
1 

Using Epidemic Techniques for Building  
Ultra-Scalable Reliable Communication Systems. 

Werner Vogels, Robbert van Renesse, Ken Birman 
Dept. of Computer Science, Cornell University† 

Abstract 
Building very large computing systems is extremely challenging, given the lack of scalable communication 
technologies. This threatens a new generation of mission-critical but very large computing systems.  Fortunately, a 
new generation of “gossip-based” or epidemic protocols can overcome scalability problems, offering security and 
reliability even in the most demanding settings.  Epidemic protocols emulate the spread of an infection in a crowded 
population, and are both reliable and stable under forms of stress that will disable most traditional protocols.  
Cornell University’s Spinglass project is developing a new generation of epidemic-based technology for secure, 
reliable large-scale collaboration and soft real-time communications – even over global networks. 

1 Introduction 
Distributed computing will be central to advances in a 
broad range of critical applications, including intelligence 
information systems, military command and control, air 
traffic control, electric power grid management, 
telecommunications, and a vast array of web-based 
commercial and government applications.  Indeed, a 
massive rollout of such systems is already underway.  Yet 
while impressive capabilities have been easy to develop and 
demonstrate in small-scale settings, once deployed these 
systems often stumble badly.   

Software that runs securely and reliably in small-scale 
mockups may lose those properties as numbers of users, the 
size of the network and transaction processing rates all 
increase. Whereas small networks are well behaved, any 
sufficiently large network behaves like the public Internet, 
exhibiting disruptive overloads and routing changes, 
periods of poor connectivity and throughput instability.  
Failures rise in frequency simply because the numbers of 
participating components are larger.  A scalable technology 
must ride out such forms of infrastructure instability.   

Our studies reveal that very few existing technologies have 
the necessary properties.  Most, including the most 
prevalent commercial software, exhibit scalability problems 
when subjected to even modest stress.  This finding reveals 
an imminent (and growing) threat to the full spectrum of 
emergent mission-critical computing systems.  If we can’t 
solve the scalability problem, and develop a methodology 
yielding applications that remain secure and robust even 
when failures occur – indeed, even under attack, or during 
denial-of-service episodes – the very technologies that hold 

the greatest promise for major advances will prove to be the 
Achilles Heel of a future generation of mission-critical 
military and public-sector enterprises. 

The Spinglass project is working to overcome scalability 
barriers, starting with an idea that was first proposed in the 
context of replicated database systems. These systems 
employed what were called “epidemic-style” or “gossip” 
update algorithms, whereby sites periodically compare their 
states and reconcile inconsistencies, using a randomized 
mechanism for deciding when and with whom each 
participant will gossip.  Traditionally, database systems 
used gossip protocols at low speeds.  Our work employs 
gossip at very high speeds, yielding a new generation of 
protocols that have an unusual style of probabilistic 
reliability guarantees –guarantees of scalability, 
performance, stability of throughput even under stress, and 
remarkable scalability. These properties hold even on 
Internet-like platforms. Gossip protocols lend themselves to 
theoretical analysis, making it possible to predict their 
behavior with high confidence.  However, the focus of our 
work at Cornell is mostly practical: we are using gossip, 
together with other more traditional mechanisms, to 
develop new generations of scalable communications 
software and middleware for a wide variety of settings. 

Spinglass treats security and authentication as primary 
considerations, and our software is designed to coexist with 
modern firewalls and intrusion-detection solutions.   
Indeed, one potential application is to support improved 
intrusion detection mechanisms: a gossip based intrusion 
detection system has the potential to overcome scalability 
and fragility problems seen in with more standard client-
server solutions, and avoids the single-point-of-failure 
concerns associated with such solutions.  Our objective in 
the present paper is to review the scalability problem, and 
to summarize our approach to solving it.  The need for 
brevity limits the technical detail here, but other 
publications are available for the interested reader who 
wishes to learn more. 

† This research is supported by DARPA/ONR under contract N0014-96-1-
10014, by the National Science Foundation under Grant No. EIA 97-03470 
and by grants from Microsoft Research.  

The authors can be reached at 4105A Upson Hall, Cornell University, 
Ithaca, NY 14853, fax 607-2554428, E-mail: vogels@cs.cornell.edu. 

