A study of Group Rekeying

Ohad Rodeh, Kenneth P. Birman, Danny Dolev *

March 16, 2000

Abstract

In this paper we study the key management problem, in the context of Group Communi-
cation Systems (GCS). GCSs are mid-sized systems, scaling up to 100 members. We present a
side-by-side comparison of three ways of managing keys, studing bandwidth and latency.

1 Introduction

With the advent of the Internet, and wide-spread use of communicating applications, requirements
for data privacy and integrity have increased. This study focuses on applications exhibiting group-
patterns, where data-sharing frequently occurs in a medium sized group. Sharing typically occurs in
applications such as: (1) VPNs: Group collaboration and conferencing applications that secure the
”conference” (2) Administration and management of a LAN, where one would like security against
infrastructure disruption (3) Remote learning or briefings (in military or business situations, these
might need to be secure) (4) Various kinds of replicated services such as white pages (NIS).

Today, most such architectures are either rather static, simplifying management, or simply run
without security at all. With better key management tools, we may eventually see these kinds of
applications begin to routinely secure the application. A good tool should be tolerant of failures,
or denial of service can easily occur, and should scale to group sizes of 100 or 200 participants.
Our work explores a solution to group keying and focuses on an experimental question: how do
the various options perform and how much overhead do they bring to the table?

Our experimental setting is our Group Communication System (GCS), Ensemble [18]. This system
belongs to a family of such systems built around the world. Brevity precludes us from listing all
such systems, the interested reader is refered to [1, 6]. Ensemble evolved from Isis [6], Horus [19],
and Transis [21]. GCSs have been used for many different applications, such as: clustering [4, 20],
air traffic control, stock exchanges [2], and more.

“The authors were supported in part by the Israeli Ministry of Science grant number 032-7892, and by
DARPA/RADC grant £30602-99-1-6532.

A GCS provides reliable multicast and membership services to groups of processes. It monitors
and connects member processes on the network, providing them with a consistent view of group
membership.

A group of members (processes) can be efficiently protected using a single symmetric encryp-
tion key. This key is securely communicated to all group members, which subsequentally use
it to encrypt/decrypt group messages. The group-key is securely switched whenever the group
membership changes, thereby preventing old members from eavesdropping on current group con-
versations. This also prevents new members from tapping into past conversations. The challenge
is to create an efficient and fast key-switch algorithm that can handle large groups and a high rate
of membership changes.

A secure GCS ensures that all members in a view are authentic and authorized. It provides a secure
key with which all group communication is protected. Members outside the group cannot listen in
on group-communications. A partial list of secure GCSs include Antigone [15], and Spread [22].
Spread has been secured using the Cliques cryptographic toolkit [10] that provides strong security
guaranties for group-keys. In fact, Cliques provides stronger guaranties than Ensemble, though
stronger group-keys come at an unavoidable computational cost. Antigone has been used to secure
video conferences over the web, using the VIC and VAT tools. However, to date, it has not been
provided with a fault tolerance architecture. The Totem [9], and Rampart [16] systems can survive
Byzantine faults, at the cost of a further degradation of performance.

The Ensemble security architecture [14] has evolved from seminal work by Reiter [12, 17] done in
the context of the Isis and Horus systems. These results show how group keying can be integrated
with a Group Membership Protocol (GMP) to support such functions as securely managing keys
at the group members, securely rekeying, supporting secure channels between members (discussed
below), HMAC-ing! messages and encrypting the data segments of messages.

We have implemented three different key-management schemes in the Ensemble system. Since the
basic security architecture is shared amongst the protocols, differences occur when group members
join and leave, and rekeying is required. In this paper we report on an experimental and analytical
comparative study of these three schemes. We used a large set of machines in a LAN setting,
to isolate and compare different protocol characteristics. We measure total system load, network
bandwidth, and latencies that our protocols exhibit under different scenarios.

