
1

A Randomized Error Recovery Algorithm for
Reliable Multicast

Zhen Xiao, Kenneth P. Birman

Abstract—An efficient error recovery algorithm is essen-
tial for reliable multicast in large groups. Tree-based pro-
tocols (RMTP, TMTP, LBRRM) group receivers into local
regions and select a repair server for performing error re-
covery in each region. Hence a single server bears the entire
responsibility of error recovery for a region. In addition, the
deployment of repair servers requires topological informa-
tion of the underlying multicast tree, which is generally not
available at the transport layer.

This paper presents RRMP, a randomized reliable multi-
cast protocol which improves the robustness of tree-based
protocols by diffusing the responsibility of error recovery
among all members in a group. The protocol works well
within the existing IP multicast framework and does not re-
quire additional support from routers. Both analysis and
simulation results show that the performance penalty due to
randomization is low and can be tuned according to appli-
cation requirements.

I. INTRODUCTION

Multicast is an efficient way for distributing data from
one sender to multiple receivers. The existing IP multi-
cast protocol [1] is unreliable. However, many applica-
tions need a reliable multicast service. Examples include
distributed system management, collaborative computing,
distribution of software, and distributed interactive simu-
lation(DIS). Providing such a service on a large scale re-
quires efficient algorithms for error-recovery.

One challenge in the design of an efficient error-
recovery algorithm is implosion avoidance. As with any
reliable multicast protocol, some members need to take
responsibility for detecting message loss and performing
retransmission. Putting this responsibility entirely on the
sender leads to the well-known implosion problem: the
storm of acks or nacks from a large set of receivers can
overflow the sender’s buffer. Consequently, some reliable
multicast protocols adopt a receiver based reliability model
in which a receiver is responsible for its correct reception
of data. A well-known example is the Scalable Reliable
Multicast protocol(SRM) [2]. In SRM, when a member
detects a message loss, it multicasts a retransmission re-
quest to the group. Any member holding a copy of the
message can multicast a reply. A randomized back-off
algorithm is employed to suppress duplicate requests and
replies.

Another challenge in the design of error control algo-
rithm is how to confine the impact of a message loss to
the region where the loss has occurred. This is especially
important when the group is large. Experimental data col-
lected over the MBone show that a large percentage of
packets are lost by at least one receiver in large multi-
cast groups [3], [4]. If retransmission requests and replies
are multicasted to the entire group, the network will be
flooded with error control messages and a receiver will
receive multiple copies of the same message. The orig-
inal SRM protocol provides no local recovery, although
recently some proposals have been made to localize the
scope of error recovery [5].

For multicast applications with only one sender, sev-
eral tree-based protocols have been proposed as an effi-
cient way to avoid message implosion and to provide good
local recovery. Examples include the Reliable Multicast
Transport Protocol(RMTP [6]), the Log-Based Receiver-
Reliable Multicast Protocol (LBRRM [7]), and the Tree-
based Multicast Transport Protocol(TMTP [8]). In these
protocols, receivers are grouped into local regions based
on their geographic proximity. A repair server is selected
in each region and made responsible for performing error
recovery for all receivers in that region. Because a mes-
sage loss can be repaired by a regional repair server rather
than by the sender, this scheme reduces recovery latency
and avoids message implosion at the sender.

However, a tree-based protocol may still suffer from a
regional implosion problem because the responsibility of
error recovery in each region is concentrated on a single
repair server. Consequently, a receiver experiencing a high
loss rate can put a heavy burden on its repair server and af-
fect all other receivers in its region. Moreover, if a repair
server fails, error recovery in its region cannot proceed un-
til a new server is selected.

Router Repair serverReceiver

message loss

Fig. 1. Performance penalty in a tree-based protocol when the
position of a repair server is suboptimal.

2

Another problem with a tree-based protocol is that its
performance depends on the positions of repair servers. To
maximize the possibility of local recovery, a repair server
should experience the least amount of message loss among
all receivers in its region. Hence the optimal position of a
repair server is at the root of the multicast subtree of its
region. However, topological information of the underly-
ing multicast tree is generally not available at the transport
layer. Improper positioning of repair servers can lead to
poor locality in error recovery. Figure 1 shows a portion
of a multicast tree in a region where the repair server is
placed at the left branch of the tree rather than at the root.
A message loss as indicated caused all receivers at the left
branch (including the repair server) to miss the message.
Ideally, this loss can be repaired by the two local receivers
at the right branch of the tree. However, in a tree-based
protocol like RMTP the repair server will request a retrans-
mission from its upstream repair server outside this local
region (not shown in the figure), leading to long recovery
latency1.

Previously we proposed a “Bimodal Multicast” proto-
col for “many-to-many” multicast applications [9] [10]. In
this protocol, a member � periodically sends its history of
received messages to a randomly selected member � in the
group. Upon receiving the message history, � asks � any
message that � missed but � has received so that � and
� can converge to identical histories. Message retrans-
missions are performed in the order of most recent first.
Hence the protocol emphasizes achieving a common suf-
fix of message histories rather than a common prefix. If
a message loss cannot be recovered after a certain amount
of time, the protocol gives up on the message and reports
the loss to the application. It is shown that the protocol
provides a bimodal delivery guarantee: for any multicast
message sent to the group, there is a high probability that
the message will reach almost all members, a small proba-
bility that the message will reach a small number of mem-
bers, and a vanishingly low probability that the message
will reach many but not all members. Experimental results
demonstrate that the protocol achieves steady throughput
even when failures occur.

