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Abstract

Future applications running on mobile platforms will
sometimes need to query sensors and track sensor data over
time. This paper proposes a novel, but natural, solution to
querying sensors from mobile platforms, based on the publish-
subscribe paradigm. Various options are discussed and the
most promising one is included into an implementation. Our
evaluation focuses on scalability.

1 Introduction
With the widespread availability of wireless technology

and the deployment of an increasing variety of sensors, infor-
mation generated by sensors is becoming available to appli-
cations running on mobile nodes. Retrieving this information
in a reliable, efficient manner will be an important building
block for many applications. However, unreliable, low band-
width communication links and node mobility make efficient,
reliable, and scalable information retrieval a challenge.

Fig. 1 shows a typical scenario, including a person moving
through an urban environment. Our work focuses on scenarios
with many mobile query nodes (i.e., nodes that issue queries),
as is typically the case in urban environments. Another ex-
ample for this latter case is an amusement park. Every visitor
carries a PDA or cell phone running the relevant application.
This application allows the user to query the environment in
order to ask about queue length, waiting time, ride status, di-
rections (e.g., shortest path), etc.

In both scenarios, the query nodes want to track the data of
particular sensors over time. For instance, the length of a wait-
ing queue may be interesting for the query node when it drops
below a certain threshold. Hence, the query node needs some-
how to be notified when this is the case. Note that queries
can be much more complex, involving multiple sensors or
types of sensors. While traditional approaches typically as-
sume power-constrained sensor nodes and thus try to mini-
mize the number of sent packets, the applications and sensors
we have in mind will not be that power-constrained, although
they will need to cope with wireless communication issues.

∗Our effort is supported by the Swiss National Science Foundation (SNF),
NSF Trust STC, the NSP NetNOSS program, and the DARPA ACERT pro-
gram.

Figure 1. A person is walking on a path through
a a city area, monitoring the randomly distrib-
uted sensors for an increase in temperature,
traffic information, polution, and wind patterns.
The person’s position is denoted by (x, y) and
the transparent square around him designates
the area within which the sensors are of interest
to him. On his PDA, the monitoring application
constantly updates the results of his query.

For instance, sensors can be integrated into devices that are
connected to electrical power, such as light bulbs. Moreover,
critical sensors such as the ones used for disaster response will
probably have sufficient power during periods of activity.

We like to think of a mobile query node as passing through
a series of stages. At ”boot” time, it learns the types of the
sensors available in the system, much as a database system
reads in its schema. Next, the application expresses an initial
set of queries. Now, as the device enters a region, it can seek
out the sensors in that region that match the types of interest
in the query, giving rise to a virtual database on which the
query can be evaluated. An example query is the following:
“Return the ID, location, and temperature of any temperature
sensor within 0.5 miles to the east of my position that mea-
sures a value over 100 degrees F”. Finally, depending upon
application logic, we may wish to track the evolution of the
query result over time, as sensor values change and the query-
ing node moves around, and the application might post ad-
ditional queries that focus on smaller sets of sensors that are
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of special interest, e.g., “Return the wind pattern of any wind
sensor within 20m of temperature sensors”. In this scenario,
the query nodes want to track the data of particular sensors
over time. For instance, the length of a waiting queue may be
interesting for the query node when it drops below a certain
threshold. Hence, the query node needs somehow to be no-
tified when this is the case. Note that queries can be much
more complex, involving multiple sensors or types of sen-
sors. While traditional approaches typically assume power-
constrained sensor nodes and thus try to minimize the number
of sent packets, the applications and sensors we have in mind
will not be that power-constrained, although they will need to
cope with wireless communication issues. For instance, sen-
sors can be integrated into devices that are connected to elec-
trical power, such as light bulbs. Moreover, critical sensors
such as the ones used for disaster response will probably have
sufficient power during periods of activity.

Traditional approaches [6, 22, 24] generally use so-called
in-network processing and aggregation (INA), in which the
query is flooded within a certain area and a routing tree rooted
at the query node is used to return the result to the query node.
If the query permits, the results are aggregated on their way
to the query node. This type of aggregation, which we call
intra-query aggregation, reduces the size of the query reply
and thus scales well in the number of sensors that are tracked.
However, flooding the query to a certain area is not always
suitable, especially if the area is remote from the query node.
Message overhead increases linearly with the number of query
nodes, thus limiting scalability. Moreover, these approaches
generally only consider stationary query nodes.

Inspired by the work in [16] and [13], we propose to use
the publish-subscribe paradigm to approach the problem of
querying sensors from mobile nodes. In our approach, a query
node periodically runs an algorithm to identify the sensors it
wishes to track. It then ”subscribes” to updates, which these
sensors periodically “publish”. The query node is now able
to repeatedly evaluate the query, presumably updating a map
or other application-specific user interface. At some second
frequency, the query node recomputes the sensors of interest.
Thus perhaps the query node decides which sensors to moni-
tor every minute, but the sensor nodes send updates every few
seconds. In a sense, instead of intra-query aggregation we
transform the query into subscriptions to sensor updates and
aggregate at the level of these subscriptions. This allows us
to scale up to a large number of query nodes, as query nodes
take advantage of and share preexisting subscriptions.

We mention here for completeness another form of aggre-
gation, which we callinter-query aggregationand which ag-
gregates at the level of queries from different query nodes.
Inter-query aggregation is a hard problem and falls outside
the scope of this paper.

The paper’s main contribution is the novel, highly scalable
mapping from queries to topics and the corresponding under-
lying sensor network structure. More specifically, we show

that structuring the sensor network into a regular grid provides
a convenient underlying network structure for this class of ap-
plications. The mapping is entirely driven by the querying ap-
plication. Our performance simulation measures the impact
of query node mobility and the number of considered sensors
on the quality of the query result and the message overhead.
It shows that our approach scales well even for large numbers
of query nodes.

Considerable work has been done in the context of generic
publish-subscribe systems for wireless ad-hoc networks. Our
work is distinguished from this prior art in that we study the
mapping of a generic query onto the publish-subscribe para-
digm. In contrast, earlier systems provide generic pub/sub and
focus on subscriber handovers (e.g., [21, 7]). Here, we use a
lease-based approach and we show how this publish-subscribe
approach integrates itself well to querying sensor networks.
Using this approach leads us to think about a rather con-
ventional layering of mobile query applications onto publish-
subscribe over a mesh-structured sensor networks. Such a lay-
ering separates the routing layer from the application. This re-
sults in two mappings: from the queries to (subscriptions to)
topics, and from the topics onto the underlying sensor network
structure. While the first mapping involves the properties of
the query, the second depends on the properties and the loca-
tion of the sensors. Routing is left to the network infrastruc-
ture.

The contributions of this paper are thus twofold: (1) it pro-
poses a publish-subscribe-based approach as a natural way to
scalably query sensors from mobile platforms and track their
sensed values over time; (2) it suggests a highly scalable map-
ping from queries to topics and the corresponding underly-
ing sensor network structure. More specifically, we show that
structuring the sensor network into a regular grid provides a
convenient underlying network structure for this class of ap-
plications.