2 Model

The “universe” for the purposes of this paper is comprised of a set of machines connected through
the Internet. Machines, or processes, can communicate with each other by passing messages
through the network. The system is asynchronous: clock drifts are unbounded and messages
may be arbitrarily delayed or lost in the network. We do not consider Byzantine failures. The
network can split into several disjoint components allowing only machines in the same component
to pass messages to each other. A GCS interposes between the network and the application, and

!An HMAC is a Keyed Hash [5] that can be based on any interactive cryptographic hash (e.g., MD5 or SHA-1).
It is used to protect the integrity of a message.

transforms a world of unpredictable failures, delays, transient problems, and message loss, into a
better behaved one [8].

A GCS provides reliable multicast and membership services to groups of processes. Processes may
dynamically join and leave a group, and group components can merge through the GCS protocols
and state-transfer. All processes, inside a group, have knowledge of the set of currently live and
accessible members (the group view). Furthermore, a GCS guarantees agreement on the current
view. This allows a group-leader to be easily chosen: it is the process with lexicographically
“smallest” name.

To achieve fault-tolerance, GCSs require all members to actively participate in failure-detection,
membership, flow-control, and reliability protocols. Therefore, such systems have inherently lim-
ited scalability. We have managed to scale Ensemble to 100 members per group, but no more. For
a detailed study of this problem, the interested reader is refered to [7, 2]. In this paper, we do not
discuss configurations of more than 100 members.

We assume processes in a group have access to trusted authentication and authorization services,
as well as to a local key-generation facility. We also assume that the authentication service allows
processes to open secure channels. A secure channel between a pair of processes allows the secure
exchange of private information.

Ensemble allows the creation of secure-groups where all group members agree on a single symmetric
key. Only trusted and authorized members are allowed into the group. Since all members use the
same key to HMAC and encrypt their messages, no intruder can attack the group or purport to
be part of it.

Since all group members have the same view of the membership, we number them lexicographically
from p; to p,. Implicitly, we shall refer to the “group G”. This is our reference group, p1 ...p, € G.
When we refer to the group leader, we implicitly refer to member number 1 (denoted p;).

All members make use of a secure channel abstraction. Each process keeps a cache of secure
channels. This cache is used for the exchange of private messages in GG. For example, if member
p needs to pass private message m to member ¢ then p’s cache is queried. If a secure channel to
g with key K, already exists then m is encrypted with K, and sent pt-2-pt to ¢. If the channel
does not exist, then a handshaking protocol, using a Diffie-Hellman exchange, is used to securely
agree on a key K, between p and g. The channel is added to the cache, and m is encrypted with
K, and sent to q.

Integer module exponentiations, needed for a Diffie-Hellman exchange, are expensive. We used a
500Mhz PentiumlIII with 256 Mbytes of memory, running the Linux2.2 OS for speed measurements.
An exponentiation with a 1024bit key using the OpenSSL [11] cryptographic library was clocked
at 40 milliseconds. Setting up a secure channel requires two messages containing 1024bit long
integers. Hence, we view the establishment of secure channels as expensive, in terms of both
bandwidth and CPU. One of the goals of our algorithms is to reduce the need of their use.

3 Algorithm description

We compare three different algorithms: Basic,Binary, and Dist [13].

The Basic algorithm uses a simple method to rekey a group, see Figure 1(a). The leader chooses
a new key and disseminates it to the members using secure channels. The members send an
acknowledgment back to the leader. Once the leader gets acknowledgments from all the members,
it performs a view-change, and switches the group to the new key.

@@(g@

Figure 1: (a) The communication pattern of Basic. (b) The communication pattern of Binary. (c)
An example of a graph of keys.

As group size grows, Basic will have a problem with ack-implosion at the leader. To avoid this
situation, a fixed-degree tree is used to collect acknowledgments. When a tree leaf receives the
new key, it sends an ack (short for acknowledgment) to its father. When the father receives acks
from all its children, and it receives the key from the leader, it sends an ack up the tree. When
the leader receives an ack from all its children, it decides that the algorithm is complete, and it
performs a view change with the new key installed. Currently we use a tree of degree six in our
system, though this is a settable parameter.

Algorithms Binary and Dist share the basic communication pattern with Basic. They perform
key-dissemination, and need to collect acknowledgments to detect termination. Therefore, they
all share the same tree-based algorithm for ack collection. We omit henceforth the ack collection
stage from algorithm description.