In this paper, we propose a randomized reliable multi-
cast protocol called RRMP which eliminates the message
implosion problem and provides good local recovery. This
protocol is built on our previous work with the Bimodal
Multicast protocol, but focuses on how to use randomiza-
tion to improve the robustness and efficiency of tree-based
protocols. A detailed comparison between RRMP and Bi-

�A similar problem can happen even if the repair server is at the root
of the tree, because the server can miss a message due to a local buffer
overflow.

modal Multicast is deferred to Section VI so that sufficient
background can be established.

RRMP groups receivers into a hierarchy, similar to the
tree-based protocols. Unlike those protocols, RRMP lets
each receiver that experiences a message loss send its re-
quest to randomly selected receivers in its local region and,
with a small probability, to some randomly selected re-
ceiver in a remote region. The reliability of the protocol
depends on statistical properties of its randomized algo-
rithm which can be formally analysed and tuned according
to application requirements. Simulation results demon-
strate that the protocol achieves fast error recovery with
low overhead, compared to tree-based protocols.

The rest of the paper is organized as follows. Section II
describes the details of our error recovery algorithm. Sec-
tion III analyses its performance. Section IV describes
an algorithm for constructing the error recovery hierarchy.
Simulation results are presented in Section V. Section VI
describes related work. Section VII concludes.

II. A RANDOMIZED ERROR RECOVERY ALGORITHM

A. System Model and Assumptions

We consider multicast applications with only one
sender. The sender joins the multicast group before it starts
sending messages, and consequently is also a receiver in
the group. We assume that receivers are grouped into local
regions and that different regions are organized into a hier-
archy according to their distance from the sender. We call
this the error recovery hierarchy. Figure 2 shows an ex-
ample of a hierarchy where the whole group is divided into
three local regions. Section IV describes an algorithm for
constructing such a hierarchy. We define the parent region
of a receiver as its least upstream region in the hierarchy2.
For example, in Figure 2, region � is the parent region for
all receivers in region �. If a receiver is in the same region
as the sender, then it has no parent region. Hence none of
the receivers in region � has a parent region. We also as-
sume that each receiver has group membership knowledge
about other receivers in its region as well as receivers in its
parent region.

A receiver detects a message loss by observing a gap
in the sequence number space or by exchanging session
messages with other members (described in Section IV).

In this paper, we focus on the error recovery algorithm
in RRMP. Other aspects of the protocol (e.g. buffer man-
agement) is reported in a separate paper [11]. For simplic-
ity, we assume that every receiver buffers received mes-

�This definition will be refined in Section IV where we show that
a receiver’s parent region may not necessarily correspond to a local
region.

3

ReceiverRouter s Sender

s

Region 2 Region 3

Region 1

Fig. 2. Local regions in a hierarchical structure

sages for a sufficiently long period of time. In practice, a
receiver with insufficient storage capacity may choose not
to perform error recovery for other receivers.

B. Details of the Algorithm

Unlike tree-based protocols, RRMP does not use any
repair server. The responsibility of error recovery is ran-
domly distributed among all members in the group. As-
sume that a receiver � detected a message loss. The loss
can either affect a fraction of receivers in �’s region (a local
loss), or can affect all receivers in that region (a regional
loss). In the first case, � can get a retransmission from a
neighbor in its region, while in the second case the loss can
only be repaired by a member in a remote region. Accord-
ingly, the error recovery algorithm in RRMP consists of
two phases executed concurrently: a local recovery phase
and a remote recovery phase. A local loss can be repaired
through local recovery, while a regional loss is repaired
by a combination of local recovery and remote recovery.
The rest of the subsection describes the details of the two
recovery phases.

In the local recovery phase, a receiver tries to recover
a message loss from randomly selected neighbors. More
specifically, when a receiver � detects a loss, it selects a
receiver � uniformly at random from all receivers in its
region and sends a request to �. � also sets a timer accord-
ing to its estimated round trip time to �. Round trip time
measurements are described in the next subsection. Upon
receiving �’s request, � checks whether it has the message.
If so, it sends the message to �. Otherwise it ignores the
request. If � does not receive a copy of the message when
its timer expires, it randomly selects another receiver in its
region and repeats the above process. As long as at least

one local receiver has the message, � is eventually able
to recover the lost message. In particular, a receiver in the
sender’s region is able to recover any lost message through
local recovery.

On the other hand, if an entire region missed a mes-
sage, the message loss cannot be repaired within the local
region. In tree-based protocols, the repair server of the
region is responsible for contacting a remote member for
retransmission. In RRMP, this responsibility is taken by
some randomly selected members in the region during the
remote recovery phase. More specifically, when a receiver
� detects a message loss, it randomly chooses a remote re-
ceiver � in its parent region and, with a small probability
� , sends a request to �. � is chosen so that the expected
number of remote requests sent by all receivers in the re-
gion is a constant �. For example, let � be the number
of receivers in a region. If � � ���, then on average
one remote request is sent when the entire region missed
a message (Hence � � �). � also sets a timer according
to its estimated round trip time to �. This timer is set by
any receiver missing a message, regardless whether it ac-
tually sent out a request or not. If � does not receive a copy
of the message when its timer expires, it randomly selects
another receiver in its parent region and repeats the above
process. As long as the entire region misses the message,
the expected number of remote requests during each try is
�.