The remainder of the paper is structured as follows: In Sec-
tion 2 we define a query model. Section 3 discusses how to
generate the result of the query, in particular the mapping from
query to topic and from topic to the underlying sensor net-
work. In Section 4, we present SENSTRAC and we show the
corresponding simulation results in Section 5. Section 6 puts
our work in larger context with existing work and Section 7
concludes the paper.

2 Query Model
We consider queries that track sensor data over time; as up-

dates are received the result of the query continuously evolves.
Early results of the query may not be entirely accurate but con-
verge rapidly towards an accurate result as more sensors rel-
evant to a query are located and updates are processed. Mo-
bility can also introduce transient inaccuracy. In this sense,
our query model is different from the so-called one-shot query
model traditionally used to query sensor networks. We believe
that it reflects the needs of many types of applications running
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on mobile platforms, especially applications monitoring state
within the sensor network.

We say that a querydepends ona sensor if this sensor’s
value is required to compute the query result. Conversely, we
say that a sensor isincludedby a query.

Typically, queries are constrained by geographical bound-
aries - generally somewhere in the proximity of the query
node. The geographical boundaries are defined by the query
node’sarea of interest (AoI). For simplicity, we consider a
two-dimensional area of interest, which is represented by the
smallest square1 that includes all affected sensors; the gen-
eralization to three dimensions is straightforward. The AoI
generally moves with the query node.

We also assume that the sets of sensors upon which a
query depends overlap considerably between two instances of
a query from the same query node, unless the AoI is explicitly
reassigned by the query node. In intuitive terms, we assume
that the query nodes move at a moderate speed (e.g., walking
or running speed), although our approach could also support
faster-moving query nodes. Generally, the query node speed
that can be supported also depends on the transmission range.
The larger the transmission range, the longer two nodes are
likely to be within each other’s transmission range.

We support any query that depends on current and future
values of a set of sensors; queries that ask for sensed values
in the past are not supported. Once a query is running, sen-
sor data is tracked as it evolves, however, hence queries can
depend on a sequence of values from a sensor. For instance,
the query node can ask to be notified when any temperature
sensor detects a drop exceeding 60 degrees F.

Clearly, not all queries can be answered with the same
efficiency and accuracy. For instance, queries that contain
observer-dependent predicates [4] may (temporarily) miss the
detection of this predicate and thus return an inaccurate re-
sult. Since updates are communicated via messages to the
query node, the evaluation of observer-dependent predicates
depends on the order in which these messages are received.
The problem of observer-dependent predicates is a general
one in distributed systems and not limited to our model, but
it does require attention. In our model, accuracy is a com-
plicated function of update rate, mobility rate, transmission
ranges, and nework load; here, we explore the question using
simulations.

We now turn to the question of query representations. No-
tice that these representations – and in particular the table defi-
nitions associated with them – are independent of the underly-
ing communication paradigm. This has the important benefit
that the underlying communication paradigm is transparent to
the user.

1The reason for using a square becomes apparent later in the paper. It is
related to the fact that cells are represented as rectangles.

2.1 SQL Syntax
Queries are expressed in traditional SQL syntax [6]. They

depend on a set of tables defined across the sensor network
that conceptually represent the available data. Figure 2 shows
the core table. Notice that a sensor can have multiple types,
provided that it has a different ID for every type (e.g.,SID=1
andSID=4). Nonetheless, for simplicity, we assume in the
remainder of the paper that a sensor has a single type.

SID LOCX LOCY TYPE
1 | x1 | y1 | temperature
4 | x1 | y1 | queueLength
2 | x2 | y2 | temperature
3 | x3 | y3 | temperature

Figure 2. The SensorTypes table contains the ID
(SID), the coordinates ( LOCX, LOCY), and the
type of the sensors.

The SensorTypes table (and other tables defined below)
are not “stored” at any single location. Instead, they can be
considered as ”virtual” tables. Indeed, the way the informa-
tion in these tables is collected and stored is the main focus of
this paper.

From the definition of theSensorTypes table it becomes
immediately clear that the area of interest is defined by thex
andy coordinates found in the columnsLOCX andLOCY.
The definition of theSensorTypes table needs to be com-
municated to the query node as a template form (potentially
in XML format). Revisiting the query example from the in-
troduction leads to the following SQL expression (SQL key-
words and column names are written with uppercase letters):

SELECT Temperature.VALUE, Temperature.SID,
SensorTypes.LOCX, SensorTypes.LOCY

FROM Temperature, SensorTypes
WHERE Temperature.SID = SensorTypes.SID

AND SensorTypes.LOCX
BETWEEN xcoord1 AND xcoord2

AND SensorTypes.LOCY
BETWEEN ycoord1 AND ycoord2

AND VALUE > 100F

This query returns the temperature, ID, and location
(in x and y coordinates) of all sensors whosex and y
coordinates lie in the interval[xcoord1 . . . xcoord2] and
[ycoord1 . . . ycoord2], respectively. For every sensor type
there exists a virtual table that contains the columnsSID,
VALUE, which contains the latest measured temperature
value, andTIME. The example refers to the table of tempera-
ture sensors (i.e.,TYPE = temperature). Again, the defini-
tion of this table can be communicated to the interested query
nodes upon arrival in the relevant area. This is discussed in
the next section.

3 Querying the Sensors
Traditionally, a tree-based in-network aggregation proto-

col queries sensors by flooding the entire query within the
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AoI.2 While this works well for single or small number of
subscribers, it does not leverage the fact that multiple sub-
scribers may require a reply from the same sensor. In other
words, it is generally very hard to combine the queries from
two different subscribers. Hence, such an approach does not
scale well in the number of subscribers. On the other hand,
it does a good job of supporting intra-query aggregation; par-
ticularly if aggregation can be applied and not all results are
needed by the subscriber.

A major focus of our work is scalability. Hence, the above
approach is not completely satisfactory once the number of
subscribers scales beyond a small number.

Moreover, tree-based in-network aggregation works best if
the AoI is centered around the query node. However, we can
easily imagine cases in which the AoI may not include the
location of the query node and may not be directly accessible
from the query node, e.g., if it is located in the next valley in
a mountainous region. In this case, flooding is no longer the
most suitable and efficient query distribution mechanism.

The alternative explored here uses the publish-subscribe
(pub/sub) communication paradigm to collect query results.
Pub/sub is a widely used communication paradigm and a va-
riety of specifications have appeared over time (e.g., [25, 8]).
Its most important feature is the decoupling of the message
sender from the receivers, and the asynchronous nature of the
communication. In its simplest form, publishers (the sensors
in our case) publish messages to a particulartopic, while sub-
scribers (query nodes) subscribe to all the topics that match
their interests. The pub/sub system acts as an intermediary,
hence the publisher does not need to know the subscribers. If
the subscriber looses interest in the messages published on a
particular topic, it unsubscribes from the topic. Many pub/sub
systems provide message filtering on topics, which allows a
subscriber to specify his interest in more detail. Only mes-
sages that match the topic and also pass the filter are delivered
to the subscribers.

