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Abstract

This paper discusses fault-tolerant, scalable solutions to
the problem of accurately and scalably calculating global
aggregate functions in large process groups communicat-
ing over unreliable networks. These groups could represent
sensors or processes communicating over a network that
is either fixed (eg., the Internet) or dynamic (eg., multihop
ad-hoc). Group members are prone to failures. The ability
to evaluate global aggregate properties (eg., the average of
sensor temperature readings) is important for higher-level
coordination activities in such large groups. We first define
the setting and problem, laying down metrics to evaluate
different algorithms for the same. We discuss why the usual
approaches to solve this problem are unviable and unscal-
able over an unreliable network prone to message delivery
failures and crash failures. We then propose a technique
to impose an abstract hierarchy on such large groups, de-
scribing how this hierarchy can be made to mirror the net-
work topology. We discuss several alternatives to use this
technique to solve the global aggregate function evaluation
problem. Finally, we present a protocol based on gossiping
that uses this hierarchical technique. We present mathemat-
ical analysis and performance results to validate the robust-
ness, efficiency and accuracy of the Hierarchical Gossiping
algorithm.

1. Introduction

Smart sensors networks, multihop ad-hoc networks and
process groups over the Internet are examples of large
groups of processes that inherently need to communicate
and coordinate to perform higher level tasks. A few thou-
sand sensors might be installed on the wing of an airplane,
each detecting the air pressure, temperature, etc. within a
few centimeters’ radius of its location. A few hundred thou-
sand smart dust computers might be randomly dropped on
an inhospitable terrain, each making critical measurements

in its own vicinity. These sensors or smart computers will
communicate with each other over networks which provide
a multihop routing mechanism between any two nodes. The
networks can be either fixed (eg., on the airplane wing) or
formed on the fly, i.e., ad-hoc (eg., in an inhospitable ter-
rain).

Higher-level coordination activities in such groups are
driven by protocols thataggregate the individual group
members’ measurements, orvotes, into properties. For ex-
ample, the network of airplane wing sensors might calculate
the average temperature of all sensors on the wing, trigger-
ing a coolant release at certain sensors if this average tem-
perature is above some threshold. For self-managing appli-
cations using such large groups as the ones described above,
it is much more important to be able to disseminate answers
of queries such as “what is the average temperature mea-
sured by all sensors near the leading edge of the right wing
?” than queries such as “what is the temperature measured
by sensor # 5634 ?” [6].

In this paper, we tackle the problem of calculating such
global aggregate functions over the votes of individual
group members. Formally, our aim is develop a one-shot
protocol by whicheach member of a group evaluates an ac-
curate estimate of a global aggregate functionf(v1, ..vN )
wherev1, ..vN are the individual votes of the group mem-
bers. In the airplane wing example discussed above, the
vi’s would be the individual temperature measurements at
wing sensorsi, andf would be the average. We focus only
on composable global functions, i.e., 1) ifW1 andW2 are
two disjoint sets of votes, then the functionf satisfies the
propertyf(W1, W2) = g(f(W1), f(W2)) for some known
functiong; and 2) the byte-size of the functionf ’s output is
not much larger than the byte-size of an individual vote. The
second assumption is required to keep all network messages
small and bounded by a constant size. Average, minimum
and maximum are all examples of composable functions.

We assume that group members use an asynchronous
communication medium that is unreliable in delivering
messages. Although it might be possible to construct a



synchronous, fixed and reliable network in some scenarios
such as for sensors on an airplane wing, such a network
model would not be realistic for settings such as multihop
ad-hoc networks, eg., sensors in an inhospitable terrain. In
this model, we also assume that each group member has a
globally unique identity number or address (which might
be imprinted at manufacture-time, or assigned at run time).
When the process groups we are talking of lie over the Inter-
net, the routing mechanism could simply be TCP/IP, while
it would need to be one of the specialized protocols such as
TORA, AODV etc. over a multihop ad-hoc network, where
the sensors themselves would act as routers. As in real-life
networks, group members are also prone to arbitrary crash
and recovery.

One might ask the question: “Why is the above prob-
lem of calculating a global aggregate function so difficult
over such a communication network ? One could have
each member send its individual vote to each other group
member and in turn, calculate the aggregate function from
the values it receives.” While this fully distributed solu-
tion works well for small groups, it does not scale to groups
of beyond a few hundred members. Centralized solutions,
where the aggregate is calculated at a well-knownleader
member, suffer from several problems, most notable being
the leader’s failure. We discuss disadvantages of these tra-
ditional approaches in detail later in the paper.