The Binary protocol improves Basic. The major problem with the Basic protocol is that all load is
concentrated at the leader. The leader needs to build secure channels to all the members. This is
costly, as expensive integer exponentiations must be used.

The idea is to spread communication and computation load across the group members. The
algorithm uses a binary tree of secure channels to disseminate the new key, see Figure 1(b). A
binary-tree is laid over the group. The algorithm proceeds in three stages. (1) The leader chooses

a new (random) group-key. (2) It sends it through secure channels to its children (3) The children
pass it recursively to their children through secure channels.

Dist takes a completely different approach to the key-management problem. It is based on a
centralized scheme suggested by Wong, Gauda, and, Lam (WGL) [3]. Briefly, using WGL, a graph
of keys is laid over the group. In Figure 1(c) an example of a group of 8 members is shown. Each
member knows all the keys on the route from itself to the root. The root, key Kig, is the group key.
In WGL, a centralized server builds the key graph and has knowledge of all the keys. Using such
a tree enables fast group rekeying when members join and leave, on the order of logon operations.
In Dist, there is no centralized server, and the keygraph is built in a distributed manner.

@ €296 63
G

Figure 2: The communication pattern of Dist. In this figure we denote the leader as S (“server”),
and separate it from the group. This is done for clarity, in fact, S is actually an alias for member
p2. (1) Subleaders send their key-graph information to the leader. The leader computes the merged
key-graph. (2) Subleaders follow the leader’s instructions. They choose and send new subkeys.
(3) The leader merges together all pt-2-pt messages into one bundle and multicasts it. Members
decrypt their key sets from it.

The protocol works as follows (see Figure 2):

I: Information is gathered from sub-leaders. A subleader is a member that is the leader of an
independent key-tree. Each subleader sends to the leader the structure of its subtree. The
leader performs a local computation and decides what the best method of merging the trees
is. It multicasts the merged tree with a set of merge-instructions to the group.

II: Subleaders follow the leader’s instructions. Using the instructions, Subleaders choose new
subkeys. Some keys are sent directly to the leader, and some sent through secure-channels to
other subleaders. A subleader receiving a key, encrypts it with its subtree key, and forwarded
it to the leader.

[K34] :

@@62)@ @%@

Figure 3: The effect of leave on a group key-graph of a group G of eight members. (1) The initial
keygraph. (2) The tree after member p; leaves. (3) The merged tree.

ITI: Final stage: multicast. The leader bundles all pt-2-pt messages that it has received into a
single message and multicasts it. The bundled message includes a set of encrypted keys.
From this bundle, members compute their respective sets of keys. This set is guaranteed to
be the set of keys from themselves to the root.

To clarify the workings of Dist, examine the execution from Figure 2 in detail. The starting point
for the figure is a group G of eight members {p1, ... pg} with the key graph described in Figure 3(1).
Member p; leaves G. All keys known to p; must be discarded, this includes keys Ko, K14, and
Ks. This operation splits G into three separate subtrees, (see Figure 3(2)) the first includes {p2},
the second {ps,ps}, and the third includes {ps,ps,p7,ps}. In the first phase, subleaders ps,ps,
and ps send their keygraphs to the leader. The leader computes the best tree mergable from these
subtrees and multicasts it, see Figure 3(3). The missing subkeys are Koy and Kyg. The three
subleaders, together with the leader, engage in a protocol to choose and securely disseminate Koy
and Ksg. At the end of the protocol, all members receive their respective key sets, in particular,
they all know the common group key that is at the root of the tree. This key can now be used to
encrypt and sign all inner-group messages.

4 Analysis

Secure channel caching had a profound effect on the final performance of our protocols, though
we did not realize this at first. Since this is the only from of caching considered in this paper, we
simply refer to the caching optimization.

Initially, we thought that caching would improve protocol performance, for all protocols. This is
however not true, some protocols enjoy performance improvements to a much greater extent than

others. Nonetheless, in this section, we provide an analysis of the protocol performance, without
considering caching effects.

