
Abstract—Growing demand for multicast communication in
large network settings has focused attention on the scalability of
reliable multicast protocols. Our paper uses both simulation
tools and experiments to compare two scalable protocols,
focusing on an aspect not often studied: we emphasize stability
of latency distributions as these protocols scale, although also
considering overhead and link utilization. These properties are
considered in a variety of network topologies and with several
levels of packet loss. Our findings confirm that SRM scales
poorly under some conditions: to obtain reliability, the protocol
incurs overhead linear in group size and throughput fluctuates
erratically. We also show that SRM latencies can be very large
and that latency distributions are unstable as a function of
group size and network topology. Our own protocol, Bimodal
Multicast, also exhibits overhead growth, but the rate of growth
is slow, and latency distributions and delivery throughput rates
are stable.

Index terms—scalable reliable multicast, bimodal multicast,
throughput stability, SRM, pbcast.

A. INTRODUCTION

This paper explores the scalability of two reliable multicast
protocols under a variety of realistic conditions, using both
simulation and experiments. Our interest is in the growth of
overhead and the distribution of message delays as a function
of network size, when low levels of packet loss or short bursts
of packet loss occur. The levels of perturbation we consider
are believed to be typical of real-world networks under
normal conditions. We find that even low levels of packet
loss can provoke non-scalable effects, such as growth in
background overhead proportional to the size of the multicast
group, or extremely erratic and bursty throughput rate
fluctuations. In networks divided into two clusters connected
by a lossy distance link, we find very long packet delays in
one of the protocols.

The first protocol considered is Scalable Reliable Multicast
(SRM), a well-known reliable multicast protocol originally
developed as part of the Wb application for the mbone, and
subsequently extended into a free-standing reliable data
transport for the internet [6]. Our work with SRM made use
of an NS-2 [1] simulation, developed by the SRM designers.
Both the standard and the adaptive SRM versions were
studied. The second protocol we investigate is Bimodal
Multicast[2], also known as “pbcast”. We investigate pbcast
under the same conditions as SRM, but also use an
implementation to validate our findings in an experimental
setting. For brevity, our paper limits itself to a very terse

1 This work was supported by DARPA/ONR contracts

N0014-96-1-10014 and the Turkish Research Foundation.
Email addresses: {ozkasap,xiao,ken}@cs.cornell.edu

description of each of the protocols. The bulk of our material
is concerned with the data we obtained in our studies. The
paper concludes with a review of prior work, including some
prior studies of SRM scalability [7,9,10,11], and offers some
general observations about the challenges confronting reliable
multicast protocols in large networks.

B. PROTOCOL D���������	�

SRM Protocol (Scalable Reliable Multicast)
SRM is a reliable multicast protocol which makes receivers

responsible for recovery when network packet loss occurs.
The protocol makes extensive use of IP multicast. The sender
and receivers join an IP multicast group, and new messages
are transmitted using IP multicast, an unreliable protocol. A
receiver that detects data loss uses IP multicast to solicit a
retransmission, and a participant receiving a solititation uses
IP multicast to repair the loss.

In SRM, the application has responsibility for “framing”
the data: determining what data to send in each message, and
what data to use in repairing losses. The reasoning is that the
best way to overcome data loss is application-dependent.
Accordingly, SRM is fairly tightly bound to the application,
using upcalls and downcalls with which it reports events to
the application, and is informed of the application’s desired
response at each participating machine.

The major innovation of SRM involves its use of stochastic
mechanisms to avoid storms of solicitations and repairs when
loss occurs. For example, a randomized delay is introduced
before sending a solicitation or repair, and the size of the
delay is increased as a function of the estimated distance of
the receiver from the sender. If a process p is waiting to
solicit a retransmission for lost data, it will inhibit its own
request in the event that a solicitation from process q is
received first. Similarly, a repair sent by one process will
inhibit the sending of a repair by some other process. The
time-to-live field of the IP multicast protocol is employed to
limit the scope of solicitations and repairs, in the hope of
repairing problems where they occur. To ensure that lost data
will be detected, all members of an SRM group send
“session” messages periodically, at a frequency calibrated to
keep the background overhead low (less than 5%).

Our simulations consider two versions of SRM: the basic
protocol and an adaptive version [6], which adjusts protocol
parameters dynamically based on observations of network
dynamics. Both are available from the for use in NS-2.
Optimizations supporting “local recovery” and scalable
session messages were not considered. Although it is
plausible that we could have added these protocols extensions,
or evaluated other protocols, we felt concern that the resulting
simulations might not be fair to the original proposals. In our

Oznur Ozkasap, Zhen Xiao and Kenneth P. Birman1

Scalability of Two Reliable Multicast Protocols

Dept. of Computer Science
Cornell University, Ithaca, New York

experience, only the developer of a protocol is really in a
position to develop a high quality implementation.