 



2 

2 Scalability Problems in Current 
Communication Systems  

The scalability of distributed protocols and systems is a 
major determinant of success in demanding systems.  For 
example, consider the recent field-test of the Navy’s 
Cooperative Engagement Capability (CEC).  During the 
period Sept. 13-27, this system (which offers an over-the-
horizon cooperative targeting capability for naval 
battleships) was subjected to a very modest stress test.  The 
value of this system depends upon timely identification of 
threats and rapid decisions about which ship will respond to 
which threat: threats may be incoming missiles moving at 
several times the speed of sound.  This translates to internal 
deadlines of about a second for the communication 
subsystem, which had been demonstrated easily capable of 
meeting the requirements under laboratory conditions with 
small numbers of participating computing systems. Yet 
under load, when even small numbers of battleships were 
added to the system, the underlying Data Distribution 
System (DDS) became unstable, failing outright, or 
delivering data after much more than the one-second 
threshold.  (Defense News, October 16, 2000).  The result 
was that the CEC basically failed – and this under rather 
benign conditions in which the only variable that changed 
was the number of participants.   

This paper focuses on scalability of distributed protocols 
providing some form of guaranteed reliability when 
communication among multiple participants is required.  
Use of these reliable group communication (multicast) 
protocols is very popular in distributed systems, as there is 
a natural match between the group paradigm and the way 
large distributed systems are structured. These protocols 
allow systems to be built in pure peer-to-peer manner, 
removing the need for centralized servers, removing one of 
the bottlenecks in system scalability. 

Traditional reliable multicast protocols all exhibit severe 
scaling problems, when applied in large Internet style 
settings. Even though some of these protocols appeared to 
be very promising in terms of scalability they all failed to 
operate as soon as the network conditions because the ideal. 
In general the performance analyses of the protocols 
focuses on two extreme cases: performance of the protocol 
under ideal conditions, when nothing goes wrong, and the 
disruptive impact of a failure.  Reality forces use to take a 
look at these protocols from a different perspective: what 
happens to these protocols under mundane transient 
problems, such as network or processor scheduling delays 
and brief periods of packet loss.  One would expect that 
reliable protocols would ride out such events, but we find 
that this is rarely the case, particularly if we look at the 
impact of a disruptive event as a function of scale.  On the 
contrary, reliable protocols degrade dramatically under this 
type of mundane stress, a phenomenon attributable to low-
probability events that become both more likely and more 
costly as the scale of the system grows. 

Because of the need for brevity, we’ll limit ourselves to a 
summary of our finding with respect to the growth rate of 
disruptive overheads for a number of widely used multicast 
protocols. Elsewhere [BGR01], we present a more detailed 
analysis of a variety of scenarios, modeled after the work of 
Gray et. al. [GHOS96], where a similar conclusion  is 
reached with respect to database scalability.  It is clear that 
scalability represents a widespread problem affecting a 
broad range of technologies and systems. 

2.1 Common Problems 
When subjected to transient problem that are related to 
scaling the environment, there are important categories of 
problems that appear: 

• Throughput Instability. All of the protocols that 
implement reliable group communication are subject a 
breakdown of message throughput as soon as one or more 
members experience perturbation. A single slow receiver, 
which can be cause by CPU overhead or some localized 
message loss, will eventually have an impact on the 
throughput to the overall group.  The results in [BGR01] 
show that this impact is even more dramatic and happens 
more rapidly if we scale up the system, making the 
protocol stability extremely volatile under even moderate 
scaling conditions. 

• Micropartitions. In reaction to the throughput instability 
problem, designers often go for the approach to as soon 
as possible to remove the trouble-causing member from 
the group by using more aggressive failure detection 
mechanisms. However when scaling the system to 
moderate Internet environments, one quickly discovers 
that this has the adverse effect that transient network 
problems, which occur frequently, frequently trigger 
incorrect failure-suspicions. Erroneous failure decisions 
involve a particularly costly “leave/rejoin” events, where 
the overall system constantly needs to reconfigure itself. 
We will term this a micropartitioning of the group, 
because a non-crashed member effectively becomes 
partitioned away from the group and later the partition (of 
size one) must remerge.  In effect, by setting failure 
detection parameters more and more aggressively while 
scaling the system up, we approach a state in which the 
group may continuously experience micropartitions, a 
phenomenon akin to thrashing. 
Costs associated with micropartitions rise in frequency 
with the square of the size of the group.  This is because 
the frequency of mistakes is at least linear in the size of 
the group, and the cost of a membership change is also 
linear in the group size: a quadratic effect.   

