-

veloper drag and drop to combine references for indi-

vidual objects into an XML mashup of references de-

scribing a graph of objects.

 The platform type-checks mashups to verify that they

compose correctly. For example, a 3-D visualization of

an airplane may need to be connected to a source of

GPS and other orientation data, which in turn needs to

run over a data replication protocol with specific relia-

bility, ordering or security properties.

 When activated on a user’s machine, an XML mashup

yields a graph of interconnected proxies. A proxy is a

piece of running code that may render, decode, or

transform visual content, encapsulate a protocol stack,

and so on. Each sub-component in the XML mashup

produces an associated proxy. The hierarchy of proxies

reflects the hierarchical structure of the XML mashup.

 If needed, an object proxy can initialize itself by copy-

ing the state from some active proxy (our platform as-

sists with this sort of state transfer).

 The object proxies then become active (“live”), for

example by relaying events from sensors into a replica-

tion channel, or by receiving events and reacting to

them (e.g. by redisplaying an aircraft).

Our approach shares certain similarities with the existing

web development model, in the sense that it uses hierar-

chical XML documents to define the content. On the other

hand, we depart from some of the de-facto stylistic stan-

dards that have emerged. For example if one pulls a mini-

browser from Google Earth, it expects to interact directly

with the end user, and includes embedded JavaScript that

handles such interactions. In Live Objects, the same func-

tionality would be represented as a mashup of a compo-

nent that fetches maps and similar content with a second

component that provides the visualization interface.

Although the term mashup may sound static, in the

sense of having its components predetermined, this is not

necessarily the case. One kind of live object could be a

folder including a set of objects, for example extracted

from a directory in a file system or pulled from a database

in response to a query. When the folder contents change,

the mashup is dynamically updated, as might occur when

a rescue worker enters a building or turns a corner.

Thus, Live Objects can easily support applications that

dynamically recompute the set of “visible” objects, as a

function of location and orientation, and dynamically add

or remove them from the mashup. A rescuer would auto-

matically and instantly be shown the avatars of others who

are already working at that site, and be able to participate

in conference-style or point-to-point dialog with them,

through chat objects that run over multicast protocol ob-

jects. This model can support a wide variety of collabora-

tion and coordination paradigms.

In summary, the Live Objects platform makes it easy

for a non-programmer to create the needed SOC applica-

tion. The rescue coordinator pulls prebuilt object refer-

ences from a folder, each corresponding to a desired kind

of information. Hosted data, such as weather, terrain

maps, etc, would correspond to objects that “point” to a

web service over the network. Peer-to-peer objects would

implement chat windows, shared white boards, etc. Event

interfaces allow such objects to coexist in a shared display

window that can pan, zoom, jump to new locations, etc.

The relative advantages and disadvantages of our mod-

el can be summarized as follows:

 Like other modern web development tools, our plat-

form supports drag-and-drop style of development,

permitting fast, easy creation of content-rich mashups.

 The resulting solutions are easy to share.

 By selecting appropriate transport layers, functionality

such as coordination between searchers can remain ac-

tive even if connectivity to the data center is disrupted.

 Streams of video or sensor data can travel directly and

won’t be delayed by the need to “ricochet” off a remote

and potentially inaccessible server.

 New event-based interoperability standards are needed.

Lacking them, we could lose access to some of the so-

phisticated proprietary interactive functionality opti-

mized for proprietary minibrowser-based solutions

with an embedded JavaScript.

 Direct peer-to-peer communication can be much harder

to use than relaying data through a hosted service that

uses an Enterprise Service Bus (ESB) model. Further-

more, the lack of a “one size fits all” publish-subscribe

substrate forces the developers to become familiar with

and choose between a range of different and incompat-

ible options. An wrong choice of transport could result

in degraded QoS, inferior scalability, or even data loss.

4. Second Life

 as a SOC Application

Up to now, we have focused on a small-scale example.

But our longer term goal is to support a large-scale next-

generation collaboration system similar to Second Life

, a

virtual reality immersion system created by Linden Labs.

A hosted system, Second Life is implemented with a data

center including a large number of servers storing the state

of the virtual world, the locations of all users, etc. Users

(represented by avatars) customize the environment, then

move about and interact with others. For example, one can

create a cybercafé, customize its music, furniture, wall

treatments, etc. As other Second Life users enter the room,

they can interact with the environment and one-another.