Upon receiving a request from a remote receiver �, �
checks whether it has the requested message. If so, it sends
the message to �. Otherwise, � missed the message as well.
In this case, � records “member � is waiting for the mes-
sage”. When � later receives a copy of the message, it will
relay the message to �. Since �’s region is upstream of �’s
region, it is likely that � will detect and recover the lost
message earlier than �. When � receives a repair message
from a remote member, it checks whether the message is
a duplicate. If not, � multicasts the message in its local
region so that other members sharing the loss can receive
the message.

The two phases described above, local recovery and re-
mote recovery, are executed concurrently when a receiver
detects a message loss (the receiver does not know how
many members in its region missed the same message). If
a receiver has no parent region, its remote recovery phase
does nothing. Figure 3 illustrates RRMP’s error recovery
algorithm when all receivers in region � missed a message.
On the left, local requests are sent to randomly selected
neighbors, and one of them, �, sends a request to a remote
member �. On the right, member � forwards a copy of
the message to �, which then multicasts the message in its
local region.

4

ReceiverRouter s Sender

s

Region 2 Region 3

Region 1

p

r

local requests

message loss

remote request

ReceiverRouter s Sender

s

Region 2 Region 3

Region 1

p

r

repair

regional multicast

Fig. 3. Error recovery in RRMP

C. Round Trip Time Measurements

Our error recovery algorithm requires that a receiver
measure its round trip time (RTT) to its neighbors as well
as to receivers in its parent region. This is achieved by at-
taching timestamps in request and repair messages. Mea-
suring RTT to a local member is straightforward: when a
receiver � sends a request to a local member �, it attachs
a timestamp to the request. This timestamp is copied onto
the repair message sent by � (assume that � has the re-
quested message). Upon receiving the repair, � can com-
pute its RTT to � using a TCP-like scheme [12].

Measuring RTT to a remote member is more compli-
cated because a receiver does not always send a repair im-
mediately after receiving a remote request. This is the case
if the receiver is waiting for a repair for the same message.
RRMP addresses this problem by letting the receiver in-
clude local processing time in the repair message, an idea
previously used in the SRM protocol. More specifically,
when a member � sends a repair to a remote member �, it
includes two timestamps, � and �, where � is the times-
tamp copied from �’s request, and � is the interval be-
tween the time � received �’s request and the time � sent
the repair. Upon receiving the repair, � can compute its
RTT to � by excluding �’s local processing time. More-
over, � also includes its RTT estimation to � when it mul-
ticasts the repair message in its region. In a wide area net-
work, the latency between two regions can be much higher
than the latency within a region. Hence all members in
a region can share the same RTT estimation to a remote
member.

The accuracy of RTT estimation depends on the fre-
quency of requests and repairs sent. To maintain reason-
able accuracy during periods when system loss rate is low,
each receiver enforces a maximum interval 	���� between
any two local requests and a maximum interval 	���� be-

tween any two remote requests. If no message is lost, the
receiver sends a special request, RTT QUERY, at the end of
the interval, which triggers an immediate RTT RESPONSE
message. The choice of 	���� and 	���� reflects a trade-
off between bandwidth consumption and accuracy of RTT
measurements.

D. Optimization

In this subsection, we describe two optimizations of the
basic error recovery algorithm. The first optimization aims
to reduce request traffic. During the local recovery phase, a
member missing a message sends requests to randomly se-
lected neighbors. However, if the message loss is regional,
it can only be repaired by a remote member. If inter-region
latency is much higher than intra-region latency, it is inef-
ficient for a member to keep sending local requests until
the loss is repaired. Consider the topology in Figure 3.
Assume that �’s RTT to � is ���ms and to a local member
is �ms. In this case � will send approximately ��� local
requests before it gets a repair from �.

The amount of request traffic can be reduced if a mem-
ber stops sending local requests when it can conclude with
high confidence that no member in its region has the mes-
sage. For example, for a region of �� members with one
member holding the message initially, the probability that
a member missing the message will receive a repair within
� requests is ��
	
 (this can be calculated by summing up
the probability in Figure 4 described in the next section).
Hence if a loss is not repaired after sufficiently many local
requests were sent, the member can stop its local recov-
ery phase because it is highly likely that the entire region
missed the message. When some member in the region
later receives a repair during its remote recovery phase,
it will multicast the repair in the region. This multicast,
however, is also subject to loss and may fail to reach some

5

member. Hence, if a member stops its local recovery phase
forever, it will not be able to repair the loss locally when
it can (because now some members do have the message).
To avoid this situation, a member restarts its local recov-
ery phase whenever the timer in its remote recovery phase
expires. With this optimization, error recovery in RRMP
consists of a single remote recovery phase and a series of
local recovery phases. Each local recovery phase is trig-
gered by a timeout during the remote recovery phase ex-
cept the first one which starts upon detection of the loss.