.
Pbcast Protocol (Bimodal or “Probabilistic” Multicast)

Pbcast emerges from a flurry of research on gossip
protocols [2,4,5,8,12,13]. In contrast to SRM, which provides
best-effort reliability, pbcast provides a form of reliability that
can be rigorously quantified [2]. This takes the form of a

bimodal probability curve: with very high probability, it will
reach almost all destinations, and with very small probability,
a pbcast message may reach very few of its destinations.
Protocol parameters can be adjusted so that other outcomes
will be of negligible probability. Furthermore, pbcast has a
very high probability of providing steady throughput even if
packets are lost or some group members fail or behave
erratically. By stable throughput, we mean predictable and
small varience in the data delivery rate, under conditions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

ut
ili

za
tio

n
on

 a
n

ou
tg

oi
n

g
lin

k
fro

m
 s

en
de

r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

 u
til

iz
at

io
n

on
 a

n
in

co
m

in
g

lin
k

to
 s

en
de

r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, star topology

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
PBCAST and SRM with system wide constant noise, star topology

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

Figure 1: Overhead of pbcast and SRM. Top: retransmission requests and repairs per second, tree topology
with 0.1% noise. Middle: link utilization. Bottom: requests and repairs in a star topology.

where data is generated at a steady rate. Unlike SRM, pbcast
maintains approximate knowledge of the system membership
[13], and does does not involve the application in recovery
after data is lost.

The important aspect of pbcast is a gossip-based repair
mechanism, which assumes that each participant has
addresses of some random subset of the participants. Each
pbcast participant keeps a buffer of messages received
recently (here, during the past second). At a constant rate
(here, every 100ms) each participant picks some other
participant and sends a unicast message describing the buffer
contents. If a recipient of a gossip message is missing a
message, it solicits a retransmission from the gossip source.
Using a model developed in [2], the developer can tune the
parameters that determine the frequency of gossip and the
delay before messages are garbage collected to fit the setting.

Pbcast employs a mixture of IP multicast and unicast.
Multicast is used to disseminate a new message and also to
retransmit messages within regions where multi-participant
loss is suspected (heuristics are used to detect this condition).
Unicast is used to send gossip messages and to retransmit
messages after individual loss. To isolate the impact of
multicast retransmissions, we considered two versions of
pbcast: a basic version that uses only unicast, and one we call
pbcast-IPMC which employs multicast in the manner just
described. We also considered one further extention to the
protocol, called Pbcast-grb (“gossip about repair bits”) in
which processes gossip about which messages were recently
retransmitted; Pbcast-grb behaves like Pbcast-IPMC, but also
uses multicast when retransmitting a message for which,
through gossip, a sender of the retransmission has learned
that some other process previously unicast a retransmission of
the same message. (An additional “hierarchical” extension to
the protocol is introduced and described in Section D, when
we present our experimental results for the Spinglass
implementation of pbcast used in a local area network.)

C. S�
�����	�RESULTS

Simulations of simple network topologies
For our first NS-2 simulations, we constructed tree-

topology networks with sizes ranging from 20 to 80 nodes.
All of the trees have depth 4, and all nodes have an SRM or
pbcast: protocol agent attached. The size of the process group
in these simulations equals the size of the tree. There is one
sender in the group, located at the root node of the tree; it
generates 100 210-byte messages/second. We configure
network links to have bandwidth of 1.5Mbits each, and
simulate a low level of packet loss by having each link drop
packets with probability 0.1%. It should be noted that no
end-to-end data loss was observed: the reliability mechanisms
of the protocols overcame these data losses.

For each group size and protocol, five distinct simulations
were performed with different random seeds. Each simulation
lasts 100 seconds during which 10000 messages are multicast
to the group by the sender.

Our first analysis of overhead focuses on the retransmission
“request” and “repair” messages received by each group

member. Duplicate request and repair messages are taken into
account in these measurements. Then, mean values are
calculated for each simulation. These are not the only forms
of overhead on the protocols: for SRM, we omit “session”
messages from this measurement, while for pbcast, gossip
messages are not included. Since both overheads are basically
constant, we felt that mixing these forms of overhead with
request or repair measurements would make the comparison
confusing. Instead, as discussed momentarily, we include
such costs in measuring link utilization.

The top two graphs in Figure 1 illustrate the results
obtained in these first experiments. The x-axis is the group
size and the y-axis is the rate of request and repair messages
received per second, respectively. We see that, as the network
and process group size scale up, the number of non-data
protocol messages received by group members, as a result of
recovery from data loss, increases linearly for SRM, an effect
previously reported in [7,9,10,11]. These costs remain almost
constant for Pbcast and Pbcast-IPMC. For the tree topology
network simulations, adaptive SRM has a higher overhead
compared to SRM with fixed timers, but later we will see that
this depends on the network topology. Compared to the
basic Pbcast protocol, Pbcast-IPMC has a slightly lower
overhead in the form of request messages. Since Pbcast-IPMC
multicasts repair messages for loss recovery in certain
conditions, the repair message overhead increases relative to
Pbcast. This is because some group members which did not
actually request a retransmission, will nonetheless receiver a
repair, or even multiple duplicate repair messages. On the
other side of the coin, if a message was missed by multiple
receivers, Pbcast-IPMC increases probability of rapid
convergence.

The middle set of graphs in Figure 1 consider the link
utilization close to the sender under the same conditions. To
compute the utilization, we totalled the number of bytes on
the link outgoing from the sender, and incoming to the
sender, for messages of all types (including data and gossip).
The units of the y-axis are percentage of the link bandwidth
used by the test. For example, since this simulation involves
sending 100 210-byte messages per second, or 168kbits/sec,
the link utilization required just to send the data would be
about 10%. Additional overhead results from retransmission
requests, repairs, and gossip messages in the case of pbcast.
We see that the link utilization rises rapidly as a function of
group size for SRM in both its normal and its adaptive
modes, while the utilization is lower for pbcast and also
grows more slowly as a function of system size. We also ran a
simulation of the same sort using a higher noise rate of 1.0%
on each link, but obtained identical results; for brevity, we
omit this data here. Notice that SRM is headed for trouble: at
a group size of about 100 members, the sender’s link will be
saturated and packet loss will soar. Pbcast would apparently
continue to function in much larger groups.

