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Abstract
Multicast patterns are common in cloud computing and data-
center settings. Applications and infrastructure tools such as
Spark frequently move large objects around, update files repli-
cated to multiple nodes, or push new versions of programs to
compute nodes. Some applications use replication directly, for
example to increase fault-tolerance or achieve parallelism. Im-
plementations of Paxos, block chains and other libraries of-
ten employ a hand-built reliable multicast as a primitive. Yet
operating systems continue to be focused on point-to-point
communication solutions such as TCP. Our system, RDMC
(RDMA Multicast), offers reliable multicast functionality con-
structed from RDMA unicast. We discuss design choices,
present a theoretical analysis of RDMC’s robustness to delays
and slow network links, and report on experiments that evalu-
ate RDMC over Mellanox RDMA.

1 Introduction
Datacenter loads are heavily dominated by data copying de-
lays, often from a source node to two or more destinations.
By 2011, distributed file systems like Cosmos (Microsoft),
GFS (Google), and HDFS (Hadoop) handled many petabytes
of writes per day (hundreds of Gb/s) [6], and the throughput
is surely far higher today. Many files are replicated to multi-
ple storage servers [8]. The latency of this process determines
overall write performance for end-user applications. At Face-
book, Hadoop traces show that for jobs with reduce phases,
the transfer of data between successive phases represents 33%
of total run time [4]. Google’s Borg has a median task startup
latency of around 25 seconds (about 80% devoted to package
installation) with upwards of 10,000 tasks starting per minute
in some cells [22]. In some cases, copying VM images and in-
put files takes substantially more time than computation [19].

Despite the importance of fast replication, effective general-
purpose solutions are lacking. Today, cloud middleware sys-
tems typically push new data to nodes in ways that make one
copy at a time. Content sharing is often handled through an
intermediary caching or a key-value layer, which scales well
but introduces extra delay and copying. In parallel platforms
like Hadoop the scheduler often can anticipate that a collection
of tasks will read the same file, yet unless the data happens to
be cached locally, it will be moved point-to-point as each task
opens and accesses that file. Cloud systems could substan-

tially improve efficiency by recognizing such interactions as
instances of a common pattern. Doing so makes it possible
to recover network bandwidth and CPU time currently lost to
extraneous transfers and unneeded copying. For time-critical
uses, such a primitive would reduce staleness.

Our RDMA multicast protocol, RDMC, solves this prob-
lem, offering higher speed with sharply lower resource utiliza-
tion. RDMC is inexpensive to instantiate, and offers a relia-
bility semantic analogous to that of N side-by-side TCP links,
one per receiver. The protocol is also robust to disruption and
offers fair division of bandwidth, as we demonstrate using ex-
periments that expose RDMC to scheduling delays, link con-
gestion, and overlapping delivery patterns.

RDMC can also be extended to offer stronger semantics.
In work reported elsewhere, we describe Derecho [9]: a new
open-source software library layered over RDMC that sup-
ports atomic multicast as well as a classic durable Paxos. To
gain these properties, Derecho introduces a small delay, during
which receivers buffer messages and exchange status informa-
tion. Delivery occurs when RDMC messages are known to
have reached all destinations. No loss of bandwidth is experi-
enced, and the added delay is surprisingly small.

The contributions of the present paper are as follows:
• We describe RDMC in detail, showing how it maps mul-

ticast transfers to an efficient pattern of RDMA unicast
operations.

• We undertake an extensive evaluation of the system.
• We show that RDMC is robust to scheduling and network

delays and discuss options for recovering in the rare event
of a failed transfer.

• We argue that because RDMC generates a deterministic
block transfer pattern, it offers a stepping stone towards
offloading reliable multicast directly onto the NIC.

2 Background on RDMA
RDMA (remote direct memory access) is a zero-copy commu-
nication standard. It has been used for many years on Infini-
band, but is now also working robustly on standard datacenter
Ethernet [15, 25].