The second optimization aims to reduce repair traffic.
When all members in a region missed a message, on aver-
age � of them will send remote requests. When a member
receives a repair from a remote member, it multicasts the
repair in its region if the repair is not a duplicate. Hence
if two members receive a repair at the same time, both of
them will multicast the repair. The number of duplication
in this case is independent of � but increases with �. In
order to reduce the number of duplicate repairs, we em-
ploy a randomized back-off scheme to suppress duplicate
regional multicasts at the expense of potentially longer re-
covery latency: upon receiving a remote repair, a mem-
ber makes a random decision as whether it should multi-
cast the repair. The probability it does so is ���. Oth-
erwise it waits a random amount of time and tries again.
If it hears a multicast for the same message from another
member while it is waiting, it suppresses its own multicast.
The waiting period is proportional to the propagation de-
lay within its region. Both optimizations are incorporated
in the simulation later in this paper.

III. PERFORMANCE ANALYSIS

This section analyses the performance of RRMP under
several important metrics.

A. Implosion Avoidance and Robustness

RRMP avoids message implosion by distributing the re-
sponsibility of error recovery among all members in the
group. If a member suffers from a high loss rate, its re-
transmission requests are sent to randomly selected neigh-
bors rather than concentrated on a single repair server as in
tree-based protocols. Robustness is also improved because
no failure of a single member can have a significant impact
on other members in the group.

B. Recovery Latency

The recovery latency is defined as the interval between
the time a loss is detected and the time it is repaired. In
RRMP, a member missing a message tries to repair the
loss simultaneously through local recovery and remote re-
covery. During the local recovery phase, a member sends

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

#local requests

P
ro

ba
bi

lit
y

(%
)

Fig. 4. The probability for a member to receive a repair in
a particular request for a region of �� members, with one
member holding the message initially.

requests to randomly selected members in its region. The
recovery latency depends on how many members in the
region have the message. In the worst case only a single
member has the message. Epidemic theory shows that the
expected time for the message to propagate to the entire
region in this case is proportional to the log of the region
size [13], [14]. Figure 4 shows the probability for a mem-
ber to receive a repair in a particular request for a region
of �� members, with one member holding the message ini-
tially. The formula used to compute this figure is omitted
for lack of space. Recovery latency can be reduced if a
member sends multiple requests at a time, although this
may increase the number of duplicate repairs.

During the remote recovery phase, a member sends a
request to a remote member with probability � � ���,
where � is the size of the local region. Assume that the
entire region missed a message. The number of remote
requests sent has a binomial distribution with parameters
� and � . As � � �, � � � and �� � �. Hence
for large regions the distribution can be approximated by a
Poisson distribution with parameter � [15]3. The probabil-
ity that � requests are sent is ��� ��

��
. Figure 5 shows how

the distribution changes with different values of �. The
choice of � reflects a tradeoff between recovery latency
and repair duplication. As shown in Figure 5, when � is
small, there is a substantial risk that no remote request is
sent due to randomization, leading to increased recovery
latency. Increasing � reduces this risk and improves ro-
bustness against loss of request and repair messages. On
the other hand, large � increases the number of duplicate
repairs as explained in the following subsection.

�A similar observation is made in the Search Party protocol [16],
although the details are very different.

6

0
1

2
3

4
5

6
7

8
9

0

10

20

30

40

 λ

#remote requests

P
ro

ba
bi

lit
y(

%
)

4
3
2
1

Fig. 5. The probability that � remote requests are sent for dif-
ferent values of �.

The concurrent execution of local recovery phase and
remote recovery phase increases the likelihood that a local
message loss will be repaired by a local member. This
is especially important when inter-region latency is much
higher than intra-region latency. For example, in Figure 1,
the receivers at the left branch of the tree are likely to get
retransmissions from the two receivers at the right branch,
thus avoiding inter-region latency.

C. Repair Duplication

Duplicate repairs can be received for various reasons.
For example, if multiple members in a region simultane-
ously receive repairs from upstream members for the same
message, duplicate regional multicasts may be sent due to
randomization. In addition, the concurrent execution of
local recovery and remote recovery may trigger multiple
repairs for the same message: upon detection of a loss, a
member sends a remote request with probability ���. If
the lost message is later recovered locally, the repair from
the remote member will become a duplicate. The number
of duplicates in this case decreases with � but increases
with �. Hence � controls a trade-off between recovery
latency and repair duplication: large � reduces recovery
latency at the price of higher number of duplicate repairs.
On the other hand, small � reduces the number of duplicate
repairs but leads to longer recovery latency. Applications
with different delay/bandwidth requirements can tune � to
suit their own needs.

D. Locality of Recovery

Locality of recovery can be measured by comparing the
number of members receiving a repair to the number of
members missing the message. Ideally, only those mem-

bers which have missed a message are exposed to the re-
pair traffic. In RRMP, a repair can be sent either in uni-
cast or in regional multicast. If a repair is sent in unicast,
it has perfect locality because a member will receive the
message only if it has asked for it. On the other hand, if
a repair is sent in regional multicast, its locality depends
on the percentage of local members missing the message.
Recall that a receiver executes the local recovery algorithm
and the remote recovery algorithm concurrently upon de-
tection of a loss. If the loss affects only a small portion
of the region, a receiver is likely to recover the loss from
a neighbor first. If it has also sent a remote request, the
corresponding repair will be discarded as a duplicate upon
receipt and will not trigger a regional multicast. In fact,
if the ratio of inter-region latency to intra-region latency is
sufficiently high (which is usually the case in a WAN), a
receiver will always repair a loss from a neighbor first as
long as at least one local member has the message. Conse-
quently, a repair will be sent in a regional multicast only if
the entire region missed the message, in which case it has
perfect locality.