This problem of accurately calculating aggregate global
functions, like many other problems in distributed systems,
can be reduced to the Consensus problem, which is typi-
cally unsolvable over an unreliable network [7]. It is there-
fore impossible to have a correct protocol, that is, one that
always calculates the exact aggregate function value at all
members, even if the member votes are time invariant.

As a result, different protocol solutions to the above
problem have to be evaluated and compared based on sev-
eral metrics. The metrics we consider in this paper are the
most basic:

1. protocol message complexity,
2. protocol time complexity, and
3. Completeness of the final result of the protocol.

Completeness is the percentage of member votes included
in a final global aggregate evaluation delivered at a random
group member. If member votes do not differ vastly in value
from each other, Completeness represents the accuracy of
the protocol-measured aggregate to the actual aggregate.
We will assume in this paper that there is a constant bound
on the message size (which is larger than the byte-size of
individual votes and any composable function evaluation),
and that there is a limit on the network bandwidth utiliza-
tion at each member. Then, the optimum achievable limits
for the above three metrics, by any protocol on a group of
N members, areO(N), O(1), and1.0 respectively.

In this paper, we first discuss the disadvantages of us-

ing the fully distributed and centralized solutions for global
aggregate function calculation in large groups. We then
propose a technique, called theGrid Box Hierarchy, that
can be used to construct hierarchical algorithms for this
problem. We discuss several alternatives for hierarchical
global aggregate function calculating protocols using this
technique. Finally, we propose a novel solution based on
gossiping that uses this hierarchical technique and performs
quite well under heavy unreliability, and is only slightly
sub-optimal in message and time complexity with group
sizeN (O(Nlog2N) andO(log2N) respectively1). This
protocol shows resilience to message failures and member
crashes, with a gracefully degrading completeness as these
failures increase. The protocol’s completeness scales quite
well with group sizeN .

The rest of the paper is organized as follows. Section 2
describes the model and problem statement concisely. Sec-
tion 3 discusses previous and related work on this prob-
lem. In Sections 4-5, we briefly argue why the fully dis-
tributed and centralized approaches do not work well for
large groups. In Section 6, we discuss the abstractGrid Box
Hierarchy and several alternatives for hierarchical solutions
to calculating a global aggregate function using this tech-
nique. We then present the Hierarchical Gossiping protocol
with a mathematical analysis. Section 7 presents perfor-
mance results of running the Hierarchical Gossiping proto-
col over a simulated lossy unreliable network. We conclude
in Section 8.

2. Model and Problem Statement

As mentioned in Section 1, we deal with the abstract no-
tion of largegroups of members (processes, sensors etc.)
communicating with each other over an unreliable asyn-
chronous network such as the Internet or a multihop ad-
hoc network. We assume the presence of an underlying
routing mechanism in this network that enables any mem-
ber to send messages to any other member. Members have
globally unique identifiers. Members may arbitrarily suf-
fer crash failures and then recover. Since we are concerned
about scalability, we assume that all messages sent over the
network are constant size bounded, and that each member
has a maximum network bandwidth constraint.

Each member also maintains aview, a list of other group
members it knows about. We assume henceforth that all
members know about each other, although this can be re-
laxed in our final hierarchical gossiping solution. Our algo-
rithms do not require any failure detection.

The goal of the global aggregation protocol is to have
each group member calculate a global estimate of a (com-
posable) global aggregate function (as described in Sec-
tion 1). We also impose a constraint that no member vote

1Unless specified otherwise, all logarithms in this paper are to basee



is counted twice in any global aggregate calculation. For
example, when the global function is the average of all
sensor temperature readings, thisno double counting con-
straint would exclude all protocols that might possibly in-
clude some sensor’s reading twice in calculating the aver-
age.

Our discussion considers only one run of the aggregation
protocol, but this can be extended to one which periodically
calculate the global aggregate. The protocol is assumed to
be initiated simultaneously at all members, but our results
apply in cases such as a multicast being used for protocol
initiation.

The metrics for evaluating different algorithms for this
problem are message complexity, time complexity, and
completeness of the result at a random group member. With
theno double counting constraint, completeness is thus the
percentage of group member votes taken into account in the
final global function value calculated at a random member.

3. Previous and Related Work

The growth of the Internet and the advent of application
scenarios for large-scale ad-hoc and sensor networks [6, 11]
have fueled research for scalable solutions to several prob-
lems that arise in such scenarios [3, 4, 6, 15, 16].