RDMA is a user-space networking solution, accessed via
queue pairs: lock-free data structures shared between user
code and the network controller (NIC), consisting of a send
queue and a receive queue. RDMA supports several modes of
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operation. RDMC makes use of reliable two-sided RDMA op-
erations, which behave similarly to TCP. With this mode, the
sender and receiver bind their respective queue pairs together,
creating a session fully implemented by the NIC endpoints. A
send is issued by posting a memory region to the send queue,
and a process indicates its readiness to receive by posting a
memory region to the receive queue. The sender NIC will
then transmit the data, awaiting a hardware-level ack. After
a specified timeout, the NIC retries; after a specified number
of retries, it breaks the connection and reports failure (as ex-
plained below, RDMC won’t start to send unless the receiver is
ready, hence a broken connection indicates a genuine network
or endpoint failure). Once a send and the matching receive are
posted, the data is copied directly from the sender’s memory to
the receiver’s designated location, reliably and at the full rate
the hardware can support. A completion queue reports out-
comes. End-to-end software resending or acknowledgments
are not needed: either the hardware delivers the correct data
(in FIFO order) and reports success, or the connection breaks.

If processes P and Q wish to set up a two-sided RDMA
connection, they must first exchange a form of key (RDMA
lacks the equivalent of the TCP listen operation, and has no
hardware-layer 3-way handshake). RDMC can support multi-
ple overlapping sessions, and they can be created as needed,
hence the need to exchange keys can arise without warning.
To minimize delay, RDMC creates a full N ∗ N set of TCP
connections during bootstrap, then uses them for RDMA con-
nection setup and failure reporting, as explained below.

RDMA offers several additional modes: a one-sided read
and write mode (Q authorizes P to directly access some mem-
ory region), data-inlining, unreliable point-to-point datagrams,
and an unreliable multicast. These features are intended for
small transfers, and because RDMC focuses on large transfers
we did not find them useful, with one exception: as each re-
ceiver becomes ready to accept an incoming transfer, it does a
a one-sided write to tell the sender, which starts sending only
after all are prepared.

Evolution of RDMA NIC programmability. There is grow-
ing interest in programmable network devices. For RDMA
NICs, this may introduce new request-ordering options.

Today’s RDMA NICs guarantee two forms of ordering: (1)
requests enqueued on a single send or receive queue will be
performed in FIFO order (2) a receive completion occurs only
after the incoming transfer is finished. Mellanox’s CORE-
Direct [14] feature proposes a third form of request ordering:
it is possible to enqueue an RDMA send that will wait both
until the prior request has completed, as well as for comple-
tion of some other RDMA send or receive, possibly even on
a different queue pair. In cases where a node Q needs to re-
lay data received from P to another node R, this avoids the
software delay at Q to issue the relay operation after the re-
ceive is complete. We believe that CORE-Direct is just one
of what will eventually be a wide range of new RDMA NIC
programmability features.

RDMC was designed to anticipate this trend, although the

hardware functionality isn’t fully mature yet and hence seri-
ous evaluation of the potential will require additional work.
RDMC can precompute data-flow graphs describing the full
pattern of data movement at the outset of each multicast send.
Members of a replication group could thus post data-flow
graphs at the start of a transfer, linked by cross-node send/re-
ceive dependencies. The hardware would then carry out the
whole transfer without further help. Offloading would elimi-
nate the need for any software actions, but creates an interest-
ing scheduling puzzle: if operations are performed as soon as
they become possible, priority inversions could arise, whereby
an urgent operation is delayed by one that actually has sub-
stantial scheduling slack. As these new hardware capabilities
mature, we hope to explore such questions.

3 High level RDMC summary
We implemented RDMC using the two-sided RDMA opera-
tions described above. The basic requirement is to create a
pattern of RDMA unicasts that would efficiently perform the
desired multicast. In the discussion that follows, the term mes-
sage refers to the entire end-user object being transmitted: it
could be hundreds of megabytes or even gigabytes in size.
Small messages are sent as a single block, while large mes-
sages are sent as a series of blocks: this permits relaying pat-
terns in which receivers simultaneously function as senders.
The benefit of relaying is that it permits full use of both the
incoming and outgoing bandwidth of the receiver NICs. In
contrast, protocols that send objects using a single large uni-
cast transfer are limited: any given node can use its NIC in just
one direction at a time.