IV. FORMATION OF ERROR RECOVERY HIERARCHY

A. Overview

This section describes an algorithm for constructing the
error recovery hierarchy in RRMP. The algorithm groups
receivers into local regions based on administrative do-
mains and organize different regions into a hierarchy ac-
cording to their distance from the sender. This is achieved
by periodic exchanges of session messages among all
members in a group. There are two kinds of session mes-
sages: local session messages and global session mes-
sages4. Local session messages are multicast restricted
within a local region and global session messages are mul-
ticast to the entire group. Session messages are also used
to synchronize state among receivers and to help a receiver
detect the loss of the last message in a burst, an idea previ-
ously used in the SRM protocol. The global session inter-
val 	�� and the local session interval 	�� are configuration
parameters of the system.

B. Formation of Local Regions

RRMP divides receivers into local regions based on ad-
ministrative domains and uses administrative scoping to
restrict the scope of local session messages. Members
within a region periodically exchange local session mes-
sages to learn about their neighbors and to estimate the size

�The terminology local and global session messages are borrowed
from the scalable session message protocol in SRM [17], but the algo-
rithm is different.

7

of the region. A local session message from a receiver �
contains the largest sequence number � has received from
the sender (for loss detection purpose). Soft state timers
are used to detect receivers which have left the region.

C. Establishment of the Hierarchy

Once local regions are formed, a member needs to es-
tablish group membership knowledge about members in
its parent region. To make this possible, every member pe-
riodically announces its presence by multicasting a global
session message to the group. If all members send global
session messages at a fixed interval, the total number of
global session messages increases linearly with the size of
the group. To reduce bandwidth consumption, a member �
multicasts a global session message only with probability
���� during an interval of 	��, where �� is a system con-
figuration parameter and is not necessarily the same as the
� used for error recovery. On average �� global session
messages are sent per region. The global session message
contains the largest sequence number � has received from
the sender, its hop counts from the sender, and the initial
TTL value. A member obtains its hop counts from the
sender through the TTL field of data messages it received
from the sender.

When a member � receives a global session message
from a remote member �, � needs to decide whether it se-
lects � as a member in its parent region. Recall that mem-
bers in the sender’s region have no parent region. If � is not
in the sender’s region, it makes its decision in two steps:
First it checks whether � is an upstream member. � is up-
stream from � if � is closer to the sender than � and � is
closer to � than to the sender. All distance information
used in the comparison can either be calculated by � or is
included in �’s global session message. If � is an upstream
member, in the second step � compares its distance from �
with that from other upstream members which it has heard
from recently, and chooses a set of closest ones as mem-
bers in its parent region. More specifically, � maintains
its current estimate of least upstream members in a list.
Each element in the list contains the following informa-
tion for an upstream member �: �’s network address, �’s
hop counts from �, and a soft state timer. This timer is re-
set whenever � hears from �. When it expires, � is dropped
from the list. This does not imply that � has left the group
because a member only sends a global session message
with a certain probability. Hence other members in �’s re-
gion may have been added to the list. The property of the
list is that �’s distance from the farthest member in the list
is at most
 hops more than its distance from the clos-
est member.
 is a system configuration parameter which
controls the degree of heterogeneity in the parent region.

Whenever � adds a new upstream member to the list, it
checks whether the property still holds. If not, members
which are too far away (either the newly added member or
some existing ones) are dropped from the list.

If a member does not have any upstream member in its
list, it chooses the sender as the default destination for its
remote requests. This is the case when the member first
joins the group.

D. Properties of the Algorithm

In our algorithm, the parent region for a receiver does
not necessarily corresponds to a local region. Because
each receiver multicasts a global session message only
with a certain probability and
 may be smaller than the
diameter of a local region, it is possible that a receiver’s
parent region contains only a subset of receivers in its least
upstream region. In addition, if a receiver has multiple
upstream regions with similar distances, its parent region
may contain a mixture of receivers from different local re-
gions. Figure 6 illustrates a situation where region � has
two upstream regions with similar distances. In this case a
receiver in region � may select a mixture of receivers from
region � and receivers from region � to be in its parent
region. Since each receiver independently selects the des-
tination for its remote request when an entire region misses
a message, this scheme increases the possiblity of getting
a repair when some links in the network get congested.

Region 1

Region 2 Region 3

Region 4

Fig. 6. Formation of error recovery hierarchy in RRMP. The
parent region of a receiver in region � may contain a mixture
of receivers from region � and receivers from region �.

Because of its randomized nature, RRMP is robust
against transient inconsistency in group membership that
can arise during process joins and leaves. It has higher
memory requirements than tree-based protocols because
each receiver needs to keep information about other re-
ceivers in its region as well as receivers in its parent region.

8

V. SIMULATION RESULTS

A. Test Description

In this section, we evaluate the performance of RRMP
using the ns2 simulator [18]. As a target for comparison,
we also implemented a tree-based reliable multicast pro-
tocol called TRMP in the simulator. In TRMP, a receiver
missing a message gets a retransmission from its repair
server in unicast. If the repair server itself missed a mes-
sage, it gets a retransmission from its least upstream server
in the hierarchy and then multicasts the retranmission in its
local region. The TRMP protocol is used to illustrate the
problem of load concentration on repair servers and to in-
vestigate the performance penalty in RRMP protocol due
to randomization5.