Theoretical results on the global aggregation problem
date back to Pease et al [13]. The authors were con-
cerned about Byzantine member failures and did not ad-
dress message unreliability concerns. Our approach to pro-
viding probabilistic guarantees also bears a resemblance to
randomized consensus algorithms such as [2]. However,
the class of protocols in [2, 13] are inappropriate for large
groups as they use several “rounds”, with up toO(N 2) mes-
sage exchanges per round.

The technique of gossiping (or epidemic algorithms) has
recently attained popularity in the research community as
a technique for solving several large-scale distributed com-
puting problems. Gossip protocols for reliable multicast [3],
failure detection [16], resource management [15], etc., scale
very well with group size, while being robust to random
message losses and process crashes.

Several strategies such asdirected diffusion [6], Amor-
phous Computing Hierarchy [4] etc. have been proposed
for ad-hoc sensor networks coordinating to achieve higher
level tasks. However, we believe ours is the first paper to
discuss scalable solutions to the global aggregation problem
via the gossiping technique. [9] describes adaptive proto-
cols for energy efficient information dissemination in sensor
networks, but we are not concerned with minimizing energy
consumption at nodes in this paper.

Research in the area of calculating global snapshots fo-
cuses on evaluating global predicates for process groups [8],
mostly towards distributed computation termination detec-

tion and deadlock detection problems. Such algorithms ig-
nore message and member failures and reduce to the unscal-
able centralized or the fully distributed approaches when
applied to calculating a composable global aggregate func-
tion at each member.

Random sampling techniques are used in databases for
aggregate calculation (e.g., salary averages) without scan-
ning all the input data (votes) [10]. These are potentially
applicable to the global aggregation problem [5], but these
results are yet unpublished.

Our hierarchical gossiping solution to global aggrega-
tion is similar to the philosophy of the Astrolabe project
[15]. Astrolabe also uses a hierarchy, and gossiping, to
provide scalable management support for distributed sys-
tems and applications. However, Astrolabe’s hierarchies
are fixed depending on the exact network topology, while
our technique for constructing hierarchies is more general
and can be modified on the fly. Astrolabe focuses on main-
taining long-lived management information bases (MIBs) to
answer queries regarding aggregate properties at any time,
while we focus on a one-shot evaluation of a global aggre-
gate property.

4. Fully Distributed Solution

A naive solution to the aggregation problem is to have
each member send its vote to every other group member and
calculate the aggregate function based on the votes it has
received. While this solution would work well in networks
where there is no message loss (such as synchronous net-
works), the completeness of the calculated estimate is only
as good as the network message loss rate for real-life asyn-
chronous fault-prone networks. Moreover, as all real net-
works constrain the bandwidth per member, the time com-
plexity of this approach varies asO(N). The message com-
plexity isO(N 2), and this is not optimal.

5. Centralized Solutions

Another approach is to have each group member send its
vote to a special member (or members) denoted as aleader
(or committee of leaders), which calculates the global func-
tion based on the votes received, and then disseminates this
information out to all the group members.

This scheme has an optimal message complexity of
O(N), but has a message implosion problem at the
leader(s). In the absence of highly available servers as lead-
ers in infrastructure-less ad-hoc sensor networks, a costly
leader election protocol would need to be run. The like-
lihood of a leader failing and losing a substantial part of
the votes is significant for large groups since the running
time of the algorithm varies linearly with group size, being
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Figure 1. Division of 8 members{M1 . . . M8} into 4 grid
boxes, and the Grid Box Hierarchy induced therefrom.

O(N) because of the bandwidth constraint on the leader.
Having a larger leader committee entails achieving coordi-
nation among these leaders, and this is a non-trivial task.

6. Hierarchical Solutions

In this section, we explore several hierarchical ap-
proaches to solving this problem. Hierarchical solutions
tend to have very good scalability in terms of algorithm
complexity but usually provide reduced robustness to (pro-
cess and message delivery) failures. We first propose a tech-
nique, called theGrid Box Hierarchy, to construct an ab-
stract hierarchy for large groups. Then, we discuss several
ways of robustly calculating global aggregates using this hi-
erarchy.

6.1. A Technique for Building a Hierarchy - The
Grid Box Hierarchy

In this section, we present a technique for building an
abstract hierarchy, called theGrid Box Hierarchy, over a
large process group.