Our third set of graphs, at the bottom of Figure 1, repeats
the measurements of overhead for pbcast and SRM but in a
different network topology. Here, we organized the processes
as a star with a single routing node at the center, and the

sender and receiver around the periphery. The normal SRM
has a higher rate of repairs – mostly duplicates – but a lower
rate of requests than the adaptive protocol. To understand
what is happening, it is necessary to recognize that SRM uses
probabilistic methods to avoid sending duplicate repairs: each
process receiving a retransmission request has some
probability of responding, with timing mechanisms used to
inhibit duplicates. In doing this, SRM depends on the
assumption that small numbers of participants are at any
fixed distance from the sender. When all participants are
equidistant, the inhibitory mechanism is defeated. Notice that
the problem isn’t necessarily unlikely: a star topology models
what one sees in a local area network where most
communication latencies are constant and small.

We also explored the impact of scaling the network to a
very large size, while keeping the group itself at constant size.
Figure 2 illustrates the results. Here, groups of various sizes
were mapped onto a network of 1000 nodes (with tree depth
set to 6, and a branching factor of 3) by randomly selecting
nodes in the tree as group members. We set the message loss
rate to 0.1% on each link, and ran five simulations with the
sender injecting 100 210-byte messages per second. We then
plotted the request and retransmission (repair) rates for the
protocols. To give a sense of the variability of these results,
we included error bars showing minimum and maximum
values recorded over a set of five runs, using different seeds
for the random number generator.

The data is consistent with our findings for the dense tree
topologies used in Figure 1, although the SRM overhead
values are somewhat higher. For example, in the 80-member
case, the normal SRM request and repair rates rise to about
12 and 18/second respectively, double what we saw in a dense
tree with the same number of group members. Similarly, the
adaptive SRM protocol now has overheads of about 20
requests and 20 repairs/second, compared to 12 and 10,
respectively, in the 80-member dense case. The higher rates
are presumably triggered by the higher overall loss
experienced as messages flow through the tree, since each

link has an independent loss behavior. It is interesting to
note that the rate of request messages seen by an average
participant is about double that of the repair rate; one might
have imagined that in SRM, each request would trigger a
single repair. A reasonable inference is that the mechanisms
by which SRM inhibits duplicate requests are not entirely
effective here, so that roughly half of these requests are
duplicates. Both versions of pbcast continue to have low
costs; as in the dense case, the impact of multicast
retransmissions is evident in a slightly higher rate of repairs.

Figure 3 considers inter-arrival distributions (throughput
stability) of messages received by a typical participant for
various sizes of network using the tree topology. Stable
throughput is not normally considered to be a critical
requirement in reliable multicast protocols, but we believe
that there may be a substantial number of applications for
which such a guarantee is important [2].

We ask several questions about these distributions. One
concerns the absolute numbers: is a protocol quick to deliver
messages? Obviously, this depends in part on the guarantees
provided. Whereas SRM provides unordered delivery, the
pbcast protocols provide fifo ordering -- messages are
delivered in the order they were sent. When data is lost,
subsequent messages are delayed until the missing data is
recovered (the protocol gives up after a sufficiently long
delay, but as noted above, all loses were repaired successfully
in the tests reported here). Accordingly, pbcast interarrival
spacings and latencies look like a superimposition of two
curves, one for messages received with no loss, and a second
for messages impacted by a loss (perhaps of some other
message) and the delay until that loss was repaired. If we
want latencies to be steady, we would hope that the
distribution is unaffected by minor disruptions of the network,
and that the primary impact of scale is that the absolute
latencies grow, reflecting the larger average distance from the
sender to the participants.

Figure 3 shows several such studies. The top two graphs
show dense tree topologies (every node is a group member),

Figure 2: Request and repair rates in a 1000-node tree containing between 20 and 100 participants randomly
scattered within the nodes of the tree. Error bars illustrate minimum and maximum values for 5 runs.

0 20 40 60 80 100 120
0

5

10

15

20

25

30
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 20 40 60 80 100 120
0

5

10

15

20

25

30
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d SRM

Pbcast

adaptive SRM

Pbcast-IPMC

with 1.0% noise on each link, and data injected at the rate of
100 210-byte messages per second. On the left, we show the
distribution of message inter-arrival spacings at a typical
receiver for pbcast-grb; on the right for SRM.

We see that as the network size (and group size) is scaled,
the distribution of pbcast-grb latencies remains essentially
unchanged. As SRM is scaled, however, the distribution of
SRM latencies changes as the size of the tree grows. The
effect is fairly small, but the percentage of high-latency
packets is clearly growing as we scale to larger groups: while
both protocols have some high latency packets, SRM has a
somewhat larger rate of high latency messages than does
pbcast under the same conditions, and the actual latencies
involved are larger by a factor of two or three. We will see
additional evidence later suggesting that this phenomenon is
real and can be quite severe. The implication is that SRM’s
recovery mechanism is somewhat slower to recover from lost
messages than that of pbcast. The bottom set of three graphs
in Figure 3 was based on a larger tree containing 500 nodes,
300 of which are group members, still with a 1% noise level.
Here, we show pbcast without fifo ordering (left), with fifo
ordering (middle), and SRM (right).