The topologies used in the simulation are transit-stub
networks generated using the GT-ITM network genera-
tor [19]. Links within transit domains are set to a band-
width of �	�bps to simulate multicast backbones. Links
within stub domains have a bandwidth of ���bps. Links
connecting transit domains to stub domains have a band-
width of ��bps. Each direction of a link has a queue limit
of �
 packets. All receivers are in stub domains, including
the sender. For the tree-based protocol, each stub domain
also has a repair server connected to the root of that do-
main.

Both RRMP and TRMP use a mixture of unicast and
regional multicast for repair messages. Each stub domain
is assumed to be in a different administrative domain and
administrative scoping is used to restrict the scope of a re-
gional multicast. The configuration parameters for RRMP
protocol is shown in Table I.

	���� � second
	���� 	 second
	�� � second
	�� � second

 � hops
�� �

TABLE I
Configuration parameters

In the simulation, members exchange session messages
to form the error recovery hierarchy as described in Sec-
tion IV. Each simulation starts with a bootstrap period of
�� seconds during which the sender multicasts a global
session message every second to let each receiver measure
its hop counts from the sender. After the bootstrap period,

�It would be interesting to compare RRMP with some existing tree-
based protocols like RMTP. Unfortunately, the source code for the
RMTP protocol was not made available to us by the developers.

the sender starts sending �� byte data messages at a con-
stant rate of 	� message/sec. The sender keeps sending
data messages for �� minutes during each simulation run.
A total of ����� messages are received at each receiver.
Messages are delivered to the application in FIFO order.

We introduce background traffic by establishing TCP
connections between randomly selected nodes. For each
TCP connection, a FTP application is set up to transfer a
file with infinite size. The background traffic caused ob-
served loss rates between �
��
 and �
��
 on links con-
necting transit domains to stub domains, with a median
loss rate of �
��
. The loss rates for links within stub
domains vary from �
 to �
��
, typically around �
��
.
No message loss is observed on backbone links. In order
to be fair to tree-based protocols, no background traffic is
introduced on any link connecting a repair server with the
root node of its region. Consequently, a repair server re-
ceives any message which is received by at least one mem-
ber in its region. This is the optimal case for a tree-based
protocol.

B. Load Balance

First we compare the load of request and repair traffic
between the two protocols. The results are shown in Fig-
ure 7. On the left we compare the number of repair mes-
sages sent by a repair server in TRMP protocol with the
maximum number of repair messages sent by a member
in RRMP protocol during the simulation. On the right we
compare the number of request messages received by a re-
pair server in TRMP protocol with that by the worst-case
member in RRMP protocol. The parameter � for RRMP
protocol is set to �. As can be seen from the figure, the
load on the repair server increases linearly with the group
size for TRMP protocol. This is because the repair server
bears the entire burden of error recovery for its region. In
contrast, the load for RRMP protocol decreases slightly
with the group size. This is because the probability that
a member receives a remote request decreases with its re-
gion size, for any given �.

One way to reduce the load on a repair server is to split
a large region into several small ones. This is effective if
all members in the region have roughly the same loss rate.
Otherwise a single member suffering a high loss rate can
put a heavy burden on its repair server even after the split.
This is shown in Figure 8 for a group of �
� members
when the loss rate of one receiver is increased from �
 to
��
 6. We compare the number of repair messages sent
to this lossy receiver by its repair server in TRMP proto-

�This is in addition to any congestion loss caused by background
traffic.

9

60 80 100 120 140 160
0

5

10

15

20

25

group size

#r
ep

ai
rs

/s
ec

 s
en

t

RRMP
TRMP

60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50

group size

#r
eq

ue
st

s/
se

c
re

ce
iv

ed

RRMP
TRMP

(a) repair traffic (b) request traffic

Fig. 7. Comparison of request and repair traffic when group size increases

col with that by the worst-case member in RRMP protocol.
(The figure for request load is similar and hence omited.)
As can be seen from the figure, a lossy receiver can have
a significant impact on its repair server in TRMP proto-
col but only a limited impact on its neighbors in RRMP
protocol7.

1 4 7 10 13 16 19 22 25 28
0

2

4

6

8

10

12

14

16

18

20

loss rate (%)

#r
ep

ai
rs

/s
ec

 s
en

t

RRMP
TRMP

Fig. 8. Comparison of repair traffic for a lossy receiver

C. Recovery Latency

Each member measures the average recovery latency
over all message loss it experienced. We compute the ratio
of recovery latency in RRMP to that in TRMP member-
wise. Figure 9 shows the average ratio for different values
of � when the group size increases. As can be seen from
the figure, there is an observable performance penalty for
RRMP protocol due to randomization when � � � or �.
The latency of RRMP improves when � increases. When
� � �, the latency of RRMP is slightly better than that of

�In some tree-based protocols (e.g. RMTP), a repair server multicasts
a repair message if it has received several requests for that message.
Again this is ineffective if a single member suffers from a high loss
rate.

TRMP. This is because sending multiple remote requests
improves robustness against loss of request and repair mes-
sages. For any given �, the latency of RRMP does not in-
crease with group size, which indicates that the algorithm
scales well.