This yields a framework that operates as follows:
1. For each RDMC transfer, the sender and receivers first

create an overlay mesh of multi-way bindings: an RDMC
group. This occurs out of band, using TCP as a boot-
strapping protocol. RDMC is lightweight and can sup-
port large numbers of overlapping groups, but to mini-
mize bootstrap delay, applications that will perform re-
peated transfers should reuse groups when feasible.

2. Each transfer occurs as a series of reliable unicast RDMA
transfers, with no retransmission. RDMC computes se-
quences of sends and receives at the outset and queues
them up to run as asynchronously as possible. As noted
earlier, it should eventually be feasible to offload the en-
tire sequence to a programmable NIC.

3. On the receive side, RDMC notifies the user application
of an incoming message, and it must post a buffer of the
correct size into which bytes are received.

4. Sends complete in the order they were initiated. Incom-
ing messages are guaranteed to not be be corrupted, to
arrive in sender order, and will not be duplicated.

5. RDMA apportions bandwidth fairly if there are several
active transfers in one NIC. RDMC extends this property,
offering fairness for overlapping groups.

6. If an RDMA connection fails, the non-crashed end-
point(s) learn of the event from their NICs. RDMC re-
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// Create a new group with the designated members (first member is the root).
bool create_group(int group_number,

vector<int> members,
function<memory_region(int size)> incoming_message_callback,
function<void(char* data, int size)> message_completion_callback);

// Destroy the group, and deallocate associated resources.
void destroy_group(int group_number);

// Attempt to send a message to the group. Will fail if not the root.
bool send(int group_number, char* data, int size);

Figure 1: RDMC library interface

lays these notifications, so that all survivors eventually
learn of the event. The application can then self-repair by
closing the old RDMC session and initiating a new one.

4 System Design
4.1 External API
Figure 1 shows the RDMC interface, omitting configuration
parameters like block size. The send and destroy group
functions are self-explanatory. The create group func-
tion is called concurrently (with identical membership in-
formation) by all group members; we use the out-of-
band TCP connections mentioned earlier to initiate this
step. create group takes two callback functions, which
will be used to notify the application of events. The
incoming message callback is triggered by receivers
when a new transfer is started, and is also used to obtain a
memory region to write the message into. Memory registra-
tion is expensive, hence we perform this step during startup,
before any communication activity occurs.

The message completion callback triggers once a message
send/receive is locally complete and the associated memory
region can be reused. Notice that this might happen before
other receivers have finished getting the message, or even after
other receivers have failed.

Within a group, only one node (the “root”) is allowed to
send data. However, an application is free to create multi-
ple groups with identical membership but different senders.
Note that group membership is static once created: to change
a group’s membership or root the application should destroy
the group and create a new one.

4.2 Architectural Details
RDMC runs as a user-space library. Figure 2 shows an
overview of its architecture.

Initialization. When the application first launches, its mem-
bers must initialize RDMC. At this point, RDMC creates the
mesh of TCP connections mentioned earlier, registers memory,
creates a single RDMA completion queue, and prepares other
internal data structures. Later, during runtime, all RDMC ses-
sions share a single completion queue and thread, reducing
overheads. To avoid polling when no I/O is ocuring, the com-
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Figure 2: RDMC with a sender and 2 receivers.

pletion thread polls for 50 ms after each completion event, then
switches to an interrupt-driven completion mode. It switches
back to polling at the next event.

Data Transfer. Although we will turn out to be primarily fo-
cused on the binomial pipeline algorithm, RDMC actually im-
plements several data transfer algorithms, which makes pos-
sible direct side-by-side comparisons. To be used within
RDMC, a sending algorithm must preserve the sending or-
der, mapping message-sends to determistic sequences of block
transfers.

When a sender initiates a transfer, our first step is to tell
the receivers how big the incoming message will be, since any
single RDMC group can transport messages of various sizes.
Here, we take advantage of an RDMA feature that allows a
data packet to carry an integer “immediate” value. Every block
in a message will be sent with an immediate value indicating
the total size of the message it is part of. Accordingly, when an
RDMC group is set up, the receiver posts a receive for an initial
block of known size. When this block arrives, the immediate
value allows us to determine the full transfer size and (if nec-
essary), to allocate space for the full message. If more blocks
will be sent, the receiver can post additional asynchronous re-
ceives as needed, and in parallel, copy the first block to the
start of the receive area. Then, at the end of the transfer, a new
receive is posted for the first block of the next message.