Although the scale of the graph may make this difficult to
see, SRM has a large tail, with a maximum observed latency
of nearly 500ms, and a group of packets delivered at around
400ms. Overall, SRM has a significant number of packets

delivered during the first 100ms and a second broad
distribution containing almost 6% of packets, which arrive
with latencies between 300ms and 500ms. Notice also that
the basic SRM distribution is not as tight as the unordered
pbcast distribution, which has 90% of its packets arriving at
the lowest possible latencies. In the case of pbcast, about
2.5% of packets are delayed and arrive in the period between
200ms and 300ms, with no larger latencies observed.

With fifo ordering, the pbcast distribution spreads, reflect-
ing the cost of with waiting for messages to be retransmitted
and placing them into the correct delivery order. Obviously if
an application were to superimpose fifo ordering on SRM, a
similar spreading of the delivery distribution would occur.
However, because the maximum SRM latencies are quite a bit
larger than those for pbcast, the resulting distribution would
be broader than for pbcast, and would include a much larger
percentage of the overall packet stream.

We believe these graphs to be important, at least in settings
where steady delivery of data is required by the application.
What we see here is that as SRM is scaled to larger groups,
steadiness of throughput can be expected to degrade if the
network drops some percentage of the packets. We experi-
mented with a variety of noise levels, and obtained similar
results, although the actual numbers of delayed packets
obviously depends upon the level of noise in the system.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Figure 3: Top: Histograms of interarrival times pbcast-grb and SRM with 1% noise on all links in densely
populated tree networks of various sizes. Bottom: The histograms on the left and middle show that even very
small numbers of outliers can impact delivery latency if fifo ordering is desired in the case of pbcast-grb. The
right-most historgraph shows latencies for SRM, an unordered protocol.

tail

Figure 4: Using pbcast-grb, latency distributions are
stable for receivers at various distances from the source.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

sec
0 10 20 30 40 50 60 70 80 90 100

50

60

70

80

90

100

110

120

130

140

150

sec

#m
sg

s

Figure 5: Received data rates (msgs/sec) for the Spinglass system without (left) and
with (right) multicast retransmissions in a group of 35 processes with injected noise.

Figure 4 plots latency distributions for pbcast-grb
simulation in a 20-node linear (chain) topology. The sender
injects 100 msgs/sec; its outgoing link has a 1% loss rate.
Other links are lossless; each introduces a 5ms delay. Our
interest is in the impact of distance from the sender on
latency. Theoretical analysis of pbcast [2] suggests that the
distribution shouldn’t change, and this is confirmed by our
simulation. The only effect is to introduce a small “offset” to
the distribution, corresponding closely to the network delay
itself. We obtain the same results in other networks, although
the effect is particularly “clean” in this very simple case.
Experimental Results

We now shift gears and present some experimental results
for an implementation of pbcast-IPMC. We have worked
with several implementations of the pbcast protocols at
Cornell, but the one discussed here is part of a new system
which we call “Spinglass”, in reference to a form of glassy
materials in which local spins of component molecules

contribute to exotic global properties. Spinglass is designed
to operate as a free-standing protocol library for use in
conventional local area networks. Over time, we plan to scale
the system up until it can be used in very large networks
containing collections of local-area networks interconnected
by wide-area links. This goal motivates some of the questions
we’ll ask about Spinglass and pbcast in the next Section.

In Figure 5, we focused on the impact of the IP multicast
retransmission feature of the pbcast protocol. We study
protocol performance in a network of 35 Sun workstations
interconnected by a 10MBit ethernet, with Spinglass
configured to run one gossip round every 100ms. In a minor
extention to the protocol described earlier and simulated,
garbage collection in Spinglass employs an adaptive
mechanism; in this experiment, messages were garbage
collected after about 10 rounds (1 second). We transmitted
100 1k-byte messages per second, and examined throughput
at a receiver. As seen on the left, we then perturbed the
system by triggering a type of failure: periodically, we
intercepted 10 successive outgoing IP multicasts at the data
source and converted them into unicasts to a single randomly
selected participant. These 20 multicasts are thus known
initially at 2 out of 35 processes (it should be noted, however,
that we get very similar results if we discard the multicast
entirely, or unicast to more than a single process).

For the left-most graph, we disabled the IP multicast
retransmission feature of the protocol. As might be expected,
the disrupted multicasts are associated with bursts of gossip-
based retransmission activity, disrupting throughput for a
short period until all receivers have repaired their data
streams. On the right, we see the same experiment but now
we reenabled IP multicast when retransmitting messages
which the protocol detects as having been dropped by
multiple receivers (by seeing multiple retranmission
requests). Small fluctuations remain, but the overall data rate
is extremely steady. This makes sense if one considers the
tight distributions of throughput predicted by our simulation
for similar cases: the protocol on the left is basically the
“pbcast” protocol while the one on the right is essentially the
one called “pbcast-grb” in our simulations.

D. S�
�����	����“CLUSTERED” 	�����������������
So far, our discussion have focused on the impact of

randomized packet loss on the performance of the two reliable
multicast protocols. However, there is an important issue not
captured by such studies: how do these protocols perform in

networks where routers with limited bandwidth connect
groups of participants, as might occur if the protocol was used
in an enterprise containing two local area networks linked by
a longer distance link. Such configurations are common even
in organizations of modest size.