60 80 100 120 140 160
0.5

0.75

1

1.25

1.5

1.75

2

group size

ra
tio

 o
f l

at
en

cy
 (

R
R

M
P

/T
R

M
P

)

λ=1
λ=2
λ=3
λ=4

Fig. 9. Error recovery latency

D. Repair Duplication

In RRMP protocol, each member calculates the percent-
age of repair messages it received which are duplicates.
The result is averaged over all receivers in the group. Fig-
ure 10 shows that the percentage of duplication is low and
decreases with group size, for any given �. Clearly there
is a tradeoff between recovery latency and message dupli-
cation. This is demonstrated in Figure 11 for a group of
�
� members when � is increased from � to � with an in-
crement of �
	 at each step. The figure shows that, when
� � �, the recovery latency of RRMP is slightly better
than that of TRMP, while its percentage of duplicate re-
pairs is about ��
. We believe that this is a low overhead
for enhanced robustness.

10

60 80 100 120 140 160
2

4

6

8

10

12

14

16

18

group size

pe
rc

en
ta

ge
 o

f d
up

lic
at

e
re

pa
irs

 (
%

)

λ=1
λ=2
λ=3
λ=4

Fig. 10. Repair duplication

3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

percentage of duplication (%)

ra
tio

 o
f l

at
en

cy
 (

R
R

M
P

/T
R

M
P

)

Fig. 11. Tradeoff between recovery latency and repair duplica-
tion for different values of �.

E. Locality of Recovery

RRMP achieved good locality of recovery in our sim-
ulation: only those members missing a message are ex-
posed to the repair traffic. This is because the ratio of inter-
region latency to intra-region latency is high in the gener-
ated topologies. Consequently, a repair is sent in regional
multicast only if the entire region missed the message.

VI. RELATED WORK

Randomization was previously used in epidemic algo-
rithms to disseminate updates in a distributed database en-
vironment [20][14]. More recently, van Renesse et al. pro-
posed a failure detection service using the random gossip-
ing technique [21].

The error recovery algorithm in RRMP protocol com-
bines our previous work on randomized error recovery in
the Bimodal Multicast protocol [9] and hierarchical error
recovery similar to that employed by tree-based protocols.
It is different from the Bimodal Multicast protocol in the
following ways: Bimodal Multicast is designed for “many-
to-many” multicast applications and makes no use of net-

work topology information. Consequently, it suffers from
a tendency to do error recovery over potentially high la-
tency links in the network. The probability of this hap-
pening and the associated penalty in latency both increase
with the size of the group. Hence the protocol will have
a scalabilty problem in genuinely large networks. In ad-
dition, a member only exchanges its message history with
other members at fixed intervals. Hence a member miss-
ing a message has to wait until it receives history informa-
tion from another member naming the message before it
can send a retransmission request. In contrast, RRMP fo-
cuses on “one-to-many” applications and proposes an al-
gorithm for establishing an error recovery hierarchy based
geographic locations of different receivers. Its features in-
clude the concurrent execution of the local recovery phase
and the remote recovery phase as soon as a message loss is
detected and the dynamic measurements of round trip time
to related members.

RMTP, LBRRM, and TMTP are among the best known
examples of tree-based protocols. Besides their use of re-
pair servers, these protocols are also different from RRMP
in the construction of error recovery hierarchy. Both
RMTP and LBRRM are based on static hierarchy. In
RMTP, for example, specific machines are chosen as re-
pair servers and are statically organized into a tree. TMTP
proposes an algorithm for dynamically organizing repair
servers into a tree based on expanding ring search. In
TMTP, a receiver always chooses the closest repair server
as its parent, even if the server is downstream in the under-
lying multicast tree. In addition, several repair servers can
form a loop of parent-child relations.

The scalable session message protocol [17] proposes a
self-configuring algorithm for establishing a hierarchical
structure in a multicast group. However, the hierarchy
there is used for distributing session messages in SRM
protocol and not for sending retransmission requests and
replies. The hierarchy is established using a stochastic al-
gorithm based on randomized timers and a set of appropri-
ateness measures. Because SRM is designed for “many-
to-many” multicast applications, the hierarchy is not orga-
nized with respect to a given source.

Search Party is an error recovery protocol based on a
new forwarding service called randomcast which forwards
packets randomly inside a multicast distribution tree [16].
In this protocol, when a member � detects a message loss,
it sends a request in a randomcast packet to its parent node
� in the multicast tree. Upon receiving the packet, � makes
a random choice to decide whether to forward the packet to
its parent or to another child. The probability of forward-
ing to �’s parent is weighted by the number of leaves in
the subtree under �. Should � decide to forward the packet

11

to another child, it inserts sufficient information into the
packet to address the subtree below the arrival interface.
This allows the recipient of the request to send the repair
message in a directed multicast which restricts its scope to
the subtree rooted at the arrival link. A member missing a
message keeps sending requests as a Poisson process until
a repair arrives.

Both RRMP and Search Party use randomization to im-
prove robustness. However, the two protocols differ in sig-
nificant ways. RRMP works well within the existing IP
multicast framework. It builds its error recovery hierarchy
at the transport level without imposing any specific struc-
ture inside a region. In contrast, Search Party requires a
new forwarding service from routers. It uses the under-
lying multicast tree itself for error recovery and avoids the
need to construct a separate hierarchy. The forwarding ser-
vice of randomcast relies on topological information of the
multicast tree which is only available at the network level.
The two protocols are also different in how request and
repair messages are sent and have different performance
characteristics.