In contrast to the traditional pub/sub systems, our subscrip-
tions are lease based, i.e., they time out after a certain time.
As a consequence, we do not explicitly support the unsub-
scribe method traditionally present in pub/sub systems. In-
deed, unsubscribe only makes sense if it is guaranteed that the
unsubscribe eventually removes all subscriptions. In a mobile
system, this cannot be ensured and thus seems too much of a
constraint to be supported.

Querying sensors using the pub/sub paradigm requires that
we implement two different mappings (see Figure 3(a)): (1)
the mapping from the query to topic subscriptions, and (2) the
mapping from topics to the actual sensors. These two map-
pings are not entirely independent; a particular choice in one

2We distinguish betweenbroadcast, which is a transmission that is re-
ceived by all nodes within the transmission range of a node, andflooding, in
which every receiver re-broadcasts the message and the message eventually
reaches all nodes within a certain hop count of the node that has initiated the
flooding.

mapping may influence the choices in the other. While (1) is
a more abstract, high-level mapping (Section 3.1), (2) is con-
cerned with implementing pub/sub and thus structuring the
sensor network (Section 3.2) to provide efficient pub/sub.

3.1 Mapping Queries to Topics

The mapping of queries onto topics involves a trade-off be-
tween the number of subscribed topics and the number of mes-
sages unnecessarily delivered to the subscriber. Every topic
relevant to a query incurs the cost of subscribing to it. In con-
trast, subscribing to a topic to which sensors not included by
the query will publish values can result in situations in which
undesired messages are delivered to a query node, forcing it
to filter and discard them. Ideally, the query node attempts to
minimize the number of sensors from which it receives mes-
sages as a result of its topic subscriptions. Due to the prop-
erties of pub/sub and the lack of a priori knowledge of the
present sensors, the relevant sensors are not explicitly known
to the query node. Rather, the query node can only estimate
which sensors are considered based on the topic.

A trivial mapping is to allocate one topic to every sensor.
Such a mapping can efficiently handle sensor-specific queries,
but creates huge numbers of topics, a source of potentially
high overhead. More interesting are topics that permit a query
source to subscribe to multiple nodes: individual topics to
which a group of sensors publish. This raises the question
of the most appropriate grouping(s). Since the query node
defines an area of interest for its query, grouping the sensors
according to geographical regions makes sense, but several
other groupings are also worth considering. Insofar as it is
very likely that the query node issues queries that depend on
types of sensors, it might be useful to support a topic grouping
at this granularity. Another grouping might be based on re-
lated sensors. This latter grouping presumes intimate knowl-
edge on the relations among the sensor types. For instance, it
may make sense to combine temperature sensors and sensors
measuring wind patterns, as these types of sensors are likely
to be queried at the same time in order to detect fires. Finally,
any of the above grouping strategies can be combined.

Since for any query the primary selection criteria on the
sensors is the area of interest, it makes sense to first group the
sensors into geographic areas and then to assign topics within
each area. This limits the geographic span of the sensors that
publish to a topic, improving the scalability in the size of the
sensor field. Indeed, assume that subscriptions involve sen-
sors spread over a huge area. Lacking a geographic hierarchy,
we would face obvious scalability problems. The difficulty
here is to find a geographical grouping that maps closest most
query nodes’ typical area of interest. The simple grouping
considered here is that of a grid of cells. Within a cell, sensors
can then be organized into groups according to their types.
Using this grouping, queries can be quite easily mapped onto
topics.

Depending on the topics, additional infrastructure may be
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the sensor network.

Figure 3. Mappings and sensor network struc-
tures.

needed to make sure that nodes can compute the mapping
from query to topics. In order to perform the mapping, query
nodes (and potentially sensor nodes, if they perform the map-
ping) have to be aware of the available topics. If topics are
chosen in some non-deterministic way, then this information
needs to be explicitly communicated to the query node. To
simplify the identification of topics and to avoid having to ex-
plicitly send topic names around in the network, we define
a one-to-one mapping between topic names, types, IDs, and
geographical regions. Assume, for instance, that a topic is de-
fined for every cell in a grid overlaying the sensors. Such a
topic could have the same name as the corresponding cell,
e.g., B-4, while temperature sensors in this cell publish to
topic /B-4/Temperature. Revisiting the SQL query in Sec-
tion 2.1 results in a subscription to topics/B-4/Temperature,
/B-5/Temperature, /C-4/Temperatureand /C-5/Temperature,
assuming that the AoI is covered by cellsB-4,B-5,C-4and
C-5.

3.1.1 Aggregation and Filters
In-network processing and aggregation can greatly reduce

the number of messages sent in the network [22]. However,
in the pub/sub communication paradigm, in-network aggre-
gation is not a natural fit. Although filters derived from the
queries can prevent the sending of useless messages, true
query result aggregation is not possible. Assume, for instance,
a query that asks for the maximal temperature in a region. Tra-
ditional pub/sub cannot process the query in the network and
hence it cannot compute the maxima. The reason for this is
that filters are applied to single messages and generally do
not store state between messages, as is generally needed for
computing aggregation functions such as MAX. Indeed, this
separation of routing and query application is the major focus
in this paper. This is not necessarily a drawback: many ap-
plication areas, e.g., scientific observations, require the entire
set of data from included sensors for later postprocessing or
verification, rather than an aggregate of the same data.

Yet, filtering can still occur. Assume that the query is
mapped onto a topic that covers a larger area than the AoI.
In this case, a filter can be defined that only lets pass mes-
sages from sensors located within the AoI. Some of these fil-
ters can be generated automatically from the query by convert-

ing predicates on columns (in the WHERE clause of the SQL
statement) to filters. For instance, predicate “VALUE> 100”
in the example of Section 2.1 could be converted into the cor-
responding filter. This requires that the update messages from
the sensors have a format known to the query node (or the
mapping engine generating the filters), perhaps including the
column names as attribute names in update messages. Know-
ing the topics to which the update message is published allows
any node to infer the type of the sensor.

3.2 Structuring the Sensor Network

In this section, we present our pub/sub architecture for
query applications in sensor networks and discuss the kind
of topics that can be efficiently supported.

Sensors and query nodes communicate by establishing
(mobile) wireless ad hoc networks. Nodes within transmis-
sion range of each other can communicate directly. More dis-
tant nodes rely on other nodes to forward messages. A routing
protocol sets up a route between a sender and a distant desti-
nation.