In the Second Life architecture, whenever an avatar

moves or performs some action in the virtual world, a

request describing this event is passed to the hosting data

center and processed by servers running there. Clients do

perform a variety of decoding and rendering functions

locally, but the data center must be in the loop to ensure

that all users observe consistent state. When the number of

users in a scenario isn’t huge, Second Life can easily keep

up using a standard workload partitioning scheme in

which different servers handle different portions of the

virtual world. However, when loads increase, for example

because large numbers of users want to enter the same

virtual discotheque, the servers can become overwhelmed

and are forced to reject some of the users or reduce their

frame-rendering rates and resolution. Under such condi-

tions, Second Life might seem jumpy and unrealistic.

Second Life as a Live Objects application poses some

new challenges. On the one hand, many aspects of the

application can be addressed in the same manner we’ve

outlined for the search and rescue application. One could

use Microsoft Virtual Earth, or Google Earth, as a source

of 3D textures representing landscapes, buildings, etc. The

built-in standards for creating mashups could be used to

identify sensors and other data sources, which could then

be wrapped as Live Objects and incorporated into live

scenes. On top of this, streaming media sources such as

video cameras mounted at street level in places such as

Tokyo’s Ginza can be added to create realistic experience.

The more complex issue is that a search and rescue ap-

plication can be imagined as a situational state fully repli-

cated across all of its users. In this model, all machines

would see all the state updates (even if the user is zoomed

into some particular spot within the overall scene). One

can contemplate such an approach because the aggregate

amount of information might not be that large. In contrast,

Second Life conceptually is a whole universe, unbounded

in size and hence with different users in very distinct parts

of the space. It would make no sense for every user to see

every event.

With Live Objects, we would solve this problem using

the dynamic database querying approach outlined in Sec-

tion 3. Each user would see only the objects within some

range, or within line of sight. As a user moves about, the

platform would recompute the query result, and then up-

date the display accordingly. Notice, however, that since

some Live Objects uses P2P protocols that might organize

user’s machines into groups forwarding streams of data to

one another, we end up in a situation where each user be-

longs to a potentially large number of such groups, and

the groups that one user is a part of might be very differ-

ent from the groups that other users belong to. To support

such a model, we need to be able to support very large

numbers of publish-subscribe topics, and with different

users subscribed to very different sets of topics.

Up to now we have been fairly negative about the trend

to standardize client access to hosted content through web

minibrowsers that make the Javascript running on a user’s

machine virtually inseparable from the data center. Our

core criticism was that for most SOC applications, a mini-

browser approach would lack the flexibility to seamlessly

combine content from different sources, and to customize

the underlying communication substrate.. Our earlier con-

cerns carry over to the Second Life scenario. To see this,

consider a 3D texture representing terrain in some region:

1. In a minibrowser approach, the minibrowser generates

the texture from hosted data (say, a map) and displays

it. This model makes it difficult (not impossible) to su-

perimpose other content over the texture; generally, we

would need to rely on a hosting system’s mashup tech-

nology to do this. For example, if we wanted to blend

weather information from the National Hurricane Cen-

ter with a Google Map, the Google map service would

need to explicitly support this sort of embedding.

2. In our Second Life scenario, the visible portion of the

scene – the part of the texture being displayed – will

often be controlled by events generated by other Live

Objects that share the display window, perhaps under

control of users running on machines elsewhere in the

network. These remote sources won’t fit into the inte-

raction model expected by the minibrowser.

3. The size and shape of the display window and other

elements of the runtime environment should be inhe-

rited from the hierarchy structure of the object mashup

used to create the application. Thus our texture should

learn its size and orientation and even the GPS coordi-

nates on which to center from the parent object that

hosts it, and similarly until we reach the “root” object

hosting the display window. A minibrowser isn’t a

component: it runs the show.

Despite all of the above criticism, minibrowsers retain one

potential advantage over the layered architecture we pro-

posed earlier. Since all aspects of the view are optimized

to run together, the interaction controls might be far more

sophisticated and perform potentially much better than a

solution resulting from mashing up together multiple lay-

ers developed independently. Furthermore, in many realis-

tic examples event-based interfaces could get fairly com-

plex, and difficult for most developers to work with.

This observation highlights the importance of develop-

ing component interface and event standards for the

layered architecture we’ve outlined. The task isn’t really

all that daunting: the designers of Microsoft’s Object

Linking and Embedding (OLE) standard faced similar

challenges, and today, their OLE interfaces are pervasive-

ly used to support thousands of plugins that implement

context menus, virtual folders and various namespace ex-

tensions, and drag and drop technologies.