• Convoys. An obvious response to the scalability problems 
just presented is to structure large systems hierarchically, 
as trees of participant groups.  Unfortunately this option 
is also limited by disruptive random events, albeit in a 
different way. Experimentation has shown that such a 
tree structure, when confronted with moderate network 
instability, exhibits an amplification of the burstiness of 
the message traffic. Even though messages enter the 



3 

system at a steady rate, the reliability and buffer 
strategies at each of the intermediate nodes in the trees 
have compressing effects on messages rates, especially 
when confronted with message loss. The term “convoy” 
has been used by the database community to describe this 
phenomenon, which is also well known to the packet 
routing community.  

• Request and Retransmission storms. Frequently protocols 
resort to using scoped IP multicast techniques for finding 
other local participants to request retransmis sion of 
messages. Although this avoids sending requests back to 
the send, the message do read all local group members, 
often triggering storms of retransmission, or even storms 
of requests, if multiple receivers are experiencing similar 
message loss patterns. 

2.2 Unsuccessful Solutions 
Some reliable multicast protocols have been successful at 
larger scale, but only by very much limiting the 
functionality of the protocols. Techniques the developers 
have resorted to achieve scalability are: 

• Anonymous Membership. The protocol basically streams 
out information to whoever wants to receive messages, 
without any notion of admission control, failure detection 
or session state management. 

• Single Sender Groups. These protocols build a single 
dissemination tree per sender where each node is a 
potential receiver who cooperates in localized 
retransmission schemes. Groups with multiple senders, 
which are very common in distributed systems, are 
treated as multiple groups with single sender, requiring 
an explosion of state managed at each participant, and 
making it impossible to correlate messages from different 
senders. 

• Infinite Retransmission Buffers.  One of the more 
complex problems in multi-sender protocols is the 
management of the messages stored for retransmission. 
The messages can be released once the system is certain 
that no retransmission requests can arrive any more. 
Given that many protocols have no knowledge about the 
receivers, this certainty can never be achieved and they 
resort to a method called application level framing to 
require the application to reconstruct message for 
retransmission. This was applicable to some multi-user 
collaboration tools, but was unusable for the majority of 
distributed systems. 

• Complete Lack of Security.  In most protocols that 
combine application level framing with localized 
retransmission (others than the sender can retransmit lost 
messages), it is impossible guarantee secure 
communication, as nodes that retransmit can not sign the 
message with senders key. The original messages are not 
kept in lack of a garbage collection protocol, and the 
retransmission node cannot sign it with its own key as 
they are anonymous, and as such the receiver has no 
mechanism for checking the signature. 

These techniques are unacceptable if one wants to build 
robust, reliable, secure distributed systems that can be the 
basis for the mission critical enterprise systems.  

But the picture is not entirely bleak.  After presenting these 
arguments, we shift attention to an new class of protocols 
based on an idea from NNTP, the gossip-based algorithm 
used to propagate “news” in the Internet, and 
Clearinghouse, the database replication technology 
developed at Xerox Parc in the 1980’s.  These turn out to be 
scalable under the same style of analysis that predicts poor 
scalability for their non-gossip counterparts.    

3 Epidemic Techniques for Scalable Protocols  
Not all protocols suffer the behavior seen in these reliable 
mechanisms.  In the class of reliable multicast protocols, 
Bimodal Multicast, a protocol reported in [BHO99], scales 
quite well and easily rides out the same phenomena that 
cause problems with these other approaches to reliability 
and scalability. 

Bimodal multicast is a gossip-based protocol that somewhat 
resembles the old NNTP protocol (employed by network 
news servers), but running at much higher speeds.  The 
protocol has two sub-protocols.  One of them is an 
unreliable data distribution protocol similar to IP multicast, 
or based on IP multicast when available.   Upon arrival, a 
message enters the receiver’s message buffer.   Messages are 
delivered to the application layer in FIFO order, and are 
garbage collected out of the message buffer after some 
period of time. 