In such settings, a pub/sub architecture can use peer-to-
peer-based communication among subscribers and publish-
ers, or it can rely on brokers that intermediate between sub-
scribers and publishers. While the peer-to-peer-based archi-
tecture has the advantage of balancing the load more evenly
across the sensor network, it suffers from disadvantages in
terms of scalability. Indeed, this communication pattern pre-
vents subscribers from taking advantage of already existing
subscriptions. Instead, each subscriber needs to explicitly
connect to the publishers. In a sensor network, it is also
highly likely that even geographically close subscribers es-
tablish completely different routes to the same publisher. As a
consequence, any published message is forwarded along both
paths to these subscribers. However, instead of sending two
messages, it is more efficient to send only a single message
along a common path, and only then duplicate the message if
the paths to the subscribers separate. Shared paths thus reduce
the number of transmissions by intermediate nodes. This can
be achieved by relying on intermediate brokers, which take
over the role as ”routers”. Updates are sent as a single copy
between brokers and only need to be duplicated for the last
part of the routing path, namely from the broker to the sub-
scribers. Moreover, the broker does not need to forward a
new subscription if it already has existing subscriptions that
consider all topics that are in the new one.

On the routing level, peer-to-peer-based architectures incur
high route maintenance costs, as they need to maintain many
routes between publisher and subscriber pairs. Maintaining
routes in mobile environments is expensive, in particular if the
publisher or the subscriber is mobile. Moreover, discovering a
route to the publisher may be costly, especially if the publisher
is far away, and may involve flooding parts of the network.

In contrast, a broker-based architecture can establish routes
between pairs of brokers. Since in our setting the sensor nodes
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are (mostly) stationary, brokers should be positioned on those.
Using an overlay network that primarily routes messages be-
tween brokers has the distinct advantage of keeping a large
part of the routing infrastructure stable and only modifying the
relatively short routes that suffer from mobility, i.e., the routes
between subscribers and brokers. By reusing existing routes
as much as possible, the route maintenance cost is distributed
over multiple subscriptions. Moreover, the brokers will even-
tually be well-known in the sensor network and many sensors
will have routing information to the brokers in their routing
table. In comparison, some peer-to-peer-based architectures
require nodes to store routing information to all publishers.

The remainder of this section looks more closely at peer-
to-peer-based pub/sub architectures, exploring three scenarios
(pub/sub over point-to-point, over tree-based, and over multi-
cast communication) and giving reasons that make them not
practical in our setting. We then present our broker-based
pub/sub architecture (Section 3.2.1).

Pub/Sub Over Point-to-Point We considered, but decided
against using point-to-point messages (e.g., using AODV
routing [26]) to communicate subscriptions (see Fig. 3(i)) and
the updates between single publishers (i.e., sensors) and the
subscribers (i.e., query nodes). The core issue is that query
nodes are mobile and thus a huge routing overhead is incurred.
Moreover, if a publisher is interested in the updates of multi-
ple sensors (as is typically the case for generic queries), it
needs to send a point-to-point message to every publisher in
order to subscribe to this sensor. Clearly, this does not scale
well even for a small AoI and our earlier work has shown that
the network gets overloaded and thus packets are dropped in
the sending buffers of the nodes. We will not further explore
this option.

Pub/Sub Over Tree-Based Approaches Another option is
to build an overlay routing tree either (1) rooted at every pub-
lisher, or (2) rooted at the subscribers. Approach (1) con-
structs one routing tree per publisher (see Fig. 3b(ii)), in
which the subscribers are generally located at the leaves of
the tree (some subscribers may act as intermediate nodes). If
a subscriber moves, then the routing tree of every included
publisher needs to be adjusted, which leads to a high route
maintenance overhead. Moreover, route discovery requires
that the publishers find at least one node that knows a route to
the tree. If the publisher is very far from the subscriber, route
discovery can become expensive.

Approach (2), inspired by prior research on in-network ag-
gregation [9, 22], constructs a tree for every subscriber (see
Fig. 4(iii)). The subscriber floods its subscriptions into the
sensor network, with the relevant publishers responding along
a tree structure implicitly built during the flooding phase. This
scales well in the number of included publishers, but not in
the number of subscribers, due to the need for one flooding
broadcast per issued subscription. It is suitable for stationary

subscribers, but lacks appropriate support for their mobility,
making tracking sensors over time costly. To adjust to sub-
scriber mobility, one could imagine a so-called proxy root that
forwards the results to the subscriber. This requires that a path
exists from the proxy to the subscriber. Moreover, every sub-
scriber potentially uses another proxy, which does not scale
well, raising again route discovery and maintenance issues.
Both Approach (1) and (2) are not explored any further. A
representative finding, comparing Approach (2) with the al-
gorithm we favored, appears in Fig. 6(g) and (h).

Pub/Sub over Multicast Groups The above approaches all
set up routing infrastructures dedicated to single publishers or
subscribers, or both in the case of the point-to-point approach.
They all suffer from drawbacks in our model. Hence, we now
study an approach that implements pub/sub on top of multi-
cast groups such as provided by MAODV [27]. Publishers
and subscribers express their interest in a particular topic by
joining the corresponding multicast group and thus become a
memberof this group (see Fig. 4(iv)). All messages are pub-
lished to the entire group; hence, the publishers (in our case
the sensor nodes) also receive the messages, which adds ad-
ditional load on the network. This is especially the case if
the sensors are on the path between two query nodes in the
multicast tree. In general, the load increases with the number
of members. It also increases with the number of nodes that
route updates between members of the group, without being
part of the group themselves.

The route discovery problem is also prominent in this ap-
proach. To join a group, the subscriber contacts any member
of the group, which is reasonably efficient only if a member is
in proximity of the subscriber or if the subscriber, or any other
node close by, knows how to find a member of the group.

Finally, maintaining the multicast group is expensive in
terms of message overhead. Frequent changes as caused by
the mobility of the subscribers may incur a high overhead.
Earlier experiments have confirmed this and we will not fur-
ther pursue this approach.

(iii) (iv)

Publisher
Subscriber

Root

Broker

(v)

Figure 4. Further options for structuring the
network.

3.2.1 Broker-based Architecture
Having ruled out the use of peer-to-peer-based architec-

tures, we now present the architecture that we will explore
further. To address the route discovery and maintenance is-
sues we use a broker-based architecture, in which some sen-
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sors are designated as brokers with a special role that we ad-
dress below. The first issue that arises is how to position the
brokers in the network. As queries use the AoI as primary cri-
terion (see Section 2), we cluster the network into geographic
regions. We thereby assume that the sensors know their ap-
proximate coordinates, either by using on-board GPS or by
inferring their location from their neighbors [23]. The cluster-
ing can either be static or dynamically computed. We adopt
a static clustering by overlaying a static grid over the sensor
space, dividing the latter into a set ofcells. The important ad-
vantage of static clustering is that every node a priori knows
the clustering and can compute another node’s cell ID solely
based on this node’s coordinates. In contrast, dynamic clus-
tering dynamically arranges the sensor nodes into clusters ac-
cording to some criteria. As a consequence, the clustering
needs to be communicated to the query nodes.