R

Hig

Sender

Receiver

Limited
bandwidth
(1500Kbits)

Bandwidth
of other
links:10Mbits

Figure 6: Top: A LAN with two clusters
connected by a noisy link. Bottom: A tree

with a router with limited bandwidth at root
links

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200
limited bw on router, 1% system wide constant noise

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d

pbcast-grb
srm

0 20 40 60 80 100 120
0

20

40

60

80

100

120
limited bw on router, 1% system wide constant noise

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d

pbcast-grb
srm

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Figure 8: Top: Requests and repairs in a tree with limited bandiwth on root links. Bottom: Delivery
latencies in such a tree.

Figure 7: Delivery latencies in a two-cluster LAN.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm adaptive

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

The pbcast protocol might be expected to degrade
dramatically in such a network, because of its gossip
communication pattern. The problem is that unconstrained
gossip presents the router with a load that rises linearly in the
number of participants, because a significant number of
gossip paths pass through the central router – the root of the
tree. In a balanced tree, half of all gossip will pass through
the root.

Figure 6 illustrates the two “clustered” network
configurations for which we used simulation to explore the
behavior of the protocol. At the top is a two-cluster dense
80-member configuration, in which two LAN’s (modelled as
fully connected networks) are connected by a single link. To
emphasize the impact of noise on this link, we introduced
1.0% data loss on links within the clusters, but set the rate to
50% on the inter-cluster link. Below we see a second case of
interest: a tree topology, in which the bandwidth through the
links to the root node was limited.

Figure 7 illustrates our simulation findings for the two-
cluster case. The sender is in one cluster, and we study
latency at a receiver in the other. At the top, we see pbcast
without fifo ordering and pbcast-grb after fifo ordering. The
latency distribution remains relatively tight, in the range
between 0 and 1000ms. Unlike the distributions seen in the
tree structured network examined in figure 3, however, most
packets are now affected by a delay; presumably, this is due to
the high loss rate we imposed on the central link. SRM
latencies, however, now exhibit a very long tail, particularly
in the case of the adaptive SRM, which has a significant
number of very delayed packets. It should be commented that
the “spike” seen in the adaptive SRM data at latency equal to
5 seconds occurs because all packets with latencies greater
than or equal to 5 seconds are counted in this single “bin.”
Thus, in this configuration, both SRM and adaptive SRM
deliver some packets with very long delays of many seconds,
particularly in the adaptive case, and roughly 5% of all
packets are delayed by 5 seconds or more before delivery.

For two-cluster networks in which stable latency is desired,
the adaptive SRM protocol would clearly not be a suitable
candidate. The normal SRM protocol does better, but still
has a significant percentage of packets arriving with latencies
in excess of 1 second. Pbcast, on the other hand, delivers all
data within 1 second and hence can be seen as offering
relatively steady data throughput in networks with this
configuration.

Turning to our second example, namely the network shown
in the lower half of Figure 6, we limited the bandwidth near
the router to 1.5Mbits per second and experimented with trees
of size 20, 40, 60, 80 and 100 nodes, where each node is a
group member. As seen in the figure, one of the nodes is
designated as the sender; it initiates 100 1000-byte multicasts
per second (800Kbits/second – about half the capacity of the
root node). All other nodes are receivers, but we measured
the reception rate at a receiver far from the sender, as shown.
The data loss rate was set to 1.0% for the entire network.

Consider first the request and repair rate graphs in Figure
8. For 20 and 40-node simulations, we see curves very

similar to the ones seen early in this paper, in Figure 1.
However, as the group size grows, the rate of growth of
requests and repairs rises very sharply, reaching a rate of
almost 200 requests/second in the 100-member group, and
100 repairs/second. When one estimates the bandwidth
consumed by the repair requests, the reasons for this are
clear: the router is becoming saturated and the loss rate near
the root is rising as this occurs.

The rate of requests seen in the case of pbcast remains
nearly constant in this test, and the growth in repairs seems
consistent with the size of the group and the higher noise rate
used in this experiment. In fact, pbcast-grb is headed for
trouble here too – the central router becomes saturated when
the total of requests plus repairs approaches 100 – but we can
see from this graph that the group would need to become
quite large before such an effect might arise.

Turning to the latency histograms, the picture is consistent
with these findings. Shown are latencies for pbcast-grb with
and without fifo ordering, and for SRM, all in the case of a
100-node group. Latencies for the two pbcast protocols are
consistent with what we have seen previously; the long
distance from sender to receiver accounts for the “offset”
evident in the fifo case. The problem here is that when a
message is lost close to the router, the protocol pays a fairly
high cost to recover it; this concerned us enough to explore
possible remedies, as discussed below. But the picture for
SRM is grim. Here, the latency distribution has become
extremely spread out, with most messages delayed for more
than 2 seconds, and a significant percentage delayed for 15
seconds or more – again, this graph collects all data points
greater than a maximum value into a single bin, at 15-
seconds in this case. Considering that the actual latency from
sender to destination was on the order of 75ms in this graph,
such enormous delays point to a real breakdown in the
behavior of the protocol.

The three graphs shown in Figure 9 use Spinglass to
explore the two-cluster problem from a practical perspective.
On the far left we see a graph of load measured at a router.
The axis shows the number of messages per second passing
through the router, and the fluctuations reflect the normal
variations to be expected in light of the random nature of
gossip algorithms. As noted earlier, about half of all gossip
messages will pass through the central link in a balanced two-
cluster network. Our experimental setup here is similar to the
one described in the previous section, but now we use a
configuration with 26 machines, because this was the largest
two-cluster configuration of similar computers available to us.
The 26 machines split into one cluster containing 15
machines and one containing 11. Since 11 is a bit less than
half of 26, we would expect that a little less than half the
gossip messages pass through the central router.