There are two benchmarks against which we measure the protocols. These are named JoinLeave
and AllOne. In the JoinLeave scenario, a member leaves, another member joins, and then a rekey
operation is performed. In the AllOne scenario, G is initially in a state where all members are
in singleton groups, {p1},{p2},...,{pn}. G merges into {p1,...,pn}, and a rekey operation is
performed. In both cases, we measure:

Load: Total number of integer exponentiations performed in the group.

Latency: Latency of integer exponentiation operations. This means, the longest causal chain of
dependent Diffie-Hellman exchanges. For example, in the Binary algorithm, this chain will
likely be of logarithmic length.

Total multicast size: Total number of bytes multicasted.

Communication Latency: Communication latency, in seconds.

We try to minimize the number of exponentiations, and this is the motivation for our statistics.
In essence, the first statistic (Load) measures the total CPU load on the system. The second
statistic (Latency) measures how long, in terms of accumulated CPU time, it take to perform a
rekey. A measure of total load is the amount of bytes multicasted, only Dist uses multicast, and we
are interested in quantifying the amount of bandwidth used. Finally, we measure communication
latency that needs to be added to CPU latency for the total.

Due to the caching optimization for secure channels, a variable number of channels are produced
for each rekey operation. This adds variance to statistics I,II, and IV. In this section, we do not
take into account the channels that are already cached. This optimization is considered in the
performance section where actual protocol performance is measured.

Table 1 below depicts costs for each of the protocols under the two benchmarks. There are 5
entries per box:

chans: The number of secure channels required. This should be viewed as an upper limit on the
number of channels that are actually created at run time.

pt2pt: The number of point-to-point messages sent.
bytes: The number of bytes sent point-to-point.
mcast: The number of multicast messages sent.

bytes: The number of bytes sent through multicast.

There are several symbols we use:

A: An acknowledgment, 1 byte.
K: A key, 16 bytes.

T (n): A structure describing the group key-tree. The key-tree contain inner-nodes, and leaf nodes.
Inner-nodes contain a symbolic key name and up to two subtree pointers. Leaf nodes contain
a group-member name. ||T'(n)|| is proportional to n.

I(z): A set of instructions sent to the leaders describing what measures to take in order to merge
the group key-tree. The instructions include a record of keys to create and distribute. The
size of the instructions varies. In the JoinLeave case, there are logan records. In the AllOne
case, the number of records is n.

Both T'(n) and I(x) use symbolic member and key names. To simplify tree merge operations, all
member and key names are required to be unique across all possible views. A simple approach is
to use a machine’s IP address combined with a counter. However, this would require 20bytes for
the representation of key and member names. Instead, we rely on the fact that the group has less
than 256 members, to encode the names in a single byte. For member names, we use a member’s
rank in the group. Since the group view is agreed, all members have agreed ranks, between 0 and
n — 1. Using ranks is tricky however, as member ranks change when view changes occur, requiring
translation. A similar technique can be used for key-names, as the number of keys is smaller than
the number of members. This technique pushes record size to a bare minimum, reducing message
sizes.

‘ ‘ Basic/Binary ‘ Dist

JoinLeave | chans | n —1 logon

pt2pt | n—1 3logon

bytes | K(n —1) 2||T(n)||) + 2Klogan

mcast 3

bytes [T (n)|| + I (logan) || + 2Klogyn
AllOne chans | n—1 n—1

pt2pt | n—1 3n —3

bytes | K(n —1) 2[|T(n)|| +2K(n —1)

mecast 3

bytes [T(R)|| + ()| + Kn

Table 1: Analytic comparison table. We have removed the compulsory acknowledgment messages
from the tables, as it is shared among all the protocols. This cost comes to an additional n — 1
messages of total size A(n — 1).

Figure 1 shows the analysis for the three algorithms under the AllOne and JoinLeave benchmarks.
We have removed the ack collection costs from the table for simplicity. This phase costs n — 1
pt-2-pt messages and A(n — 1) bytes.

In the JoinLeave case, we excpect Dist to have superior performance since it uses a logarithmic
number of channels and messages. Furthermore, the total number of bytes sent is lower. Dist
should be inferior in the AllOne case, since it uses more messages, and total message size is higher.