Each cell contains one or, in the case of partitions within
the cell, multiple brokers. Publishers send updates to the
broker in their cell (or in their partition within their cell).
Subscribers send their subscriptions to any close broker (see
Fig. 4(v)). The brokers communicate updates and subscrip-
tions among them, along the ”logical” communication links
represented by dashed lines in Fig. 4(v). Hence, the commu-
nication between cells is routed through the brokers.

The selection of brokers is an interesting topic, but outside
of our scope here. We will explain how to select brokers later
when we present our implementation.

3.3 Combining the Two Mappings

In the previous sections, we have discussed possibilities
for the query-topic mapping (upper mapping) and for struc-
turing the sensor network (lower mapping). In principle, any
combination between the two mappings is possible. For in-
stance, we could create one topic per sensor in the upper map-
ping, and structure the network such that all sensors are in the
same multicast group, or we could create group topics and ac-
quire updates using the point-to-point approach to implement
pub/sub. However, not all combinations make sense and the
two mappings are actually not independent from each other.

Our discussion in Section 3.2 has shown that the lower
mapping drives the decision of the best mapping. As we have
proposed a broker-based architecture based on a grid of cells,
we define a topic structure that matches this choice. On the
first level of the topic hierarchy are the topics that refer to
cells. Then, on the second level, topics can be defined based
on the type of sensors or any other criteria that is adequate for
the sensors in the cell. For instance, topic ”/B-4/Temperature”
refers to all temperature sensors in Cell B-4.

A special case arises if the query considers a single or small
number of sensors. In this case, we could define single sen-
sor topics and map the query to the corresponding topic(s).
However, single sensor topics need to be defined at the sec-
ond level or higher of the topic hierarchy. This simplifies the
routing of the subscription to the correct broker. Otherwise,

routing subscriptions to the broker will require that each in-
termediate broker knows the location of the sensor. Another
approach is to subscribe to a more general topic and to define
a filter based on theSID attribute (see Section 3.1). As queries
to specific sensors are rare, we use this approach.

4 SENSTRAC
In this section, we present the system we implemented.

A general principle is that all data related to maintaining the
routing and pub/sub infrastructure (e.g., subscriptions) stored
at any node expires after some time, unless it has been up-
dated or renewed in the meantime. We use this approach to
make sure that the data referring to crashed or unreachable
sensors (sensors to which the current sensor does not have a
communication path) eventually disappears from the system.
Hence, after a node failure all traces of this node will even-
tually be removed. Also, the system may temporarily be in
a transitional phase. Tagging data with an expiry date allows
the system to leave transitional (suboptimal) states and arrive
at (optimal) stable states.

4.1 Structure of Sensor Network
We distinguish betweenintra-cell and inter-cell routing,

using a variant of the landmark hierarchy [30]. Intra-cell rout-
ing addresses the routing infrastructure among the (sensor)
nodes within a particular cell. Inter-cell routing, in contrast,
governs the routing among the cells.

Intra-Cell Routing. The scope of messages sent in the con-
text of intra-cell routing is limited to that particular cell.
Flooded messages generally travel one hop into the next cell.
Any node that receives a flooded message from a foreign cell
does not echo this message.

Figure 5. Intra-cell routing (solid lines) and
inter-cell overlay network (dashed lines).

In the intra-cell routing scheme, we rely on aleadernode.
Leaders handle routing, while brokers are query processing
intermediaries. Although we will use the leaders as brokers
in our implementation, we use different terms because one
could imagine using different nodes for these different roles.
For instance, in some settings one may prefer to use a spe-
cially powerful node as a broker. The leader is selected dy-
namically, according to a certain criteria. This criteria needs
to be deterministic and can be, for instance, the node with the
lowest ID among the nodes proposing themselves as leaders.
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Every leader periodically floods a leader hello message to the
cell. Upon reception of the leader message, the sensors in the
same cell build a shortest path tree rooted at the cell leader
(see Fig. 5). Leaders can change over time. For instance, if
one leader is running low on resources, it can stop proposing
to be a leader, and eventually another node will take over [10].
The same mechanism also handles leader failures.

Partitions within a single cell in the sensor network may
lead to multiple leaders (e.g., Cell B-1 in Fig. 5). These par-
titions may have been artificially introduced by subdividing
the grid into cells. Partitions may merge once communication
links are reestablished and a single leader will emerge. Oth-
erwise, multiple leaders (one per intra-cell partition) persist.
They will be able to communicate through leaders of other
cells, as discussed in the next section.

Inter-Cell Routing. Inter-cell routing governs communica-
tion among the leaders of different cells. All messages are
sent from and directed to a leader. We use two mechanisms by
which leaders learn of the existence of other leaders. The first
periodically forwards leader hello messages overheard from
neighboring cells to the leader of this cell. We call the lead-
ers of neighboring cells, of which the leader learns,neighbor
leaders.

The second is based on gossiping leader information
among neighbor leaders. Periodically, a leader chooses a ran-
dom subset of all leaders it is aware of within a certain range
(measured in leader hops, i.e., the number of intermediate
leaders before getting to the destination leader) and sends it
to a random number of its neighbor leaders. Gossiping leader
information results in an overlay mesh among the leaders (see
Fig. 5).

We use the Ad hoc On-demand Distance Vector (AODV)
[26] routing protocol for gossiping and, in general, for
all messages (e.g., also updates) sent between two leaders.
AODV has been designed for mobile ad hoc networks. As
our sensors are relatively stationary we set AODV’s configu-
ration parameters to conservative values, thereby minimizing
the message overhead while still handling some degree of sen-
sor mobility. Clearly, other routing protocols are also possible
(e.g., [20]). Also, a purely geographic routing is possible.
However, such protocols do not always find a path to the des-
tination, although the sensor network may be connected. This
is especially the case if the routing path needs to route around
obstacles such as areas with low or no connectivity. We leave
the exploration of alternatives for future study.

4.2 Implementing Pub/Sub
A broker channels subscriptions and updates between in-

terested parties. As noted, our implementation reuses the lead-
ers for this second role. Sensors publish their updates by send-
ing them to the cell leader (broker). Query nodes send their
subscriptions to the closest broker, usually the one within the
same cell.

Upon reception of a subscription, the broker adds the sub-
scription to its subscription list. Then, it maps the subscription
to the cells and subscribes to the broker that is on the shortest
path to the broker(s) in the corresponding cells. This is done
recursively until either no more subscriptions are available, or
a broker has already subscribed to another broker for the same
subscription. The latter test avoids loops in the subscription
mechanism, which occur if the overlay broker routing table is
incomplete at some brokers and does not contain the shortest
paths, but some longer paths. In this case, suboptimal sub-
scription decisions may be taken. However, this only occurs
during transitional phases in the system (after link failures be-
tween brokers, or the failure or re-affectation of a broker).

Although loops are prevented in the subscription mecha-
nism, update messages may still loop. We use a simple form
of caching to prevent any broker from forwarding an update
message more than once.