The second sub-protocol is used to repair gaps in the 
message delivery record, and operates as follows.  Each 
process in the system maintains a list containing some 
random subset of the full system membership.  In practice, 
we weight this list to contain primarily processes from close 
by – processes accessible over low-latency links – but these 
details go beyond the scope of the current paper. 

At some rate (but not synchronized across the system) each 
participant selects one of the processes in its membership 
list at random and sends it a digest of its current message 
buffer contents.  This digest would normally just list 
messages available in the buffer: “messages 5-11 and 13 
from sender s, …” for example.  Upon receipt of a gossip 
message, a process compares the list of messages in the 
digest with its own message buffer contents.  Depending 
upon the configuration of the protocol, a process may pull 
missing messages from the sender of the gossip by sending 
a retransmission solicitiation, or may push messages to the 
sender by sending unsolicited retransmissions of messages 
apparently missing from that process. 

This simplified description omits a number of important 
optimizations to the protocol.  In practice, we use gossip not 
just for multicast reliability, but also to track system 
membership and perform failure detection based on it 
[RMH98][GT92].  We sometimes use unreliable multicast 
with a regional TTL value instead of unicast, in situations 



4 

where it is likely that multiple processes are missing copies 
of the message.  A weighting scheme is employed to 
balance loads on links: gossip is done primarily to nearby 
processes over low-latency links and rarely to remote 
processes, over costly links that may share individual 
routers [XB00].  The protocol switches between gossip pull 
and gossip push, using the former for “young” messages 
and the latter for “old” ones.  Finally, we don’t actually 
buffer every message at every process; a hashing scheme is 
used to spread the buffering load around the system, with 
the effect that the average message is buffered at enough 
processes to guarantee reliability, but the average buffering 
load on a participant decreases with increasing system size. 

Bimodal Multicast has a number of important properties: 
the protocol imposes constant loads on participants, is 
extremely simple to implement and rather inexpensive to 
run.  More important from the perspective of this paper, 
however, the protocol overcomes the problems cited earlier 
for other scalable protocols.  Bimodal Multicast has tunable 
reliability that can be matched to the needs of the 
application (reliability is increased by increasing the length 
of time before a message is garbage collected, but this also 
causes buffering and I/O costs to rise).  The protocol gives 
very steady data delivery rates with predictable, low, 
variability in throughput.  For real-time applications, this 
can be extremely useful.  And the protocol imposes 
constant loads on links and routers (if configured correctly), 
which avoids network overload as a system scales up.  All 
of these characteristics are preserved as the size of the 
system increases. 

The reliability guarantees of the protocol are midway 
between the very strong guarantees of virtual synchrony 
and the much weaker best-effort guarantees of traditional 
reliable mutlicast protocols.  We won’t digress into a 
detailed discussion of the nature of these guarantees, which 
are probabilistic, but it is interesting to note that the 
behavior of Bimodal Multicast is predictable from certain 
simple properties of the network on which it runs.  
Moreover, the network information needed is robust in 
networks like the Internet, where many statistics have 
heavy-tailed distributions with infinite variance.  This is 
because gossip protocols tend to be driven by successful 
message exchanges and hence by the “good” quartile or 
perhaps half of network statistics.  In contrast, traditional 
protocols often include round-trip estimates of the mean 
latency or mean throughput between nodes: estimates that 
are problematic in the Internet where many statistical 
distributions are heavy-tailed and hence have ill-defined 
means and very large variances. 