Lacking the needed standards, we’ve compromised: the

Live Objects platform supports both options today. In

addition to allowing hosted content to be pulled in and

exposed via event interfaces, components developed by

some of our users also use embedded minibrowsers to

gain access to a wide range of platforms, including

Google, Yahoo, MSN, Flickr, YouTube, and FaceBook.

5. Performance Evaluation

Central to our argument is the assertion that hosted

event notification solutions scale poorly and stand as a

barrier to collaboration applications, and that developers

will want to combine hosted content with P2P protocols to

overcome these problems. In this section we present data

to support our claims. Some of the results (Figure 3, Fig-

ure 4) are drawn from a widely cited industry whitepaper

([7]) and were obtained using a testing methodology and

setup developed and published by Sonic Software ([18]).

The remainder was produced in our own experiments.
The first graph (Figure 3), from the industry white pa-

per, analyzes the performance of several commercial En-

terprise Service Bus (ESB) products. Shown is the maxi-

mum throughput (msgs/sec) for 1024 byte messages. The

experiment varies the number of subscribers while using a

single publisher that communicates through a single

hosted message broker on a single topic. Brokers are con-

figured for message durability: even if a subscriber expe-

riences a transient loss of connectivity, the publisher re-

tains and hence can replay all messages. As the number of

subscribers increases, performance degrades sharply. Al-

though not shown, latency will also soars because the

amount of time the broker needs to spend sending a single

message increases linearly with the number of subscribers.

In collaboration applications, durability is often not re-

quired. The second graph (Figure 4) shows throughput in

an experiment in which the publisher does not log data.

Here, a disconnected subscriber would experience a loss.

We find that while the maximum throughput is much

higher, the degradation of performance is even more dra-

matic. Clearly, developers of collaboration applications

that need good scalability might discover that hosted ESB

options won’t achieve this goal.

Next, we report on some experiments we conducted on

our own at Cornell, focusing on scalability of event notifi-

cation platforms that leverage peer-to-peer techniques for

dissemination and recovery. On the first graph (Figure 5),

we compare the maximum throughput of two decentra-

lized reliable multicast protocols, again with 1024-byte

messages, a single topic and a single publisher. Unlike in

the previous tests, which ran on 1Gbit/sec LANs, these

experiments used a 100Mbit/sec LAN; this limits the peak

performance to 10,000 messages/second. QSM [11]

achieves stable high throughput (saturating the network).

JGroups, a popular product, runs at about a fifth that

speed, collapsing as the number of subscribers increases.

Also, at small loss rates, latency in QSM is at the level of

10-15ms irrespectively of the number of subscribers.
When the number of topics is varied, QSM maintains

its high performance. On the second graph (Figure 6), we

report performance for 110 subscribers, but performance

for other group sizes is similar. JGroups performance was

higher with smaller group sizes, but erodes as the number

of topics increases. JGroups failed when we attempted to

configure it with more than 256 topics.
Finally, we look at two scalable protocols under condi-

tions of “stress”, with a focus on delivery latency (y axis)

as a fixed message rate is spread over varying numbers of

topics. 64 subscribers each join some number of topics, a

publisher sends data at a rate of 1000 messages/second,

selecting the topic in which to send at random. Our expe-

rimental setup, on Emulab, injects a random 1% message

loss rate. In Figure 7 we see that Ricochet [1], a Cornell-

developed protocol for low-latency multicast, maintains

steady low-latency delivery (about 10ms; y-axis) as the

number of topics increases to 1024 (x-axis). In contrast,

latency soars when we repeat this with the industry-

standard Scalable Reliable Multicast (SRM), widely used

for event notification in their datacenters. As can be seen

in the graph, SRM’s recovery latency rises linearly in the

number of topics, reaching almost 8 seconds with 128

groups.

To summarize, our experiments confirm that:

 Hosted enterprise service bus architectures can achieve

high levels of publish-subscribe performance for small

numbers of subscribers, but performance degrades very

sharply as the number of subscribers or topics grows.

 The JGroups and SRM platforms, which don’t leverage

peer-to-peer techniques, scale poorly in the number of

subscribers or topics. QSM and Ricochet, where sub-

scribers cooperate, scale well in these dimensions.