In this experiment, we send 100 messages per second, and
each process gossips once every 100ms – 10 times per second.
No noise was injected. Under these conditions, 260 gossip
messages per second are produced, plus additional overhead
associated with retransmission requests and repairs. Our
graph shows only protocol messages, so we see the residual

140 messages/second here – indeed, roughly half. The midle
graph shows how these rates vary with group size: not
surprisingly, the normal load linear is in the size of the group.

This pattern of gossip suggests that in a large
configuration, the central router of a large system would
become overloaded. Moreover, if one reflects upon the nature
of this gossip, it becomes clear that the “useful content” of the
messages should be relatively constant: at a given point in
time, gossip from one densely connected cluster to another
should be statistically similar. Thus, while the volume of
messages flowing from one side to the other rises linearly
with group size, the information content of the messages can
be understood as dropping at a similar rate. To remedy the
problem, we implemented a hierarchical gossip scheme, using
an idea first suggested by our colleague Robbert van Renesse,
who did something similar in his work on a gossip
implementation of a distributed management information
base. The intent of van Renesse’s method is that each level of
a network should see constant gossip load, and that the
information content of gossip messages should be as high as
possible.

The basic insight underlying hierarchical gossip is that in a
tree-structured network containing an evenly distributed
group of n members, if each gossips with equal probability to
all the others, a central node will see about half the messages.
A level 2 node will see about a fourth of them, etc. The
hierarchical gossip mechanism works to compensate for this
by having each group member compute a weight for each
other group member based on the inverses of these
percentages, and then to employ these weights to adjust the
probability of gossiping to that member. In the case where all
weights are equal, we will have the normal gossip protocol.

To illustrate a hierarchical weighting, suppose that the
group has total weight w and splits into two clusters of equal
size. Now, suppose that each member on the right side of a
balanced tree allocates this weight so that the total weight for
members on the left side of the tree is w/4 while the weight on
is side is 3w/4. The effect will be to reduce the frequency of
messages from that member to the left side of the tree by half
relative to what would occur if each side had weight w/2 from
the perspective of this member. Notice that each member
would independently compute this weighting. In Spinglass,
we do so by examining IP addresses: we think of the IP
addresses as if they defined a tree, and assign weights using

this tree; since each member has approximate knowledge of
the total membership of the application, this is simple to
compute and entirely local to each member.

In general, it can be shown that an exponential weighting
gives the optimal pattern of gossip: the weighting should be
proportional to 1/kd , where k is the branching factor of the
tree, and d is the distance of the target member from the
member computing the weight factors. It is not hard to show
that this approach will indeed produce constant load at
central routers.

As seen by the bottom curve in the left-most graph, the
direct impact of hierarchical gossip is to reduce the actual
traffic through the central link of our experimental system.
For this particular setup, the hierarchical scheme reduced the
load on the router to 20 messages/second. As seen in the
middle graph, the load is now constant as the group size
increases.

However, the right-most graph points to a problem. This
graphs propagation delay of multicasts (latency). As we see,
when moving from the normal method to the hierarchical
one, the delay increases significantly.

Fortunately, a simple remedy eliminates the problem. The
“fast hierarchical” scheme is obtained by decreasing the
gossip round length to increase the frequency of gossip, while
keeping the hierarchical weighting unchanged. Now
latencies drop below those of the original protocol, yet the
load on the router is only slightly increased.

In very large networks, we may move to a simpler
weighting scheme. Our thinking is to maintain reasonably
accurate lists of the membership of the cluster to which each
member belongs, but very coarse information about remote
clusters. We would then use a form of hierarchical gossip to
control rates of gossip in these two cases. However, this
extension of the hierarchical gossip method is well beyond the
scope of our present study, and will be reported elsewhere.

E. D��������	
Our investigations yield some general conclusions about

the behavior of scalable reliable multicast protocols in large
systems, and some specific conclusions about the relative
advantages and disadvantages of SRM vis-à-vis pbcast, and
about the limitations associated with each protocol.
Limitations of the SRM protocol

Our work points to a number of limitations of the SRM

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

sec

nm
sg

s/
se

c

Uniform
Hierarchical

0 5 10 15 20 25 30
0

500

1000

1500

group size

pr
op

ag
at

io
n

tim
e(

m
s)

Uniform
Hierarchical
Fast hierarchical

0 5 10 15 20 25 30
0

50

100

150

group size

nm
sg

s/
se

c

Uniform
Hierarchical
Fast hierarchical

Figure 9: Experiments with a hierarchical modification of pbcast implemented in Spinglass.

protocol, some more serious than others. Overall, we see that
when a network has lossy links, even if the loss rate is low,
SRM can generate very high rates of overhead, an effect first
observed in [7,9,10,11]. This takes the form of requests for
retransmissions of data, sent using multicast and hence seen
by significant numbers of processes, and repair messages, also
sent using multicast. Although our tests used the best
available SRM implementation, parameterized in the manner
recommended by the developers, and considered a variety of
network topologies, the SRM timing mechanisms and
inhibition mechanisms prove to be only probabilistically
stable under these conditions. A consequence is that as the
network grows larger, the absolute rate of “mistakes”
increases. These take the form of duplicate requests and
duplicate repairs, and of requests or repairs transmitted with
inappropriate network granularity (TTL values), and are
manifest as excess traffic into typical participants.