The hierarchy is constructed by first dividing theN
group members intoN/K grid boxes with an average of
K members per grid box.K is a constant integer chosen
independent ofN , and well-known at all group members.
Each grid box is assigned a unique(logKN − 1)-digit ad-
dress in baseK. So, each digit is an integer between0 and
(K − 1) (inclusive of both). Now, for all1 ≤ i ≤ logKN ,
subtrees of height i in the hierarchy contain the set of grid
boxes (actually, the members inside them) whose addresses
match in the most significant(logKN − i) digits. Figure 1
shows a possible division ofN = 8 members into4 grid
boxes with an average ofK = 2 members per grid box.
The figure also illustrates the hierarchy induced among the
members in these grid boxes.
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Figure 2. Global aggregate function evaluation on the hierarchy
example of figure 1.

The global aggregate function is then calculated bottom-
up in this hierarchy, and inlogKN phases. In the first phase,
each group memberMj (or a representative) evaluates an
estimate of the function when evaluated over the votes of
all members in its grid box. In each subsequentith (i >
1) phase, each memberMj (or a representative) evaluates
the value of the aggregate function over the set of votes of
members belonging to the same height-i subtree asM j -
this is evaluated from the function evaluations for the child
subtrees of height(i − 1) obtained from phase(i − 1), and
the composable nature of the aggregate function. For the
example of Figure 1, an ideal aggregate function evaluation
would proceed as shown in Figure 2.

Two questions arise: 1) what mechanism does one use
to build such a hierarchy, and 2) what is the actual proto-
col used to calculate the global function in the hierarchical
manner described above. We answer the first question in the
following paragraphs, and explore different solutions to the
second question in the following sections.

The easiest way to build the hierarchy described above is
to use a well-known hash functionH that maps the unique
group member identifiers randomly into the interval[0, 1].
A member with identifierMj would then belong to a grid
box with addressH(Mj) ∗ N

K (written in base-K). Further,
notice that any arbitrary group memberM j can calculate
the grid box address of any other group memberM l (that is
present in its view) - this is simplyH(Ml) ∗ N

K . Thus, at
each phasei of the global function calculation, memberM j

would know about all the members in its view that belong
to Mj ’s height-i subtree in that phase.

Such a construction requires that the hash functionH
and the group sizeN are well-known at all group members.
The former can easily be achieved by statically fixing the
hash function at all members. The global knowledge ofN
is trivial if the maximal group membership is fixed. For
a dynamically changing group membership, members need



to be periodically informed of changes in the group size.
However, an approximate estimate ofN at each member
usually suffices, and thus these updates can be done rather
infrequently.

The above randomized scheme ensures an averageK
members per grid box, regardless of the actual composi-
tion of the group, i.e., the hash functionH need not assume
either a fixed group membership, or even a fixed set of pos-
sible group members. This is a very desirable property.

Further, it is often possible to have the grid division
scheme mirror the geographical/network topology location
of the group members, without a static knowledge of the
group membership. Mathematically, this can be achieved
by replacing the random hash function above by a more
“topologically aware” function that maps group members
that are nearby in the network to the same grid box, while
maintaining the average ofK members per grid box.

Most sensors (group members) in sensor networks usu-
ally know their exact geographical locations either by virtue
of having a fixed physical location (e.g., sensors on an
airplane wing), or via GPS (Global Positioning System).
In the Internet, IP addresses usually reflect the geographi-
cal/network locations of group members, eg., CIDR (Class-
less Interdomain Routing) naming of Class C IP addresses
by IANA allocates different subnet headers to addresses in
Europe than those in the Americas, and then different sub-
nets inside Europe depending on their location, and so on.

A topologically aware hash function would then (deter-
ministically) map member addresses to grid boxes so that
there are an average ofK members per grid box, and grid
boxes consist of members that are topologically proximate.
If members are mobile (e.g., mobile sensors) or member-
ship is dynamic, this might need a priori knowledge of
the probability distribution of prospective group members
across the network region. Such a division can also be
achieved in network routing schemes such as the Land-
mark Hierarchy [14] that assign hierarchical addresses to
machines depending on their network locations.

Using such a topologically awareH would result in a re-
duction of the load, imposed by the global aggregation pro-
tocol (as described above), on links in a sparsely connected
network. This is because the (O(N)) messages in the ini-
tial phases of the protocol would be restricted to travel short
distances (hops) in the network, and longer network routes
would be taken only by the (much fewer) messages in the
latter phases.