To give a better estimate for the expected latency, we analyze the AllOne case. In Basic we expect
latency n, since the leader creates n — 1 channels, costing n — 1 consecutive exponentiations. The
last member must complete the Diffie-Hellman exchange, adding another operation for a total of
n. In Binary, the asymptotic latency is 3(logan — 1). To see this, we examine a simple tree of
size 3. Group G comprises of pi,p2, and p3. Member p; is the root ps and ps are its children.
Member p; (1) chooses a new key K (2) opens a channel to ps, and sends K encrypted pt-2-pt
(3) opens a channel to ps and sends K encrypted pt-2-pt. This costs two operations. Member
p3 completes the Diffie-Hellman exchange, adding one to the total latency. Notice that ps can
perform its exponentiation while p; is performing its second exponentiation (for p3). Hence, the
total latency is three. For full binary trees, the latency increases by three for each level of tree.
The asymptotic latency is 3(logon — 1). In Dist all channels are created in the same round, and the
most highly loaded member, my,, creates logan channels. This incurs a series of logon back-to-back
exponentiations at mj. The receiving members can do the exponentiations in parallel, only the
last member adds decryption to the latency for a total of logan + 1.

5 Performance

We used several dozen machines, all Pentium boxes ranging from Pentiuml 133Mhz to PentiumIII
500Mhz. Our machines run the Linux or BSDI operating system, with a 10Mbit/sec switched
Ethernet to connect them. Only a subset supports multicast, so we could measure network latency
only on that subset. The machines were all lightly loaded, and the network was fairly quite during
measurements, this provided high quality measurements. Each measurement was repeated more
than 100 times, and results were averaged. We had initially expected the measurements to confirm
our analytic analysis, and show that Dist is better in all cases. However, this is not the case, as
we shall see below.

Figure 4 shows the performance of the three algorithms under the AllOne benchmark. All algo-
rithms have equal load 2(n —1). Since private information has to be passed to each member of the
group, a connected graph of secure channels is a minimum. Such a graph includes at least n — 1
edges, hence, 2(n — 1) is optimal. Initially, the cache is empty for this scenario, and performance
is precisely as we foresaw analitically. The best algorithm in terms of exponentiation latency is
Dist. The Binary algorithm has latency 3(logan — 1). In Basic, the latency is n, since the leader
performs n — 1 exponentiations, and the last member adds a single operation for total of n.

The total multicast size used by Dist is in the KBytes range, but should not be a problem for
modern networks. Even a 10Mbit/sec Ethernet can easily route such traffic. Communication
latency for all algorithms is less that 30ms, and rises slowly with group size, we believe that even
with 100 members, this is insignificant compared with the accumulated cost of Diffie-Hellman
exchanges.

Figures 6(1a-4a) show the performance of the three algorithms under the JoinLeave benchmark.
The best algorithm, in terms of average number of exponentiations is Basic. It has constant latency
3, and constant load 4. It suffers from high variance in both measures because when the leader is
replaced, all its secure channels are lost, and the new leader has to build them from scratch. In
favorable runs, latency and load are two. In bad scenarios, it is n and 2(n — 1) respectively.

Total number of public key operations Public key latency

100 30

"DIST" —%— “DIST" —x—

"BINARY" 5 o "BINARY" &
"BASIC" ---a- "BASIC" ---a-

ops

L L L L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
number of members number of members

(1a) (2a)

Total multicast message size Communication latency

"DIST —%— ' T T T DIsT
“BINARY" -
"BASIC" -

KBytes
seconds

L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30
number of members number of members

(3a) (4a)

Figure 4: Performance comparison of the three algorithms for the AllOne case.

The Binary algorithm has variable latency and load. Both depend on the effectiveness of the caching
optimization. When members join and leave, many edges must be “moved” in the binary graph.
In the majority of cases, it is low level members that join and leave. This allows missing edges
to be created simultaneously, incurring little latency. The total load depends on the amount of
channels that are in the cache at the time of rekeying. Experimental evidence shows that caching
is very effective in this case, latency is around 2.8, and total load is close to logarithmic.

For Dist, when a member leaves, the group key-tree is split into logon subtrees that need to be
reconnected. A newly joined member adds another subtree of size one. In total, logan channels
are needed to interconnect the subtrees. The majority of these channels are not cached, and the
cost is average latency logon + 1, and load 2logsn. Dist has the highest latency (by a factor of
two), and its load is similar to Binary.