One could argue that although undesireable, these
overhead messages are still a relatively minor phenomenon in
networks of the size investigated here. The growth rate
predicts that routers may eventually become saturated, but
one can question whether it is realistic to consider a loss rate
as high as 1.0%, and lower data loss rates obviously would
reduce overhead. Furthermore, the impact of overhead is
relatively minor if the absolute data rates turn out to be
sufficiently small compared to the capacity of the network.

A more serious problem is evident in the latency
distributions for SRM in two-cluster networks with a noisy
connecting link. This, we believe, is not such an unlikely
situation – and while our loss rates may be on the high side, it
is not unlikely that loss rates would at least sometimes reach
these levels in typical LAN configurations or networks with a
WAN link between two LANs. Under such conditions, we
saw that delivery latency for SRM can soar to thousands of
times the actual source-to-destination network latency, with
worst-case figures of 15 second or more in one test, compared
with 75ms source-to-destination network latencies. A
significant percentage of SRM packets experience long
delays, and many applications would thus be forced to buffer
very large amounts of data. For applications in which data
freshness is at all important, this would seem to be a real
drawback for the protocol.
Limitations of the Pbcast protocol

Turning to the pbcast protocol, while the picture is
somewhat more positive, we also see some problems.
Overall, under the conditions where SRM shows severe
overhead growth, pbcast sometimes shows moderate growth.
Thus, pbcast also faces some scalability limits, although they
seem unlikely to emerge until a network grows quite large.
Most serious is the issue of gossip load on centralized links in
multi-clustered networks. Here, we saw that unless
something is done, the pbcast protocol will load such a link to
a degree proportional to the size of the group. If the capacity
of the router is exceeded, this will trigger a high rate of loss
on the corresponding link; even if not, the behavior is
unfortunate and would impact other applications sharing the
network.

It is interesting to see that although such loss presumably
occurs in our simulations of networks with limited bandwidth
near the central router, the actual “quality” of the protocol is
not much impacted. This makes sense, since gossip
messages are relatively redundant, and at any point in time,
gossip from one “side” of a network to the other might be
expected to be statistically similar. Thus, this huge volume of
gossip carries relatively little useful information.

With this insight in mind, the success of the hierarchical
gossip strategy makes sense. Basically, we cut down the
frequency of messages – so the average gossip message
carries more useful content. The router experiences less load
and imposes less delay on messages, and a small adjustment
to the frequency of gossip rounds compensates for the (minor)
growth in latency otherwise seen.
Comparisons

Overall, we believe that our studies show pbcast to be a
better behaved reliable multicast protocol than SRM in the
settings considered here. In fact, we developed pbcast and
implemented Spinglass for a different reason: we sought a
protocol offering a rigorously quantifiable form of reliability
but weaker than virtual synchrony [3], the reliability model
with which our team has worked in the past. Pbcast’s
bimodal reliability guarantee seemed to fit the bill. The
extremely stable throughput of the protocol came as
something of a surprise, but one we view as very useful in
practical settings.

When we started our comparisons of pbcast with SRM we
expected that the two protocols would, in all likelihood, offer
similar behavior. Obviously, their repair mechanisms are
very different, and we did expect to see some evidence of this
in our experiments. It came as a surprise to us that SRM
overheads were so high compared to those of pbcast, and that
SRM latency distributions are so poor compared to those of
pbcast.

Upon reflection, we believe that these findings are easier to
understand. Basically, the issue seems to be one of how
random low-probability events impact these kinds of
protocols. SRM has a number of timers and inhibitory
mechanisms which are parameterized for the specific
network. We can view these as probabilistic mechanisms for
overcoming data loss. By introducing system-wide data loss,
even at a low rate (the 0.1% loss rate is, we believe,
reasonably low) SRM’s assumptions are apparently defeated
as the network grows large.

This makes some intituitive sense. Suppose that processes
p and q are receivers in an SRM session, and are symmetric
in all respects: they are at the same distance from the sender,
etc. The basic hypothesis of SRM is that most multicasts will
be delivered reliably by IP multicast, and that the primary
forms of loss are entirely local (p drops a message, but nobody
else does so) or regional (a subtree drops a message, but no
other subtree does so). SRM then repairs these problems
locally.

In our tests, which could be criticized as unfair to SRM, p
and q could both experience data loss – directly, or because
packets are lost in both sides of a large spanning tree. In

either case, the timer mechanisms for SRM are supposed to
inhibit duplicate retransmission requests. But if we scale the
network, p and q are further and further away from each
other, and there are more and more processes in each set of
mutually symmetric processes. The SRM mechanisms (even
the adaptive ones) make no provision for this effect. Thus, p
and q become more and more likely to both solicit a
retransmission. By similar reasoning, it becomes more likely
for multiple processes to respond to a single retransmission
request. This was particularly evident when all participants
were equidistant.

In real networks, SRM seems likely to behave better than
our experiments might suggest, but it is clear that the actual
situation will depend very much on the dynamics of the
network and the types of packet loss experienced within it.
Moreover, some SRM extensions (local repair, scalable
session messages) were not available to us for simulation.