As an example, we can adapt theGrid Location Scheme
described in [12] to construct such a topologically aware
hash function for wireless sensor networks or ad-hoc net-
works. In [12], a wireless sensor network is divided into
several closed, disjoint regions. If these closed regions are
tailored to have an equal expected number of members,
they can be treated as thegrid boxes in our scheme.H

Grid BoxGrid Box

Grid Box Grid Box00 01

10 11
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Figure 3. An instance of a grid box division of a network region
of eight wireless sensors using a topologically aware hash function.
This induces the Grid Box hierarchy shown in Figure 1.

then simply specifies a mapping from member addresses to
addresses of these closed disjoint regions (or grid boxes).
For example, the region occupied by the eight sensors M1
through M8 in Figure 3 can be divided into four grid boxes
with addresses as shown, thus giving us the same Grid Box
hierarchy as depicted in Figure 1.

AlthoughH is assumed to be well-known above, it could
also be dynamically specified by a multicast initiating the
aggregation protocol. Further implementation details of
such topologically aware or dynamic hash functions in more
general scenarios are beyond the scope of this paper. We be-
lieve that this is a significant area for future study.

In the next few sections, we discuss different strategies
for using the Grid Box Hierarchy described in Section 6.1
to calculate a composable global aggregate function.

6.2. The Leader Election Approach

This algorithm works by electing a single group member
as a leader for every internal node of the tree constructed by
the Grid Box Hierarchy. More concretely, each member is
initially (before phase 1) a leader of its own height0 sub-
tree. In phasei (1 ≤ i ≤ logKN ), a leader is elected for
each subtree of heighti from the leaders of its child subtrees
of height-(i−1). This leader calculates the global aggregate
function for the set of members in this subtree by obtaining
and then composing the global function values calculated
by the leaders of its height-(i− 1) child subtrees. The algo-
rithm finally terminates in phaselogKN with the entire tree
(thus the group) electing one leader who has the aggregate
function estimate for the entire group, and subsequently dis-
seminates this to the group via the tree.

If the group membership view is consistent and complete
at all group members, this scheme has a time complexity of



O(logN), and an optimal message complexity ofO(N),
sinceK is chosen fixed independent ofN . However, this
scheme is not fault-tolerant to failures of members, particu-
larly leaders in latter phases. Failure of a member elected as
the leader of a subtree of heighti would result in the exclu-
sion of the votes of an expectedK i members from the final
global estimate. The completeness of the algorithm is also
not masked from the network message loss rate.

Another scheme elects a committee ofK ′ (instead of just
one) leaders in each protocol phase (conceptually, at each
internal tree node). Such a scheme is(K ′−1)-fault-tolerant
at each subtree root. This may appear to be sufficient, but
phasei requires that knowledge of each height-(i− 1) sub-
tree’s leader committee be disseminated among all mem-
bers of its sibling height-(i − 1) subtrees - this typically
takes at leastO(logN) time because of the constant mem-
ber bandwidth constraint. Thus,K ′ needs to beO(logN)
to survive the possibility of all the leaders in the committee
failing before the dissemination completes. Such a dissemi-
nation can be avoided by having views consistent and com-
plete at all members, but this approach requires the use of
accurate failure detectors.

In conclusion, using leader election appears to be either
inadequate or require unrealistic assumptions for a one-shot
global aggregation algorithm using the Grid Box hierarchy.
Random message delivery failures and process crashes can
arbitrarily affect the completeness of the aggregate value.

6.3. The Gossiping Approach

In this section, we present an algorithm for evaluating a
composable global aggregate function over member votes.
This algorithm uses the Grid Box Hierarchy, but avoids
leader election. We present a discussion and analysis of the
algorithm, showing that it is only poly-logarithmically sub-
optimal in time and message complexity. We then present
simulation results in Section 7 to evaluate the resilience
of the completeness of the protocol to message losses and
member failures.

Informally, the algorithm at each member consists of
logKN phases, phasei calculating the aggregate function
for the set of votes in the subtree of heighti (in the Grid
Box Hierarchy) that the member belongs to. As discussed
in Section 6.1, in each of subtree of each phase, the com-
ponent votes of child members (phase 1) or aggregates of
child subtrees (higher phases) are required for this calcu-
lation. These component aggregates or votes are obtained
by gossiping rather than by electing a leader and sending
votes to it. Gossiping lends itself to robustness against ran-
dom message and process failures, while scaling very well
with group size. Our algorithm inherits these characteristics
- its completeness characteristics scale well with increasing
group size, while the time and message complexity are only

poly-logarithmically sub-optimal for any group size.
Our scheme does not require complete or consistent

views at any group member - however, we will assume these
in order to simplify the analysis.