The sender and each receiver treat the schedule as a series
of asynchronous steps. In each step every participant either
sits idle or does some combination of sending a block and
receiving a block. The most efficient schedules are bidirec-
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Figure 3: (Left) A standard binomial tree multicast, with the entire data object sent in each transfer. (Center) A binomial pipeline multicast,
with the data object broken into three blocks, showing the first three steps of the protocol. In this phase, the sender sends a different block in
each round, and receivers forward the blocks they have to their neighbors. (Right) The final two steps of the binomial pipeline multicast, with
the earlier sends drawn as dotted lines. In this phase, the sender keeps sending the last block, while receivers exchange their highest-numbered
block with their neighbors.

tional: they maximize the degree to which nodes will send one
block while concurrently receiving some other block. Given
the asynchronous step number, it is possible to determine pre-
cisely which blocks these will be. Accordingly, as each re-
ceiver posts memory for the next blocks, it can determine pre-
cisely which block will be arriving and select the correct off-
set into the receive memory region. Similarly, at each step the
sender knows which block to send next, and to whom.

Our design generally avoids any form of out-of-band signal-
ing or other protocol messages, with one exception: to prevent
blocks from being sent prematurely, each node will wait to re-
ceive a ready for block message from its target so that it
knows the target is ready. By ensuring that the sender never
starts until the receiver is ready, we avoid costly backoff/re-
transmission delays, and eliminate the risk that a connection
might break simply because some receiver had a scheduling
delay and didn’t post memory in time. We also sharply re-
duce the amount of NIC resources used by any one multicast:
today’s NICs exhibit degraded performance if the number of
concurrently active receive buffers exceeds NIC caching ca-
pacity. RDMC posts only a few receives per group, and since
we do not anticipate having huge numbers of concurrently ac-
tive groups, this form of resource exhaustion is avoided.

4.3 Protocol
Given this high-level design, the most obvious and important
question is what algorithm to use for constructing a multicast
out of a series of point-to-point unicasts. RDMC implements
multiple algorithms; we’ll describe them in order of increasing
effectiveness.

Sequential Send. The sequential pattern is common in to-
day’s datacenters and is a good choice for small messages. It
implements the naı̈ve solution of transmitting the entire mes-
sage from the sender one by one to each recipient in turn. Since
the bandwidth of a single RDMA transfer will be nearly line
rate, this pattern is effectively the same as running N indepen-
dent point-to-point transfers concurrently.