Nonetheless, we see a fundamental advantage to pbcast
relative to SRM. Unlike SRM, pbcast makes only weak
stochastic assumptions, which apply to all messages and all
processes. The basic gossip mechanisms are highly
randomized, and effectively random data loss is attacked by
randomized gossip repair. The laws of probability now work
in our favor, and the exponential convergence of gossip
towards full diffusion of data in the network similarly benefits
us. As long as IP multicast is used very sparingly for
retransmission (and pbcast-IPMC and pbcast-grb are both
very conservative protocols), the typical multicast starts by
reaching most processes, and all that remains is a small
amount of repair. The hierarchical pbcast mechanisms can be
seen as analogous to SRM’s regional repair mechanisms.

F. P�����WORK

We believe that our study is the first to consider the specific
questions raised here with the goal of understanding the
stability of latency distributions in scalable reliable multicast
setttings. However, we are certainly not the first to have
criticized SRM, and some previous studies have proposed
SRM-like protocols with better local repair strategies giving
faster convergence with less overhead. First among this was
work by one of the SRM developers, Liu, who also proposes
some extensions to improve behavior of the protocol [10].
Lucas, in his thesis, identified similar issues with SRM [11].

Li and Cheriton have proposed a reliable multicast protocol
called OTERS, which provides low recovery latency and low
recovery traffic levels while requiring some additional
network support [9]. Their work uses NS-2 to compare
OTERS with SRM and TMTP, another well-known reliable
multicast protocol. They simulate “transit-stub” network
topologies with sizes 100 and 600, with groups of sizes 10
and 60 respectively, and link-error rates of 0.5%. The
simulation study focuses on the analysis of recovery latency
and traffic load for loss recovery. Among their findings, the
authors note that SRM can perform poorly. However, they
did not encounter anything as extreme as what we saw in our
two-cluster simulations.

In a very recent study, Hanle and Hofmann use NS-2 to
compare the performance of SRM, MFTP (Multicast File
Transfer Protocol) and MFTP/EC (MFTP with Error
Correction) [7]. The results are similar to our findings for
SRM's link utilization. The paper concludes that SRM can
easily encounter situations in which multiple repair packets
are multicast in response to a single retransmission request.
In general, there is a trade-off in SRM between duplicate
packet flow and loss recovery speed.

G. C�	������	
We studied two reliable multicast protocols in a variety of

conditions with attention to growth of overhead and
distributions of latency. In networks with even very low levels
of data loss on the average link, we found that the SRM
protocol experiences faster growth in overhead than does
pbcast, and in cases where there is long-haul link connecting
two or more clusters of sites SRM shows a dramatic
degradation of latency. Pbcast latency seems stable as a
function of network size and group size and, in the tests
reported here, overhead growth is very modest. The major
problem identified for pbcast involves overloading of central
routers, and can be addressed using a hierarchical scheme.

The Spinglass implementation of pbcast will be available,
at no fee and in source form starting late in 1999.

H. ACKNOWLEDGEMENTS

We are grateful to Robbert van Renesse for his many
suggestions and comments, and to Katie Guo, who helped us
develop the NS-2 simulation of the pbcast protocol.

I. REFERENCES

[1] Sandeep Bajaj, Lee Breslau. Deborah Estrin, et.al,
Improving Simulation for Network Research, USC Computer Science
Dept. Technical Report 99-702, March 1999.

[2] Ken Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
Yaron Minsky. Bimodal Multicast. Submitted to ACM Trans. on
Computing Systems. Also Cornell University CS TR 98-1667.

[3] Ken Birman. Building Secure and Reliable Network Applications.
Manning Publishing Company and Prentice Hall, 1997.

[4] Brenda Baker and Robert Shostak. Gossip and telephones. Discrete
Mathematics, June 1972.

[5] A. Demers et. al. Epidemic Algorithms for Replicated Data Management.
Proceedings of the 6th Symposium on Principles of Distributed Computing.
(Vancouver, CA; Aug. 1987) 1 12. Also Operating Systems Review
22:1 (Jan. 1988), 8 32.

[6] Sally Floyd, Van Jacobson, Steve McCanne, Ching-Gung Liu and Lixia
Zhang. A reliable multicast framework for lightweight sessions and
application-level framing. Proc. ACM SIGCOMM, 1995.

[7] Christoph Hanle, Markus Hofmann, ’Performance comparison of Reliable
Multicast Protocols using the Network Simulator ns-2’, Proceedings of the
Annual Conference on Local Computer Networks, October 11-14, 1998,
Boston, MA.

[8] Katie Guo. Scalable Message Stability Detection Protocols. Ph.D. thesis,
Cornell University, May 1998.

[9] Dan Li, David R. Cheriton, ’OTERS (On-Tree Efficient Recovery using
Subcasting): A Reliable Multicast Protocol’, Proceedings of the 6th IEEE
International Conference on Network Protocols (ICNP’98), October 1998,
pp 237-245.

[10] Ching-Gung Liu. Error Recovery in Scalable Reliable Multicast. Ph.D.
thesis, USC, December 1997.

[11] Matt Lucas. Efficient Data Distribution in Large-Scale Multicast
Networks. Ph.D. thesis, U. Virginia, May 1998

[12] Boris Pittel. On spreading a rumor. In SIAM Journal of Applied
Mathematics, Feb. 1987

[13] Robbert van Renesse, Yaron Minsky and Mark Hayden. A gossip-style
failure detection service. Proceedings of Middleware, 1998.