The algorithm is started simultaneously at each group
member. Each group memberMj executes the following
three steps in different protocol phases:

I. Phase 1: (a) Mj starts out in phasei = 1, where itgos-
sips, within its own grid box, about individual votes that it
knows of and that belong to members in its own grid box -
this of course includesMj ’s own vote.Mj does so by pe-
riodically (once everygossip round) 1) randomly selecting
a fewgossipees only from among other members in its own
grid box, and 2) sending (gossiping to) them one randomly
selected known vote along with the identifier of the member
whose vote it is. In turn,Mj knows about the vote of an-
other member in its own grid box when it first receives the
same by a gossip message from another member.
(b) After KlogN gossip rounds,Mj applies the aggregate
function to the known votes of members in its grid box, and
bumps itself up to phase 2.

II. Phase i (2 ≤ i ≤ logKN −1): (a) In every gossip round
in phasei, Mj chooses a few gossipees randomly from the
set of all members in the same subtree of heighti as itself,
i.e., the set of members whose grid box addresses agree with
Mj ’s in the most significant(logKN − i) digits. Mj then
sends these gossipees a randomly selected aggregate value
from among the known (atMj) aggregates for the height-
(i − 1) child subtrees ofMj ’s height-i subtree. Note that
there can be at mostK such values in phase-i at any mem-
berMj , andMj already knows about the aggregate value
for its own height-(i − 1) subtree immediately after phase
(i − 1) concludes.Mj knows about the aggregate values
of another sibling height-(i − 1) subtree when it first re-
ceives the same by a gossip message from another member
in phasei.
(b) Finally in this phase, whenMj has either managed
to obtain the values of the function evaluation for all its
(K − 1) sibling subtrees, or has faced a time-out (KlogN
gossip rounds), it evaluates the aggregate function for the
subtree of height-i from these values and the composable
nature of the aggregate function.Mj then bumps itself up
to phase(i + 1).

III. Final Phase: When Mj finds itself in phasei =
(logKN + 1), it has an estimate of the global aggregate
function evaluated over the entire group’s votes. The proto-
col then terminates atMj .

If the first phase of this protocol is started almost simulta-
neously at all members (eg., through a multicast), executing



the above steps has the effect of having each group member
calculate aggregate function values for larger and larger sets
of group members as it moves through the protocol phases,
until (after phaselogKN ) it has an estimate of the global
aggregate function for the entire group.

The protocol itself does not require synchronized mem-
ber clocks, although the clock drifts need to be much
smaller than the protocol running time. To simplify the
analysis of the above protocol, we assume below that all
members have synchronized clocks and start the first phase
simultaneously. We also assume that a member stays in
each phasei for exactlyKlogN gossip rounds, rather than
bumping itself up to phase(i + 1) when it has managed to
obtain estimates of the aggregate function evaluations of all
its sibling subtrees of height(i−1) (as specified in step 2(b)
above). This has the effect of having all the group members
move together synchronously from phase to phase. We re-
lax this second synchrony assumption in Section 7 when
we measure the performance of this protocol through simu-
lations.

Time Complexity: Each phase of this algorithm lasts for
KlogN gossip rounds. SinceK is fixed independent of
N , and there arelogKN phases, the time complexity of this
algorithm isO(log2N).

Message complexity: Each member gossips at a constant
rate in each gossip round. Hence, the message complexity
of this algorithm isO(Nlog2N).

These values are only poly-logarithmically sub-optimal.
In fact, in most real-life networks,logN and log 2N can
be considered to be constants (sinceN is usually bounded
from above) - this algorithm would then have optimal time
and message complexities for all practical purposes.

Completeness: We now analyze the probabilistic Com-
pleteness guarantees of this algorithm using the determin-
istic methodology of analyzing epidemic processes [1]. We
assume that the hash functionH is fair, i.e., it maps any
given member to each grid box with probabilityKN .

In each phase, each memberMj gossips about several
different aggregate “values”. In phase1, these (on an av-
erageK) values are the individual votes of members in the
same grid box asMj. In each subsequent phasei, these val-
ues are theK aggregate function evaluations for the height-
(i − 1) child subtrees ofMj ’s height-i subtree. The prop-
agation of each of these values can be modeled as a deter-
ministic epidemic [1] among the members of the respective
grid box or subtree.