Having forwarded a subscription for a topic to another bro-
ker, a broker will not forward any new subscriptions on the
same topic for some timet. This allows the broker to take
advantage of already existing subscriptions and reduces the
number of subscriptions sent between brokers. However, if
the first subscription is lost, then no updates published to this
topic will arrive during timet and the time until a new sub-
scription is received by the broker. Hence, the value chosen
for t balances a tradeoff between reducing the number of sent
subscriptions and the consequences of subscription message
loss.

4.3 Routing Between Query Node and Broker
The query node periodically queries its neighboring sen-

sors for their leader. Recall that, in our implementation, a
leader is also a broker, hence the query node receives infor-
mation about the closest broker. Often, there will only be a
single broker, but if it receives information about more than
one, the query node picks one used previously, or otherwise
breaking ties by favoring one that is closer (in hop count).

The routing between query node and broker takes advan-
tage of the fact that each sensor node knows a route to the cell
leader (broker) and thus easily can route the message from the
query node to its leader. While the routing path from the query
node to the leader is given, the inverse is not true. To forward
the updates to the query node, we use the following approach:
When intermediate sensor nodes forward subscriptions from
the query node to the broker, they store a copy locally.3 They
then use the stored subscriptions to determine whether or not
to forward an update from the broker to the query node. If
an active subscription exists and the corresponding filters are
passed, the intermediate sensor node rebroadcasts the update.
The advantage of using broadcasts rather than point-to-point
communication is that a parent node only broadcasts an up-
date once, instead of sending it to all its children sensor nodes

3To save memory, intermediate sensor nodes can also store an aggregate
of the subscriptions and filters.
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one after the other. Thus, the parent sensor node in the routing
tree does not explicitly know its children nodes. Rather, it for-
wards the update based on the currently active subscriptions
and the corresponding filters. This routing scheme is different
from the approaches traditionally used in multicast trees.

When the query node moves, the routing path to the leader
may be broken. As a consequence, the first sensor in the rout-
ing path from the query node to the leader periodically broad-
casts a hello message during periods of broadcast inactivity.
Any query node relying on this node for routing to the leader
receives the hello message and uses it to detect a link break-
age. If it detects a link breakage, it tries to establish a new
route to the same broker, resending a previous subscription.
Link breakages are only repaired between two subscriptions
by the same query node. When a link breaks, the query node
tries to reconnect to the same broker. If none of its neighbor-
ing sensor node knows a path to this broker – indicating that
the query node has changed cell – a new subscription is sent
to the new broker.

5 Simulation
For our simulation we used JiST/SWANS v1.0.4 [1, 5], a

simulation environment for ad hoc networks. Java applica-
tions written for a real deployment can be ported to the sim-
ulation environment and then placed under a variety of simu-
lated scenarios and loads. Jist/Swans intercepts the calls to the
communication layer and dynamically transforms them into
calls to the simulator’s communication package.

5.1 Setup
We consider a set of sensor and query nodes. While sen-

sor nodes are stationary or relatively immobile, query nodes
are mobile. Communication between two nodesm andn oc-
curs in an ad hoc manner and may be asymmetric, i.e.,n may
be able to communicate withm, but the inverse may not be
possible. The transmission range of a node is 88m. We use a
CSMA MAC protocol as defined in the 802.11 standards [14],
but without the RTC/CTS and ACK mechanism. Communica-
tion can be subject to interference, in which case the message
cannot be received. Interference can occur without the sender
being able to detect it (this is called thehidden terminal prob-
lem[3]).

Our work does not inject artificial packet loss, although we
do model disconnections due to mobility, transmission range
limits, and the hidden terminal problem just mentioned (using
JiST/SWANS’RadioNoiseIndeppackage, which uses a radio
model identical to ns-2 [2]). Unless otherwise mentioned,
we use the default values defined in JiST/SWANS, such as
a bandwidth of 1Mb/s.

In general, the variance in a single node’s simulation re-
sults for ad hoc networks is high. This is due to the many
sources of randomness: distribution of the sensor nodes, the
paths of the query node, the time the sensors send an update,
etc. To compensate for this in the single query node case,
the query node moves along a straight line from coordinates

[200, 200] to [900, 900] in the field of 1200x1200m with origin
[0, 0]. A total of 600 sensor nodes are uniformly distributed
within the sensor field, which ensures, with high probability,
that at least one route exists between any two sensor nodes. In
other words, all sensor nodes are in the same partition (with
the exception of partitions introduced by the gridding.) For
multiple query nodes, we use the random waypoint model [17]
with a fixed speed and zero pause time, thereby removing the
randomness caused by varying speeds and pause times.4 We
limit the scope of the query node’s movement such that its
AoI does not extend beyond the field boundaries. This pre-
vents unrealistic results due to the measurement setup.

The sensor and query nodes start up at random times and
positions. When they are all up and running, we start our
measurements (also called steady-state simulation).

5.2 Results
In this section, we present the results of our simulation.

The query node periodically, every 60s, sends its query, i.e.,
subscribes to the relevant sensors. The sensors publish their
current value every 50s. To enable the evaluation of our ap-
proach, every sensor reports the current time as its value. This
value is then used to measure three types of sensor coverage,
i.e., the sensors from which the query node received an up-
date of the corresponding type over all sensors currently in the
AoI: recentdenotes the ratio of sensors for which the query
node has received an update within the latest subscription pe-
riod (known value is less than 60s old);1-stalethe ratio from
which the query node has missed the update in the latest sub-
scription period (60 to 120s old); andn-staleif the latest up-
date is older (more than 120s old). N-stale is sometimes omit-
ted for space reasons. The sum of recent, 1-stale, and n-stale
sensor coverage is 1, meaning that 100% of the sensors in the
AoI are covered.

The sensors are added to the sensor field at times uniformly
distributed between 0 and 100s and the cell size is set to
300m. The default AoI contains all sensors with coordinates
600 ≤ x, y ≤ 900 (corresponding to a single cell), amount-
ing to roughly 40 to 50 sensors with a total number of 600
sensors, or with distance smaller than 200m from the query
node’s position. All results give the average over 20 runs in
different uniform sensor distributions. The approximate 95%-
confidence intervals (CI) are:∓0.05 for sensor coverage in the
case of single query nodes;∓0.1 for single query node with
moving AoI;∓0.001 for multiple query nodes; and∓5% for
message overhead measurements.

In the following, we evaluate the following properties of
SENSTRAC: its behavior in the face of query node mobility,
its scalability, the impact of the mapping of the query to top-
ics, and the message overhead. Unless explicitly stated other-
wise, we use the above default values in our measurements.

4Note that in [32] it has been shown that the random waypoint model is not
entirely appropriate. However, for our measurements, this has no immediate
impact.
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5.2.1 Mobility
We first look at the effects of the query node mobility on

sensor coverage.
Stationary Query Node and Stationary AoI.We start with

the case of a single stationary query node located at position
[200, 200], which thus always generates identical queries. The
upper-most curve in Fig. 6(a) shows the recent sensor cover-
age. Thus, the query node knows the most recent value of
virtually all the sensors in the AoI.