Dist sends less than 1KBytes for a 45 member group, which is insignificant. Communication
latencies are comparable, at 30 members they stand at around 20ms, with little difference between
the algorithms.

To summarize, Dist does not overload the network and has comparable latency to the other pro-
tocols. It has comparable exponentiation load, though Basic and Binary are a little better. The
surprising result is that Basic, the simplest algorithm, seems to come out best. It has good com-

munication latency, constant exponentiation latency, and constant load. Furthermore, Basic and
Binary both have better latency than Dist. This was a surprise, since they use a linear number of
secure channels, while Dist was designed to use a logarithmic number of channels. It seems that
the simple algorithms enjoy much better cache locality than the complex algorithm.

However, we were worried about variance exhibited by both Basic and Binary. We used another
scenario to examine comparative performance, Specifically, we examined the case where the group
leader is removed.

In Figures 6(1b-4b) the performance of the three algorithms for the case where the leader dies is
shown side by side. In Basic the new leader has to create channels to n —1 members. Therefore the
latency is n, and total load is 2(n — 1). In Binary, when the leader dies, many tree edges must be
“moved”. In fact, almost all edges must be moved, and about half are not cached. Hence, the total
load is n/2. Latency is almost the worst case 3(logan — 1), since so few channels are cached. Dist
has logarithmic latency logon + 1 and logarithmic total load 2logan. In the graph this is a little
better due to caching effects. As in the previous graph, communication latencies are comparable,
and multicast load by Dist is insignificant.

Vulnerability
0.4

"DIST‘" —*—
"BINARY" ---&---
"BASIC" —-m-— i

seconds

Figure 5: Vulnerability of the three protocols under failure conditions.

To cap this section, we provide a close look at an important measure of security. An application
is vulnerable to attack while it is switching keys, as the old key is used while it is already known
to be compromised. To depict this situation, we chose a 45 member group, and a scenario where
three non-leader faults are injected, followed by three leader-failures. For each failure, we depict
the time it takes to recover assuming that an exponentiation takes 40 milliseconds, and that all
protocols take 80 milliseconds to complete (this includes the default group-communication view-
change protocol). Figure 5 depicts secure system state as “1” and insecure as “0”. The three
protocols are on par, for the regular case, and Basic is the best. If the leader fails, then Dist is the
best and Basic completely fails, Binary is somewhere in the middle.

Total number of public key operations

Public key latency

100 T T T T T T 30 T T T T T T T
"DIST" —¥— “DIST" —%—
-
"BASIC" a0
25 g
80 g
20 g
60 - g
& g 15 4
a0 - E
10 g
20 g
5|
—
v S . =
. " . . n . 0
15 20 25 30 35 40 a5 5 10 15 20 25 30 35 40 45
number of members number of members
Total multicast message size Communication latency
3 - - - - - - 0.04 T T T
"DIST" —%—
0035 g
25 g
003 - g
2k 1
0.025 | g
2 8
8
> 15t R § o002 R
2 &
0015]
b 1
001
05 g
0.005
0 0
5 10 15 20 25 30 35 40 a5 5 10 15 20 25 30
number of members number of members
Total number of public key operations Public key latency
100 T T T T T 30 T T T T T T
-
25 g
80 g

number of members

° °
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
number of members number of members
Total multicast message size Communication latency
3 T T T T T T . 004 T T T
"DIST" —%—
0.035 A
25 A
0.03 - A
s 1
0.025 - A
8 E
é« 15| A S 0.02 - - 4
2 &
1| 1
05 g
° °
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30

number of members

(3b)

(4b)

Figure 6: Performance comparison of the three algorithms for the JoinLeave case. Figures (la-4a),

the regular case. Figures (1b-4b), the leader dies.

6 Conclusions

We have compared three different protocols for group rekeying. Of the protocols described, Basic
and Binary cost less but are severely disrupted by certain classes of failures, exposing the user to
potentially extended periods when a compromised key might continue to be used. Dist, is just a
bit more costly, but substantially reduces potential exposure.