4 Overcoming Limitation to Scale 

We can generalize from the phenomena enumerated above.  
Distilling these down to their simplest form, and 
elaborating slightly: 
• With the exception of the epidemic protocols, each of 

reliability model involves a costly, but infrequent fault-
recovery mechanism: 

o Virtual synchrony based protocols employ flow 
control, failure detection and membership-change 
protocols; when incorrectly triggered, the cost is 
proportional to the size of the group. 

o Local repair based protocols have a solicitation and 
retransmission mechanism that involves multicasts; 
when a duplicate solicitation or retransmission occurs, 
all participants process and transmit extra messages. 

o FEC-based reliability mechanisms try to reduce 
retransmission requests to the sender by encoding 
redundancy in the data stream.  As the group size 
grows, however, either the average multicast path 
length increases, hence so too the risk of a multi-packet 
loss.  The sender will see increasingly many 
retransmission requests (consuming a scarce resource), 
or the redundancy of the stream itself must be 
increased (resulting in a bandwidth degradation and a 
system-wide impact). 

• Again with the exception of the epidemic protocols, the 
mechanisms we’ve reviewed are potentially at risk from 
convoy-like behaviors.  Even if data is injected into a 
network at a constant rate, as it spreads through the 
network, router scheduling delays and link congestion 
can make the communication load bursty. Under extreme 
condition this behavior can even trigger message loss at 
the end nodes. To smoothen burstiness of messages from 
multiple senders one needs a global view of the system, 
which most reliable protocols have found impossible to 
implement. Epidemic techniques however are ideal to 
implement this global state sharing and allow the overall 
system to gracefully adapt to changes in the network. 

• Many protocols depend upon configuration mechanisms 
that are sensitive to network routing and topology.  Over 
time, network routing can change in ways that take the 
protocol increasingly far from optimal, in which case the 
probabilistic mechanisms used to recover from failures 
can seem increasingly expensive.   Periodic 
reconfigurations, the obvious remedy, introduce a 
disruptive system-wide cost. 

In contrast, the epidemic mechanisms used in NNTP, the 
Xerox Clearinghouse system, and the Bimodal Multicast 
protocol appear to scale without these kinds of problems.  
Throughput is stable (at least, if measured over sufficiently 
long periods of time – gossip protocols can be rather 
unstable if metered on a short time scale).  Overheads are 
flat and predictable, and can be balanced with information 
about network topology, so that links and routers won’t 
become overloaded.  And, the levels of reliability achieved 
are very high – indeed, potentially as high as those of the 
protocols purporting to offer stronger guarantees, if one 
considers the possibility that such protocols sometimes 
reconfigure themselves, incorrectly excluding a process as 
“faulty” when it may actually merely be the victim of bad 
luck. 

Probabilistic guarantees may sound like a contradiction in 
terms, because one’s intuition suggests that anything but an 



5 

absolute reliability guarantee would be the equivalent of no 
reliability at all.  Our work suggests that this is not at all the 
case.  First, it is possible to design mechanisms that have 
stronger guarantees, such as virtual synchrony, and yet 
reside in an end-to-end manner over the basic network 
architecture afforded by our gossip infrastructure.    

An important observation, contributing to the overall 
success of this approach, is also that the epidemic tools 
exploit scalability, and as such turn scale into an advantage 
instead of a problem that must be overcome. 

We are also finding ways of embedding probabilistic 
guarantees directly into useful tools that applications might 
find valuable in their own terms, without trying to 
superimpose some stronger (arguably, less natural) 
reliability abstraction over the basic properties of the 
protocol.   

For example, our Astrolabe technology offers probabilistic 
guarantees for data managed in a scalable table.  We 
believe that there are a tremendous number of ways this 
software can be used, as is, without resorting to end-to-end 
mechanisms that would try to strengthen these basic 
guarantees.  Similarly, many data dissemination systems 
can operate directly over Bimodal Multicast: the properties 
of the protocol are well matched to the needs of systems 
that do require a degree of reliability, but can overcome 
bounded rates of error.  The term bounded is the key here: 
unlike a traditional unreliable network mechanism that can 
behave arbitrarily badly if luck turns against the user, 
Bimodal Multicast overcomes all but the most severe 
outages and behaves in a predictable manner at all times. 

5 Four Probabilistic Tools 
Earlier we noted that the focus of the Spinglass project is on 
practical software tools that can really be used. In this 
section and the one that follows, we first review the tools 
we are currently developing, and then describe some 
applications which we view as especially promising early 
targets for the technology. 