Mobile Query Node and Stationary AoI.The other three
curves in Fig. 6(a) show the results for the same experiment,
but with a mobile query node. The vertical lines in Fig. 6(a)
indicate the time at which the query node changes from one
cell to the other. Such a cell change triggers resubscriptions to
the broker of the next cell, which causes a temporary decrease
in the sensor coverage (around 780s and from 1140 to 1260s).
In Fig. 6(b) we show the result for a single query node that
uses the random waypoint model.

Mobile Query Node and Mobile AoI.The graph in Fig. 6(c)
shows the case of a single query node travelling through the
sensor field along a straight line. In this simulation run, the
AoI travels with the query node. More specifically, the query
node is interested in all the sensors that are within 200m of
its current position. Compared to the case of a stationary AoI,
the moving AoI may involve at times more than one cell and
thus requires to contact more than one broker. As a conse-
quence, the sensor coverage fluctuates to a greater degree,
and is generally slightly lower than in the case of stationary
AoI. In the same graph, the forth curve (y2-axis) illustrates
the lease-based nature of SENSTRAC. It displays the mes-
sage overhead over time with 100 query nodes and shows that
the increase in the message overhead eventually diminishes
once all the subscriptions time out and update messages are
no longer sent to the query nodes (around 1200s).

The next two graphs show the impact of the update rate
and the speed on sensor coverage. In Fig. 6(d) we use the
same setup as in Fig. 6(a), but the sensors send an update
every 30, 50, and 70 seconds. It comes as no surprise that
the recent sensor coverage decreases with decreasing update
rate. Similarly, the recent sensor coverage generally decreases
with increasing speed of the query node. The results of this
experiment, again with the query node moving along a straight
line but with a stationary AoI, are shown in Fig. 6(e). Notice
that query nodes with higher speeds reach the end point of the
line (at location [900,900]) faster and thus the simulation run
stops earlier.

5.2.2 Scalability
We now evaluate the scalability of SENSTRAC with re-

spect to the number of sensor and query nodes. Fig. 6(f)
shows the sensor coverage (y1-axis) and the message over-
head (y2-axis) averaged over time (1200 seconds) and all the
query nodes. It shows that the message overhead increases
with increasing number of sensor nodes. Clearly, the more

sensor nodes are within the AoI, the more updates are routed
to the query node. However, the sensor coverage is nearly the
same for all the considered numbers of sensor nodes. More-
over, the message overhead increases with increasing number
of query nodes.

In Fig. 6(g), we compare the message overhead of SEN-
STRAC with traditional tree-based in-network aggregation
(INA). We consider 700 sensors and use the same AoI with
radius 200m for both, and we do not aggregate query replies.
Notice that the choice of this particular AoI is biased towards
the INA approach. Since the INA approach uses polling, we
flood the query at double the frequency than in SENSTRAC.
Still, an updated sensor value may not be discovered in the
INA approach for 30s in the worst case. We can see that
the message overhead for SENSTRAC increases fast for low
numbers of query nodes, but then the increase diminishes with
increasing number of query nodes (see curve labelled “total”).
This is an indication for the scalability of our approach. In-
deed, with a high number of query nodes it becomes more
likely that a broker to which a query node sends a subscription
already has an active subscription. This allows newly arriving
query nodes to take advantage of existing subscriptions. In
contrast, INA message overhead costs increase linearly with
the number of query nodes. The two message types in SEN-
STRAC that add the most to the message overhead are the
inter-cell messages and the query node messages (qn). The
former result from sending updates between the brokers and
include all the messages sent by intermediate hops, while the
latter count the number of messages exchanged between query
node and the broker, including intermediate nodes. More-
over, intra-cell packets are the messages needed to maintain
the routing structure within a cell and the updates sent to the
cell leader. Finally, the AODV packets indicate the number of
packets sent to maintain/discover the routes between the cell
brokers. Total packets gives the sum of these packets.

Fig. 6(h) shows the corresponding sensor coverage. SEN-
STRAC’s recent sensor coverage is slightly higher than INA’s
for more than 60 query nodes.

5.2.3 Mapping of Query to Topics

In this section, we evaluate SENSTRAC with varying
queries and cell sizes.

Varying cell size.Fig. 7(a) and Fig. 7(b) highlight the im-
pact of the cell size on sensor coverage and message overhead.
Consider the curve for cell size 600 in Fig. 7(a). At time 1106
the query node changes from one cell into another, right at
the intersection of four cells. As a consequence, the resub-
scription process leads to a sharp decrease in sensor coverage.
Before this, no cell changes occurred and the sensor cover-
age was very high in comparison with the graphs for smaller
cell sizes. Fig. 7(b) measures the network load with respect
to varying cell sizes. The considered packet types are the
same as in Fig. 6(g). With increasing cell size, the number
of intra-cell and qn packets increases and the number of inter-
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cell packets decreases. In the case of a single cell (of length
1200m), no inter-cell packets are sent. The AODV messages
decrease as well, except in the case of four cells of length
600m. Here, the cell leaders are generally many hops away so
that the route discovery becomes quite expensive. It may even
involve sending multiple discovery messages with increasing
hop count. Our chosen cell size is 300m, which has the lowest
total message overhead. In the graph we do not consider the
messages sent by the query node. Since we only consider a
single query node, this number is very low and thus not sig-
nificant.

5.2.4 Message overhead.
Since SENSTRAC assigns special functions to some nodes

(for instance the brokers), the load may not be equally distrib-
uted among the nodes unless the load-balancing scheme ex-
plained in Section 4.1 is used. In Fig. 8 we display the total
number of messages sent over time by every node, without
using this load-balancing scheme. The nodes with the highest
message load are the leaders/brokers of cells in the center of
the field through which the query node moves.

Another indicator on the load of a node is the maximum
size of its message output queue. By nature of the CSMA-
based MAC protocol, the sender backs off for some time if
the transmission medium is busy, before attempting to resend
the message. If many messages are to be sent during this time,
this leads to an increasing number of messages waiting to be
sent in the output queue. The longer the output queue, the
higher the message latency. As some messages (e.g., the sub-
scription messages) are more important than others, a large
impact on sensor coverage may result from this. We have
measured the maximum output queue size in a field with 700
sensor nodes. With a single query node moving according to
the random waypoint model, only four sensor nodes have a
maximum output queue size two, the others have at most one
message at the time in the queue. Running the same experi-
ment for 60 query nodes increases the maximum output queue
size to three (for two nodes), and two for 14 nodes. Thus,
there is no significant increase.
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In Fig. 9(a) we show the impact of the AoI on the quality
of the query reply for 30 and 60 query nodes. As before, we
select a stationary AoI that matches a cell. We then move the
AoI – keeping its size unchanged – to cross one or four cell

boundaries (labelled “1 c bdry” and “4 c bdries”). The results
show virtually no increase in the message overhead, nor a de-
crease in the recent sensor coverage. Now, we increase the
size of the AoI to four times the size of the original, and to the
entire sensor field. Not surprisingly, the quality of the query
reply decreases, while the message overhead increases.