 Ricochet achieved the best recovery latency when mes-

sage loss is an issue (but at relatively high overhead,

not shown on these graphs). QSM at small loss rates

achieves similar average latency with considerably

lower network overheads, but if a packet is lost, it may

take several seconds to recover it, making it less ap-

propriate for time-critical applications.

We don’t see any single winner here: each of the solutions

tested has some advantages that its competitors lack.

Figure 3: Scalability of Commercial ESBs

Figure 4: Scalability of Commercial ESBs

Indeed, we’re currently developing new P2P protocol

suite, called SOLO [6]; it builds an overlay multicast tree

within which events travel, and is capable of self-

organizing in the presence of firewalls, network address

translators (NAT) and bottleneck links. A separate project

is creating a protocol suite that we call the Properties

Framework [13]. The goal is to offer strong forms of re-

liability that can be customized for special needs.

Thus, speed and scalability are only elements of a

broader story. Developers will need different solutions for

different purposes. By offering a flexible yet structured

component mashup environment, Live Objects makes it

possible to create applications that mix hosted with P2P

content, and that can adapt their behavior, even at run-

time, to achieve desired properties in a way matched to

the environment.

6. Prior Work

The idea of integrating web services with peer-to-peer

platforms is certainly not new ([2], [4], [8], [9], [10], [14],

[15], [16], [20], [21]). The existing work falls roughly into

two categories. The first line of research is focused on the

use of peer-to-peer technologies, particularly JXTA, as a

basis for scalable web service discovery. The second line

of research concentrates on the use of replication proto-

cols at the web service backend to achieve fault-tolerance.

In both cases, P2P platforms such as JXTA are treated not

as means of collaboration or media carrying live content,

but rather as a supporting infrastructure at the data center

backend. In contrast, our work is focused on blending the

content available through P2P and web service protocols;

neither technology is subordinate with respect to the other.

Technologies that use peer-to-peer protocols to support

live and interactive content have existed earlier; an excel-

lent example of such technology is the Croquet [17] colla-

boration environment, in which the entire state of a virtual

3D world is stored in a peer-to-peer fashion and updated

using a two-phase commit protocol. Other work in this

direction includes [19]. However, none of these systems

supports the sorts of componentized, layered architectures

that we have advocated here. The types of peer-to-peer

protocols these systems can leverage, and the types of a

traditional hosted content they can blend with their P2P

content, are limited. In contrast, our platform is designed

from ground up with extensibility in mind; every part of it

can be replaced and customized, and different components

within a single mashup application can leverage different

transport protocols.

Prior work on typed component architectures includes

a tremendous variety of programming languages and plat-

forms, including early languages such as SmallTalk along-

side modern component-based environments such as Java,

.NET or COM, specialized component architectures such

as MIT’s Argus system, flexible protocol composition

stacks such as BAST [5], service-oriented architectures

such as Juni, and others. None of these, however, has been

used in the context of integrating service-hosted and peer-

to-peer content. Discussion of component integration sys-

tems and their relation to live objects, however, is beyond

the scope of this paper. More details can be found in [12].

Finally, much relevant prior work consists of the script-

ing languages mentioned in the discussion above: Java-

Script, Caja, Silverlight, and others. As explained earlier,

Figure 7: Delivery latency (ms) for SRM and Ri-

cochet with varying numbers of topics.

Figure 6: Scalability QSM and JGroups

(throughput for various numbers of topics)

2

Figure 5: Scalability of QSM and JGroups

(throughput for various group sizes)

our belief is that even though these languages are intended

for fairly general use, they have evolved to focus on mini-

browser situations in which the application lives within a

dedicated browser frame, interacts directly with the user,

and cannot be mixed with content from other sources in a

layered fashion. Live Objects can support minibrowsers as

objects, but we’ve argued that by modeling hosted content

at a lower level as components that interact via events and

focusing on the multi-layered style of mashups as opposed

to the standard tiled model, we gain flexibility.

7. Conclusions

To build ambitious collaboration application, the web

services community will need ways to combine (to “mash

up”) content from multiple sources. These include hosted

sources that run in data centers and support web services

interfaces, but also direct peer-to-peer protocols capable

of transporting audio, video, whiteboard data and other

content at high data rates, with low latency. A further need

is to allow disconnected collaboration, without mandatory

reach-back to data centers.

Our review of the performance of enterprise service

bus eventing solutions in the standard hosted web services

model made it clear that hosted event channels won’t have

the scalability and latency properties needed by many ap-

plications. P2P alternatives often achieve far better scala-

bility, lower latency, and higher throughput. They also

have security advantages: the data center doesn’t get a

chance to see (and save) every event.