VII. CONCLUSIONS AND FUTURE WORK

Error recovery is an essential part of a reliable multicast
service. This paper presents a randomized reliable multi-
cast protocol called RRMP which provides efficient error
recovery in large multicast groups. Compared with tra-
ditional tree-based protocols, RRMP achieves better load
balancing by diffusing the responsibility of error recovery
among all members in the group and improves the robust-
ness of the system against process failures. Error recovery
latency is also improved through the concurrent execution
of local recovery phase and remote recovery phase. Both
analysis and simulation results show that the performance
penalty due to randomization is low and can be tuned ac-
cording to application requirements. At the time of this
writing, we are in the middle of an Internet implementa-
tion of RRMP. We expect to release the software in the
fall.

Error recovery in RRMP is retransmission-based. Re-
cently, Forward Error Correction (FEC) has been proposed
in several reliable multicast protocols as an efficient tech-
nique for providing error recovery of uncorrelated loss in
large multicast groups [22], [23]. In the future, we plan
to investigate how FEC can be incorporated into RRMP to
further improve its scalability.

REFERENCES

[1] Stephen Deering and D. R. Cheriton, “Multicast routing in data-
gram internetworks and extended LANs,” in ACM Transactions
on Computer Systems, May 1990.

[2] Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu,
and Lixia Zhang, “A reliable multicast framework for light-
weight sessions and application level framing,” in Proceedings
of ACM SIGCOMM, 1995.

[3] Maya Yajnik, Jim Kurose, and Don Towsley, “Packet loss corre-
lation in the MBone multicast network: Experimental measure-
ments and markov chain models,” in IEEE INFOCOM, 1996.

[4] Mark Handley, “An examination of MBone performance,” in ISI
Research Report ISI/RR-97-450, Apr. 1997.

[5] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia
Zhang, “Local error recovery in SRM: Comparison of two ap-
proaches,” in IEEE/ACM Transactions on Networking, Dec. 1998.

[6] Sanjoy Paul, Krishan Sabnani, John Lin, and Supratik Bhat-
tacharyya, “Reliable multicast transport protocol (RMTP),” in
IEEE Journal on Selected Areas in Communication, special issue
on Network Support for Multipoint Communication, 1997.

[7] Hugh Holbrook, Sandeep Singhal, and David Cheriton, “Log-
based receiver-reliable multicast for distributed interactive simu-
lation,” in Proceedings of ACM SIGCOMM, 1995.

[8] Rajendra Yavatkar, James Griffioen, and Madhu Sudan, “A reli-
able dissemination protocol for interactive collaborative applica-
tions,” in Proceedings of ACM Multimedia, 1995.

[9] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao,
Mihai Budiu, and Yaron Minsky, “Bimodal multicast,” in ACM
Transactions on Computer Systems, May 1999.

[10] Kenneth P. Birman, Building Secure and Reliable Network Appli-
cations, Manning Publishing Company and Prentice Hall, 1997.

[11] Zhen Xiao, Kenneth P. Birman, and Robbert van Renesse, “Op-
timizing buffer management for reliable multicast,” Tech. Rep.,
Department of Computer Science, Cornell University, May 2000,
Submitted to the Second International Workshop on Networked
Group Communication.

[12] Van Jacobson, “Congestion avoidance and control,” in Proceed-
ings of ACM SIGCOMM, 1988.

[13] Boris Pittel, “On spreading a rumor,” in SIAM Journal of Applied
Mathematics, Feb. 1987.

[14] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, et al., “Epi-
demic algorithms for replicated database maintenance,” in Pro-
ceedings of ACM Principles of Distributed Computing, 1987.

[15] Richard Durrett, The Essentials of Probability, Duxbury Press,
1994.

[16] Adam M. Costello and Steven McCanne, “Search Party: Using
randomcast for reliable multicast with local recovery,” in IEEE
INFOCOM, 1999.

[17] Puneet Sharma, Deborah Estrin, Sally Floyd, and Lixia Zhang,
“Scalable session messages in SRM using self-configuration,”
Tech. Rep., University of Southern California, 1998.

[18] UCB/LBNL/VINT, “network simulator ns (version 2),”
http://www-mash.cs.berkeley.edu/ns/.

[19] Kenneth Calvert, Matthew Doar, and Ellen Zegura, “Modeling In-
ternet topology,” in IEEE Communications Magazine, June 1997.

[20] Derek C. Oppen and Yogen K. Dalal, “The Clearinghouse: A
decentralized agent for locating named objects in a distributed
environment,” Tech. Rep., Xerox, 1981.

[21] Robbert van Renesse, Yaron Minsky, and Mark Hayden, “A
gossip-style failure detection service,” in Proceedings of Mid-
dleware, 1998.

[22] Luigi Rizzo, “Effective erasure codes for reliable computer com-
munication protocols,” in ACM Computer Communication Re-
view, Apr. 1997.

[23] Jorg Nonnenmacher, Ernst W. Biersack, and Don Towsley,
“Parity-based loss recovery for reliable multicast transmission,”
in IEEE/ACM Transactions on Networking, May 1998.