Notice that with a sequential send, when creatingN replicas
of a B-bit message, the sender’s NIC will incur an IO load of
N ∗ B bits. Replicas will receive B bits, but do no sending.
With large messages, this makes poor use of NIC resources: a
100Gbps NIC can potentially send and receive 100Gbps con-
currently. Thus sequential send creates a hot spot at the sender.
Chain Send. This algorithm implements a bucket-brigade,
similar to the chain replication scheme described in [21]. Af-
ter breaking a message into blocks, each inner receiver in the
brigade relays blocks as it receives them. Relayers use their
full bidirectional bandwidth, but the further they are down the
chain, the longer they sit idle until they get their first block, so
worst-case latency is high.
Binomial Tree. For large objects, better performance is pos-
sible if senders send entire messages, and receivers relay each
message once they get it, as seen in Figure 3 (left). The la-
bels on the arrows represent the asynchronous time step. Here,
sender 0 starts by sending some message to receiver 1. Then
in parallel, 0 sends to 2 while 1 sends to 3, and then in the final
step 0 sends to 4, 1 sends to 5, 2 sends to 6 and 3 sends to 7.
The resulting pattern of sends traces out a binomial tree, hence
latency will be better than that for the sequential send, but no-
tice that the inner transfers can’t start until the higher level
ones finish. For a small transfer, this would be unavoidable,
but recall that RDMC aims at cases where transfers will often
be very large. Ideally, we would wish to improve link utiliza-
tion by breaking large transfers into a series of smaller blocks
and pipelining the block transfers, while simultaneously mini-
mizing latency by leveraging a binomial tree routing pattern.
Binomial Pipeline. By combining the Chain Send with the
Binomial Tree, we can achieve both goals, an observation first
made by Ganesan and Seshadri [7]. The algorithm works by
creating a virtual hypercube overlay of dimension d, within
which d distinct blocks will be concurrently relayed (Figure 3,
middle, where the blocks are represented by the colors red,
green and blue). Each node repeatedly performs one send op-
eration and one receive operation until, on the last step, they all
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simultaneously receive their last block (if the number of nodes
isn’t a power of 2, the final receipt spreads over two asyn-
chronous steps). The original work by Ganesan and Seshadri
was theoretical, validated with simulations. Further, they as-
sumed that the network is synchronous. We extended their ap-
proach to work in a fully asynchronous setting where a node
is waiting for exactly one node to send a block. We also de-
coupled the send and receive steps so that a send step is only
pending if the associated block hasn’t been received. The re-
sulting algorithm is exceptionally efficient because it reaches
its fully-loaded transfer pattern quickly, ensuring that nodes
spend as much time as possible simultaneously sending and
receiving blocks.
Hybrid Algorithms Current datacenters hide network topol-
ogy to prevent application behaviors that might defeat broader
management goals. Suppose, however, that one were building
an infrastructure service for datacenter-wide use, and that this
form of information was available to it. Many datacenters have
full bisection bandwidth on a rack-by-rack basis, but use some
form of an oversubscribed top of rack (TOR) switch to con-
nect different racks. When a binomial pipeline multicast runs
in such a setting, a large fraction of the transfer operations tra-
verse the TOR switch (this is because if we build the overlay
using random pairs of nodes, many links would connect nodes
that reside in different racks). In contrast, suppose that we
were to use two separate instances of the binomial pipeline,
one in the TOR layer, and a second one within the rack. By
doing so we could seed each rack leader with a copy of the
message in a way that creates a burst of higher load, but is
highly efficient and achieves the lowest possible latency and
skew. Then we repeat the dissemination within the rack, and
again maximize bandwidth while minimizing delay and skew.

4.4 Analysis
We now offer a formal description of the binomial pipeline
algorithm, starting with a precise description of the rule for
selecting the block to send at a given step, and then proceeding
to a more theoretical analysis of the predicted behavior of the
algorithm during steady-state operation.

Let the number of nodes be n. Assume that n is a power of
2, n = 2l (for reasons of brevity we omit the general case, al-
though the needed extensions are straightforward). Each node
has an id in {0, 1, . . . , n − 1}, an l−bit number with node
0 as the sender. Let the number of blocks to send be k, or-
dered from 0 to k − 1. The first block takes log n = l steps
to reach every node. Since, the block sends are pipelined, the
next block send completes in the next steps and so on. Thus,
the number of steps to complete the send is l + k − 1. We
number the steps from 0 to l+ k− 2. Since all blocks are only
at the sender in the beginning, it takes the first l steps for every
node to receive at least 1 block. We refer to steps l to l+k− 2
as ”steady” steps.

Let % denote integer modulus and ⊕ denote the bitwise
XOR operation. Given the nodes, we can construct a hyper-
cube of l dimensions where each node occupies a distinct ver-
tex of the hypercube. The l−bit node-id of a node identifies

the mapping from nodes to vertices as follows: A node i has
edges to nodes i⊕ 2m, for m = 0, 1, . . . , l − 1. The neighbor
i⊕ 2m is along direction m from i.

Ganesan and Seshadri provide the following characteriza-
tion of the algorithm:

• At each step j, each node exchanges a block with its
neighbor along direction j%l of the hypercube (except
if the node does not have a block to send or its neighbor
is the sender).

• The sender sends block j in step j for steps j, 0 ≤ j ≤
k−1 and the last block k−1 for steps j, k ≤ j ≤ l+k−1.
Other nodes send the highest numbered block they have
received before step j.