5.1 Bimodal Multicast  

As described above, Bimodal Multicast is a one-to-many 
communications mechanism that achieves tunable, 
probabilistically reliable data delivery.  The probability of 
successful outcomes, where all operational processes 
receive every multicast, can be made arbitrarily high simply 
by adjusting the parameters governing the frequency with 
which participants gossip and the length of time that they 
buffer copies of received multicasts.  In ongoing work at 
Cornell University, we are exploring issues such as 
operation in wide-area networks with firewalls surrounding 
secured enclaves, using formal tools to characterize the 
conditions that a network must have in order to run this 
protocol, and understanding the kinds of network problems 
that Bimodal Multicast is capable of overcoming.  

5.2 Astrolabe 
Astrolabe [R00] is a system built using the same gossip 
mechanisms employed in Bimodal Multicast, but in support 
of a completely different data model.  The basic idea of 
Astrolabe is to support a distributed shared memory in the 
form of a hierarchical table.  The leaves of the hierarchy are 
regional tables in which there is one row per participating 
computer or application program, and where the columns 
contain application-defined data (this could be something 
small, like an indication of the security level of the machine 
or the version number of a program running on it or a load, 
or something large, like an XML encoding of an image).  
Within a region, all participants can see the entire regional 
table but each can only update its own row. 

Higher levels of the hierarchy are formed using what we 
call condensation function.  A condensation function is a 
computation on a column of a regional table that reduces 
the contents of that column to a single value.  For example, 
minimum could be used as a condensation function for a 
column reporting load.  The contents of a higher-level table 
will be one row for each of its child regions, with columns 
defined according to the condensation function.  While a 
region only has direct access to its own regional table, all 
regions can access all of the higher-level tables in the 
hierarchy. 

Astrolabe offers a powerful technology for scalable system 
management and resource discovery.  In modern computing 
systems, simply knowing where data can be found or 
knowing versions of software and configuration 
information for other machines is a critical and yet poorly 
supported functionality.  Astrolabe automates this job and 
does so in a manner that is scalable, has predictable delays 
(they grow slowly with system size), constant overheads, 
and remarkable stability.   

5.3 Gravitational Gossip 

This variation on the Bimodal Multicast protocol is 
designed to support large numbers of subgroups within a 
single network [JHB00].  Subgroups are a traditionally 
important problem in group communication systems, since 
one often uses such systems to support publish-subscribe 
styles of communication, where large numbers of 
communication groups can arise.  With this new protocol, 
we are able to superimpose large numbers of subgroups on 
a large Bimodal Multicast group, and can arrange that each 
group member will receive just the data it desires plus a 
constant overhead. Moreover (this is the “gravitational” 
aspect) members of a subgroup can specify a quality rating.  
A member that wants to receive 100% of the data in a group 
can do so, paying the full cost for all multicasts in the 
group, but if a member only needs part of the data – say, 
50% of the sensor readings or 20% of them – it can adjust 
its rating to correspond to its need, and the load associated 
with the protocol is reduced accordingly.  Notice that we 
are deliberately reducing the reliability of the protocol to 
cut the load seen by processes with small rating values. 



6 

We like to visualize this protocol as emulating a 
gravitational well.  In practice ratings can have any values 
desired, but these include values that give behavior like that 
of a gravity field.  The idea, though, is that messages 
multicast within the base of the well and flow at full speed 
to other processes in the base.  With some probability, these 
messages also ride up the walls of the well, but the steeper 
the wall, the less likely this is to occur, and a message that 
does ride up the wall is very likely to fall back towards the 
base.   Processes residing on the wall thus see less load and 
receive just a percentage of the data items. 

Obviously, gravitational gossip is only useful in settings 
where it is meaningful to take actions based on a randomly 
selected subset of sensor values.   However, as discussed 
below, we know of a number of such applications.   

5.4 Anonymous Gossip 
This direction within our project applies gossip 
communication to nomadic wireless devices.  We have a 
number of applications in mind, but started by looking at 
wireless multicast in so-called ad-hoc networks, which are 
common in military applications.  Anonymous gossip is a 
technique for using gossip communication to improve the 
quality of existing ad-hoc multicast protocols.  The idea is 
to take a multicast protocol (we’ve considered several, but 
worked most closely with AODV and the multicast layered 
over it, MAODV) and then superimpose a gossip repair 
mechanism similar to the one in Bimodal Multicast. 