Rekeying is not a very common operation, and our investigation shows that all three protocols are
roughly comparable in most situations. Developers expect predictability, and Dist has the major
advantage of giving the same performance no matter what process fails. In contrast, by choosing
Basic or Binary, the developer would gain a small improvement in average latency at the cost of
an extremely disruptive delay if the leader happens to fail. We believe that this consideration
establishes Dist as the best algorithm within the group. At the cost of a relatively minor loss of
performance, the protocol gives a form of fault-tolerance that involves greatly reduced disruption
when a worst-case failure occurs.

7 Acknowledgements

We would like to thank Gene Tsudik, and Tal Anker for helpful discussions.

References
[1] K. Birman. Building Secure and Reliable Network Applications. Manning Publishing Compa-
ny/Prentice Hall, 1997.

[2] K. P. Birman. A review of experiences with reliable multicast. Software, Practice and Ezpe-
rience, 29(9):741-774, Sept 1999.

[3] C.K. Wong, M. Gouda, and S.S. Lam. Secure group communication using key graphs. In
ACM SIGGCOM. ACM, September 1998.

[4] Gera Goft and Esti Yeger Lotem. The as/400 cluster engine: A case study. In International
Workshop on Group Communication (IWGC’99), September 1999.

[5] H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for message authentication.
RFC 2104, IETF, Febuary 1997.

[6] K. Birman and R. V. Renesse. Reliable Distributed Computing with the Isis Toolkit. ITEEE
Computer Society Press, 1994.

[7] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast.
ACM Transactions on Computer Systems, May 1999.

[8] Kenneth Birman and Thomas Joseph. Exploiting virtual synchrony in distributed systems.
In 11th ACM Symposium on Operating Systems Principles, February 1987.

[9]

[18]

[19]

[20]

[21]

22]

K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith. The securering protocols for securing
group communication. In Hawaii International Conference on System Sciences, volume 3(31),
pages 317-326, January 1998.

M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new approach to group key agreement. In
IEEE International Conference on Distributed Computing Systems (ICDCS’98), May 1998.

Mark J. Cox, Ralf S. Engelschall, Dr. Stephen Henson, Ben Laurie, Eric A. Young, and Tim
J. Hudson. Open ssl. http://www.openssl.org.

M.K. Reiter, K.P. Birman, and L. Gong. Integrating security in a group oriented distributed
system. TR 92-1269, Department of Conmputer Science, University of Cornell, February
1992.

O. Rodeh, K. P. Birman, and D. Dolev. Optimized group rekey for group communication
systems. In Symposium Network and Distributed System Security, Febuary 2000. To appear.

O. Rodeh, K.P. Birman, M. Hayden, Z. Xiao, and D. Dolev. Ensemble security. TR 1703,
Department of Conmputer Science, University of Cornell, 1998.

P. D. McDaniel, A. Prakash, and P. Honeyman. ” Antigone: A Flexible Framework for Secure
Group Communication”. In Proceedings of the 8th USENIX Security Symposium, August
1999.

M. Reiter. Secure agreement protocols: Reliable and atomic group multicast in rampart. In
ACM Conference on Computer and Communication Security, pages 68-80, November 1994.

M. Reiter, K.P., Birman, and R. Renesse. A security arcihtecture for fault-tolerant systems.
ACM Transactions on Computer Systems, 4(12), November 1994.

R.V. Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building adaptive
systems using ensemble. TR 97-1638, Cornell University, July 1997.

R.V. Renesse, K.P. Birman, and S. Maffeis. Horus, a flexible group communication system.
Communications of the ACM, April 1996.

W. Vogels, D. Dumitriu, K. Birman, R. Gamache, R. Short, J. Vert, M. Massa, J. Barrera, and
J. Gray. The design and architecture of the microsoft cluster service — a practical approach
to high-availability and scalability. In Symposium on Fault-Tolerant Computing, number 28,
June 1998.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-System for
High Availability. In FTCS conference, July 1992.

Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle, J. Schultz, Jonathan
Stanton, and Gene Tsudik. Secure group communication in asynchronous networks with fail-
ures: Integration and experiments. In 1999 International Conference on Distributed Comput-
ing Systems, August 1999. In submission.