Varying AoI size.Clearly, the size of the AoI has an impact
on sensor coverage. Common sense dictates that sensor cov-
erage decreases with increasing AoI size. Fig. 9(b) shows the
impact of the AoI size on sensor coverage. Here, we consider
a single query node moving in a straight line together with the
AoI. The AoI radius varies between 200m and 600m. In gen-
eral, no particular AoI size performs significantly better than
the others. The reason for that is that even smaller AoIs may
require the query node to subscribe to multiple brokers, and a
larger AoI does not necessarily trigger subscriptions to more
brokers. Thus, increasing the AoI has only minor impact on
sensor coverage. Notice that in the beginning and the end of
the execution, the runs with large AoI may not consider sig-
nificantly more sensors, as part of the AoI is outside the sensor
field (the query node is only 200m, resp. 300m, from the away
from the field boundary).

6 Related Work
Our work draws from a large body of earlier work:

In the context of sensor networks, many approaches exist.
We have already presented approaches based on in-network
aggregation, e.g., [6, 9, 22, 24]. In [33], Zoumboulaskiet
al. propose the use of active rules to accelerate the detection
of events occurring in the environment, and install actuators at
the sensors, which trigger the sending of a notification if a par-
ticular event occurs. They briefly mention the use of a pub/sub
infrastructure to communicate the message to the base station,
but no details are given. Also, [33] does not look at scalability
issues.

Directed Diffusion [16] can be seen as a publish-subscribe
mechanism, which is implemented using the tree-based archi-
tecture rooted at the publisher. We have discussed tree-based
architectures in Section 3.2 and explained why we did not con-
sider them in our work. Moreover, our simulations run with a
much higher number of query nodes.

The ACQUIRE mechanism [28] uses the concept of a mo-
bile agent and sends the query through the sensor network,
while acquiring more and more results on the way. This may
result in high latencies and large query result messages.

While these approaches all consider stationary query
nodes, the following approaches address the issue of mobile
query nodes.

In [13], Huang and Garcia-Molina explore different al-
gorithms to construct routing trees rooted at the publishers.
Again, the reader is referred to Section 3.2 for a discussion of
tree-based architectures.

Mobile database access has been studied in [15]. How-
ever, Imielinski and Badrinath consider mobile users that ac-
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Figure 7. Multiple query nodes sending queries for stationary AoI and a speed 1m/s.
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Figure 9. Multiple query nodes sending queries for stationary AoI and a speed 1m/s.

cess databases which are interconnected by a fixed network.
Hence, their model is very different from the model consid-
ered in our work.

Tonget al. [29] suggest that sensor networks be extended
with mobile agents, which move into proximity of the sensors
to collect their results. Our approach is different, as we rely on
routing within the sensor network to obtain the query results.
Our query nodes cannot move into proximity of all sensors in
which they are interested in order to collect the results.

Pub/sub has become a mature technology in fixed net-
works. Research on pub/sub in mobile ad hoc networks is
more recent and has mainly focused on mobile subscribers
and publishers relying on a fixed broker infrastructure to sup-
port them. The focus of our work, in contrast, is not to come
up with a new pub/sub implementation for ad-hoc networks.
Rather, we show that pub/sub can effectively support query-
ing sensor networks. Our contribution is thus the mapping and
the application of pub/sub to querying applications. Most ex-
isting pub/sub systems provide generic pub/sub solutions and
they do not consider the particular mapping to query applica-
tions, such as for instance the tight dependence on geographic
regions. With this orientation, they naturally focus on how
to forward notifications to the subscriber once the subscriber

has moved (as suggested for instance in [21] and [7]). Nev-
ertheless, our approach could also be implemented over exist-
ing pub/sub middleware, although our approach is extremely
light-weight. Moreover, all subscriptions time out after a short
time; as a consequence, no unsubscribe method is provided.

In [21], Siena is extended to handle mobile subscribers and
publishers. Caporuscioet al. add a so-calledmove-outand
move-inproxy to the subscriber to handle the latter’s mobil-
ity. These proxies make sure that the notifications are for-
warded to the subscriber’s new location. Similarly, Fiegeet
al. [7] propose to rely on the brokers for handling mobility,
rendering mobility issues related to pub/sub as transparent as
possible to the subscriber. In our setting, these approaches
are too costly given that the usefulness of an update expires
after some time and leader-to-leader communication involves
many intermediate nodes.

Yoneki and Bacon [31] have implemented pub/sub over
mobile ad hoc networks. They assume that also the brokers
are mobile and thus use ODMRP [19] to distribute the sub-
scriptions to the brokers. This is costly, as it involves flooding.
Moreover, it suffers from the other disadvantages discussed in
Section 3.2. In our approach, sensors are mostly stationary
and thus we can avoid flooding huge areas of the network.
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In [18], Kim et al. propose an approach to route messages
to mobile subscribers (called sink in [18]), based on interme-
diary accessor nodes. These accessor nodes are defined by the
sink. The protocol corresponds to the approach presented in
Fig. 3b(ii) and requires that a routing path be defined between
the sink and the source. As they may be quite distant, setting
this routing path up is costly, as it requires first to know the
source and then to discover a routing path to it. This also in-
creases the size of the routing tables, as they need to be aware
of more entries.

In contrast, we do not rely on accessor nodes. While our
brokers may be seen as sort of accessor nodes, they remain
static and do not change in order to prevent frequent reconfig-
urations. Moreover, the subscribers only need to be aware of
the local leader. Hence, finding sensors is an easier and more
efficient operation. Finally, [18] does not consider the actual
application, but just looks at a way to route the messages from
a source to the mobile sink.

In recent years, many routing protocols based on hierar-
chical routing have been proposed [10, 11, 12]. While these
routing protocols generally rely on clusters that are set up dy-
namically, our routing depends on a well-defined grid to form
clusters. This clustering is driven by the query applications
we are considering.

7 Conclusion
The paper has presented a natural and scalable way to

query sensor networks from mobile platforms. We propose
a layered approach in which the query application is mapped
onto a pub/sub system. In a first step, we map queries to top-
ics, and then show an architecture for pub/sub that is efficient
in the setting we consider.

We have implemented the proposed architecture on the
JiST/SWANS network simulator and have measured various
aspects of our simulation. Our measurement results show the
scalability of SENSTRAC with respect to the number of query
nodes and its flexibility with respect to the AoI’s position.

Although this paper limited itself to simulation, a merit of
the JiST/SWANS technology is that the simulated code is exe-
cutable on real platforms with only minor modifications. Ac-
cordingly, in our future work we hope to begin real experi-
ments using actual sensors and query nodes.
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