Where Anonymous Gossip departs from Bimodal Multicast 
is that in a wireless nomadic setting, little information is 
available about the identity of peers, since these can change 
rapidly.  For example, a platoon of soldiers may fan out on 
a hillside, so that the network is always “fully connected” 
and yet the connectivity of any particular soldier’s 
computer varies widely.  The challenge is that in such a 
network, one has no idea with whom to gossip.  
Anonymous Gossip solves this problem by sending gossip 
messages that travel some distance over a randomly chosen 
path in the ad-hoc network.  The eventual receiver replies to 
the sender. 

The technique works extremely well, and we are now 
extending the basic protocol by looking at other metrics and 
at the use of gossip to maintain the basic routing 
infrastructure itself.  At the same time, we are starting to 
look at application-level issues that arise in developing 
nomadic software to run over a gossip infrastructure. 

References 
[BGR01]  Birman, K., Gupta, I, Van Renesse, R.  Fighting 
Fire with Fire: Using Randomized Gossip to Overcome 
Probabilistic Limits to Scalability.  In preparation, expected 
completion March 2001.  

[BHO98]  Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., 
Budiu, M., Minsky, Y.  Bimodal Multicast.  Cornell 

University Dept. of Computer Science Technical Report, 
(Feb. 1998).  Submitted to ACM TOCS. 

[Bir97]  Birman, K.P. Building Secure and Reliable 
Network Applications.  Manning Publications and Prentice 
Hall, January 1997. 

 [Dem88] Demers, A. et. al. Epidemic Algorithms for 
Replicated Data Management.  Proceedings of the 6th 
Symposium on Principles of Distributed Computing 
(PODC), Vancouver, Aug. 1987, 1-12.  

[FJM95] Floyd, S., Jacobson, V., McCanne, S. Liu, C., and 
Zhang, L..  A Reliable Multicast Framework for Light-
weight Sessions and Application  Level Framing.  In Proc 
SIGCOMM `95,  Aug. 1995, Cambridge MA. 

[GHOS96] J. Gray, P. Helland, P. O'Neil and D. Shasha.  
The dangers of replication and a solution.  Proceedings 
1996 SIGMOD Conference, June 1996. 

[GT92] Richard Golding and Kim Taylor.  Group 
Membership in the Epidemic Style.  Technical report 
UCSC-CRL-92-13, University of California at Santa Cruz, 
May 1992. 

[Guo98] Guo, K.  Scalable Message Stability Detection 
Protocols.  Ph.D. dissertation, Cornell University, 1998. 

[JHB00]  Jenkins, K., Hopkinson, K., and Birman, K.  A 
Gossip Protocol for Subgroup Multicast.  Submitted to 
ICDCS Workshop on Reliable Group Communication. Nov. 
2000 

[KB99] Kalantar, M and Birman, K. Causally Ordered 
Multicast: the Conservative Approach. Proc. ICDCS 1999.  
Austin, June 1999.  

[Liu97] Liu, C. Error Recovery in Scalable Reliable 
Multicast (Ph.D. dissertation), University of Southern 
California, Dec 1997 

[Luc98] Lucas, M.. Efficient Data Distribution in Large-
Scale Multicast Networks (Ph.D. dissertation), Dept. of 
Computer Science, University of Virginia,  May 1998 

[R00]  van Renesse, R.  Astrolabe: A Scalable Resource 
Location Service.  Submitted to DISCEX-01.  December 
2000. 

[RMH98] van Renesse, R., Minsky Y, and Hayden, M. 
Gossip-Based Failure Detection Service. In Proc. of 
Middleware '98. England. 

[SSL97] Sanjoy Paul, Sabnani, K., Lin, K. and 
Bhattacharyya, S. "Reliable Multicast Transport Protocol 
(RMTP)", IEEE Journal on Selected Areas in 
Communications, special issue on Network Support for 
Multipoint Communication, April 97, Vol 15, No. 3 

[XB01]  Xiao, Zhen and Birman, Ken.  A Randomized 
Error Recovery Algorithm for Reliable Multicast.  
Submitted to FTCS 2001.  December 2000. 