The Live Objects platform can seamlessly support ap-

plications that require a mixture of data sources, including

both hosted and direct P2P event-stream data. Further

benefits include an easy to use drag-and-drop program-

ming style that yields applications represented as XML

files, which can be shared as files or even via email. Users

that open such files find themselves immersed in a media-

rich collaborative environment that also offers strong re-

liability, high performance, impressive scalability and (in

the near future) a powerful type-driven security mechan-

ism. Most important of all, Live Objects are real: the plat-

form is available for free download from Cornell.

8. References

[1] Mahesh Balakrishnan, Ken Birman, Amar Phani-

shayee, Stefan Pleisch. Ricochet: Lateral Error Cor-

rection for Time-Critical Multicast. NSDI 2007.

[2] Farnoush Banaei-Kashani, Ching-Chien Chen, Cyrus

Shahabi. WSPDS: Web Services Peer-to-peer Dis-

covery Service. ICOMP 2004.

[3] Ken Birman, Anne-Marie Kermarrec, Krzysztof Os-

trowski, Marin Bertier, Danny Dolev, Robbert van

Renesse. Exploiting Gossip for Self-Management in

Scalable Event Notification Systems. DEPSA 2007.

[4] Jorge Cardoso. Semantic integration of Web Services

and Peer-to-Peer networks to achieve fault-tolerance.

IEEE GrC 2006.

[5] Benoit Garbinato, Rachid Guerraoui. Flexible Proto-

col Composition in Bast. ICDCS 1998.

[6] Qi Huang, Ken Birman. Self Organizing Live Objects

(SOLO). Submission to DSN 2009; Dec 2008.

[7] JMS Performance Comparison for Publish Subscribe

Messaging. Fiorano Software Technologies Pvt. Ltd.,

February 2008.

[8] Timo Koskela, Janne Julkunen, Jari Korhonen, Mei-

rong Liu, Mika Ylianttila. Leveraging Collaboration

of Peer-to-Peer and Web Services. UBICOMM 2008.

[9] Shenghua Liu, Peep Küngas, and Mikhail Matskin.

Agent-based web service composition with JADE and

JXTA. SWWS 2006.

[10] Federica Mandreoli, Antonio Perdichizzi, and Wilma

Penzo. A P2P-based Architecture for SemanticWeb

Service Automatic Composition. DEXA 2007.

[11] Krzysztof Ostrowski, Ken Birman, Danny Dolev.

QuickSilver Scalable Multicast (QSM). NCA 2008.

[12] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and

Jong Hoon Ahnn. Programming with Live Distributed

Objects. ECOOP 2008.

[13] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and

Chuck Sakoda. Achieving Reliability Through Distri-

buted Data Flows and Recursive Delegation. Submit-

ted to DSN 2009; Dec 2008.

[14] Mike Papazoglou, Bernd Krämer, and Jian Yang.

Leveraging Web-Services and Peer-to-Peer Net-

works. CAiSE 2003.

[15] Changtao Qu and Wolfgang Nejdl. Interacting the

Edutella/JXTA Peer-to-Peer Network with Web Ser-

vices. SAINT 2004.

[16] Mario Schlosser, Michael Sintek, Stefan Decker, and

Wolfgang Nejdl. A Scalable and Ontology-based P2P

Infrastructure for Semantic Web Services. P2P 2002.

[17] David Smith, Alan Kay, Andreas Raab, David Reed.

Croquet:A Collaboration System Architecture. C5’03.

[18] Sonic Performance test suite, available at:

http://www.sonicsoftware.com/products/sonicmq/perf

ormance_benchmark/index.asp

[19] Egemen Tanin, Aaron Harwood, Hanan Samet, Sara-

na Nutanong, Minh Tri Truong. A Serverless 3D

World. GIS 2004.

[20] Minjun Wang, Geoffrey Fox, and Shrideep Pallick-

ara. A Demonstration of Collaborative Web Services

and Peer-to-Peer Grids. ITCC 2004.

[21] Zhenqi Wang, Yuanyuan Hu. A P2P Network Based

Architecture for Web Service. WiCom 2007.

http://www.sonicsoftware.com/products/sonicmq/performance_benchmark/index.asp
http://www.sonicsoftware.com/products/sonicmq/performance_benchmark/index.asp