Let b be the average number of members an arbitrary
group memberMj successfully (in spite of failures) gos-
sips with in each gossip round. Notice that the value ofb
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Figure 4. Variation of -log(incompleteness) vs. log(N).

depends not only on the number of membersM j chooses to
gossip with in each round, but also on the reduction induced
by the message loss and member failure rates.

Bailey [1] analyzes the spread of an infection within a
group withm members and one initial infective. Once in-
fected, a member (randomly) choosesb other groups mem-
bers in every gossip round, and infects them (unless they are
already infected). The relation between the number of yet
non-infected membersx (initially (m − 1)) and number of
roundst is

dx

dt
=

b

m
· x · (m − x) ⇒ x =

m

1 + me−bt

In our protocol, in any phasei > 1 at a memberM j , after
KlogN gossip rounds of the above protocol, each of the
height-(i − 1) child subtrees’ aggregate values is received
(via gossip) atMj with a probabilityCi(N, K, b) that can
be bounded from below from (1) as:

Ci(N, K, b) ≥ 1

1+N ·e−K·b· logN
K

�
[
1 − 1

N b−1

]

This analysis of course does not apply to the first phase
of the protocol since a grid box can have anywhere between
0 andN members, and that many values have to be gossiped
about during the first phase. However, we can express the
expected completeness of the first phase in any grid box
from (1) as:C1(N, K, b) =

N∑
i=0

(
N
i

)
·
(

K

N

)i

·
(

1 − K

N

)N−i

· 1

1 + i · e−K·b·logN
i

EvaluatingC1(N, K, b) exactly is beyond the scope of this
paper. Instead, here, we will use a pragmatic approach that
combines simulation and reasoning to bound the complete-
ness of our protocol’s first phase.

Figure 4 shows that atK = 2 and b = 4, −log(1 −
C1(N, K, b)) varies linearly with log(N) (since both
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Figure 5. Variation of -log(incompleteness) vs. log(K).

axes are logarithmic). From this curve, we obtain that
C1(N, K = 2, b = 4) ≥ 1− 1

N , which is a very pessimistic
lower bound. Further,C1(N, K, b) is monotonically in-
creasing with bothb andK. The former is verified by ob-
servation. Figure 5 shows the variation of(1 − C1(N =
2000, K, b = 4))] with K, both axes being logarithmic. Ev-
idently, the completeness is monotonically increasing with
K. The same trend was also observed for other values ofN
andb. Thus,

Postulate 1: For K ≥ 2, b ≥ 4, the completeness of the
first phase in any grid box with an average ofK members
can be lower bounded by[1 − 1

N ]. �

Theorem 1: For K ≥ 2, b ≥ 4 and largeN , the expected
completeness of the Hierarchical Gossiping protocol can be
lower bounded by[1 − 1

N ].
Proof: The expected completeness of the protocol = the
probability that a random group member vote is included in
the final aggregate function obtained at memberM j =

= ΠlogKN
i=1 Ci(N, K, b)

≥ (
1 − 1

N

) · (1 − 1
Nb−1

)logKN−1

� [1 − 1
N − logKN

Nb−1 ] (sinceN � 1)

� [1 − 1
N ] (sinceN � 1)

�

This is indeed a satisfactory, although pessimistic, lower
bound on the protocol’s completeness, for very reasonable
assumptions on the protocol parameters (K, b). However,
this analysis does not reflect the effect of members execut-
ing protocol phases asynchronously, or of havingb < 4 (i.e.,
gossiping at low rates), or of explicit message and member
failures, on the completeness of the protocol. In the next
section, we present performance results of running our pro-
tocol over a simulated lossy network with fail-prone ma-
chines (members). These experiments seek to better quan-

tify the effect of varying group size, message delivery and
member failure rates, and gossip rates, on the completeness
of the protocol.

7. Simulation Results

In this section, we present performance results of the
Hierarchical Gossiping Approach to calculate aggregate
global composable functions in large groups.

The analysis of Section 6.3 showed that the protocol’s
completeness is satisfactory for fairly high rates of gossip
(b ≥ 4). In this section, we investigate the effect of low gos-
sip rates on the completeness of our protocol. These simula-
tions demonstrate the effect of varying group size, message
delivery and member failure rates, and gossip rates on the
completeness probability guaranteed. They also account for
the effect of asynchrony among the different members as to
which phase they are in. This contrasts with the simplis-
tic assumption made in the earlier analysis that all members
proceed together from phase to phase in the protocol.

Figures 6-11 show the effect of the different protocol pa-
rameters and network characteristics on the completeness
achieved by the Hierarchical gossiping protocol. Each point
in these plots is the average of several runs of the pro-
tocol in a group withN (initial) members, communicat-
ing over a lossy asynchronous network with independent
unicast (point-to-point) message loss probabilityucastl.
Members were prone to crashes (without recovery) in ev-
ery gossip round with probabilitypf . A gossip round at a
member consisted of attempts to gossip withM randomly
selected members. The number of gossip rounds per proto-
col phase was�C · logMN�. The hash functionH used
was a fair one, and not topologically aware. The proto-
col was started simultaneously at all group members, but
thereafter, members proceeded asynchronously from phase
to phase in the protocol (as described in step 2(b) in Sec-
tion 6.3). Unless otherwise stated, the default parame-
ters used in the Figures 6-11 wereN = 200, ucastl =
0.25, pf = 0.001, K = 4, M = 2, C = 1.0. The met-
ric measured on the y-axis was the protocol’s average mea-
suredIncompleteness = 1−completeness. Figures 6-10
plot the incompleteness on a logarithmic scale.

Figure 6 plots the variation ofIncompleteness versus
the group sizeN . As N is increased, the number of pro-
tocol phases and the duration of each phase also rise. This
curve shows that the average completeness guarantees of
the algorithm improve slightly asN is increased into the
1000’s. Notice that the result of theorem 1 does not ap-
ply here (since the parameterb evaluates to about0.75), yet
the completeness guaranteed improves with the number of
group members varying into the 1000’s.

Figure 7 shows that the incompleteness falls exponen-
tially, with increasing network message reliability. Figure 8
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Figure 7. Fault-tolerance 1: The protocol’s incompleteness
falls exponentially fast with decreasing unicast message loss prob-
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shows the effect of the duration of a phase in the protocol
(in number of gossip rounds) on the average completeness
guaranteed. SinceM = 2 is fixed, increasing the phase
duration amounts to increasing the gossip rate. The incom-
pleteness falls exponentially with increasing duration of a
protocol phase, and thus with the rate of gossip.

Figure 9 shows the result of an experiment where the
group with N members was partitioned into two halves,
with messages across the partition being subjected to drop-
ping independently with probabilitypartl. Messages
within each partition were dropped independently with
probabilityucastl. This experiment was conducted to mea-
sure the performance of the Hierarchical gossiping protocol
in the presence of a network partition, the most major symp-
tom of congestion andcorrelated message delivery failures
in wide area networks. Figure 9 shows that the protocol’s
completeness degrades gracefully as the partition/correlated
failure rate becomes worse.

Figure 10 demonstrates that the protocol’s incomplete-
ness falls very quickly (faster than exponential) with falling
member failure rate. Finally, Figure 11 compares the av-
erage incompleteness guaranteed by a run of the protocol
with the limit imposed in Theorem 1. Values ofC =
1.4, ucastl = pf = 0.0 were used, so thatb evaluated to
about1.0. Although this does not satisfy the conditions
for Theorem 1, Figure 11 shows that the incompleteness
is bounded by1

N . This reflects the pessimism of the bound
imposed by Theorem 1, and with Figure 8, suggests that a
more rigorous analysis of our protocol will show an expo-
nential variation of incompleteness with the gossip rate.

8. Conclusion

In this paper, we have discussed several solutions to
the problem of scalably and accurately calculating global
(composable) aggregate functions in large groups, target-
ing large-scale sensor networks, ad-hoc networks and pro-
cess groups over the Internet. We have argued why tradi-
tional approaches to solving this problem do not scale in
large groups, and do not perform well over fault-prone net-
works. We have then proposed a technique to construct ab-
stract hierarchies over such large process groups, and pro-
posed a solution that uses gossiping within this hierarchy
to evaluate composable global aggregate functions in the
group. Our mathematical analysis and simulation results
show that the proposed Hierarchical Gossiping protocol is
poly-logarithmically sub-optimal in time and message com-
plexity and guarantees good completeness probability, i.e.,
probability of a member vote being included in the final
global estimate. These completeness guarantees are fairly
robust to random message losses, crashes of group mem-
bers, and even correlated message failures in the network.
Besides, the completeness guarantees improve with increas-

ing group size, even at low rates of gossiping.
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