From this specification, we devised a send scheme for a
given node and step number, required for the asynchronous
implementation of the algorithm. Let σ(n, r) denote the num-
ber obtained by a right circular shift of the l− bit number n by
r positions. Let tr ze(m) be the number of trailing zeros in
the binary representation of m. Given step j, node i sends the
block number, b =

min(j, k − 1), if i = σ(n, j%l) = 0

nothing, if σ(n, j%l) = 1

min(j − l + r, k − 1), if σ(n, j%l) 6= 1 and j − l + r >= 0

nothing, otherwise,
where r = tr ze(σ(n, j%l)) >= 0

to the node i⊕2j%l, for each 0 ≤ i ≤ n−1, 0 ≤ j ≤ l+k−2.

4.5 Robustness of RDMC’s Binomial Pipeline
As will be seen in Section 5, the binomial pipeline remains
stable even in an experimental setting subject to occasional de-
lays in sending, has variable link latencies, and that includes
congested network links. One can characterize multicast ro-
bustness in several dimensions:

• Tolerance of normal network issues of data loss, corrup-
tion and duplication.

• Tolerance of interference from other tenants sharing net-
work resources.

• Delay tolerance : network delays, scheduling delays.
The first two properties arise from the hardware, which

provides error correction and deduplication, and achieves fair
bandwidth sharing in multi-tenant environments. Delay tol-
erance is a consequence of RDMC’s block-by-block sending
pattern and receiver-receiver relaying. In particular:

1. A delay ε in sending a block leads to a maximum delay
of ε in the total time to send. If a block send takes about δ
time, the total time without delay is (l+k− 1)δ. Assum-
ing ε = O(δ), the total time becomes (l + k − 1)δ + ε.
If the number of blocks is large, (l + k − 1)δ >> ε, and
thus the effective bandwidth does not decrease by much.

2. Since a node cycles through its l neighbors for exchang-
ing blocks, a link between two neighbors is traversed on
just 1/l of the steps. Thus a slow link has a limited impact
on performance. For example, if one link has bandwidth
T ′ and other links have bandwidth T , with T > T ′, rough
calculations show the effective bandwidth to be at least a
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factor of lT ′

T+(l−1)T ′ of the bandwidth when each link is
of bandwidth T . If T ′ = T/2, n = 64, this fraction
is 85.6%. Contrast this to the chain replication scheme
where each link is traversed by each block and the band-
width is limited by the slowest link (T ′ in our example).

3. If a node i sends block b in round j, define slack(i, j) to
be j minus the step number in which i received b. The av-
erage slack for a given steady step j, avg slack(j)is de-

fined as
∑

i sends in j slack(i,j)

#senders in j . We found that avg slack(j),
for any steady step j is a constant equal to 2(1− l−1

n−2 ) =

2(1 − logn−1
n−2 ). For moderate n, log n << n, average

slack is ≈ 2. A slack greater than 1 tells us that the node
received the block it must send on the current step at least
2 steps in the past. This is of value because if the node is
running slightly late, it may be able to catch up.

A more comprehensive investigation of robustness in the
presence of delay represents an interesting direction for future
research. Our experiments were performed both on a dedi-
cated cluster and in a large shared supercomputer, and exposed
RDMC to a variety of scheduling and link delays, but in an un-
controlled way. Performance does drop as a function of scale
(presumably, in part because of such effects), but to a limited
degree. The open question is the degree to which this residual
loss of performance might be avoided.

4.6 Insights from using RDMC
We now have several years of experience with RDMC in var-
ious settings, and have used it within our own Derecho plat-
form. Several insights emerge from these activities.
Recovery From Failure. As noted earlier, an RDMC group
behaves much like a set of side-by-side TCP connections from
the sender to each of the receivers. Although failures are
sensed when individual RDMA connections report a problem,
our policy of relaying failure information quickly converges to
a state in which the disrupted RDMC group ceases new trans-
missions, and in which all surviving endpoints are aware of the
failure. At this point, some receivers may have successfully re-
ceived and delivered messages that other receivers have not yet
finished receiving.

To appreciate the resulting recovery challenge, we can ask
what the sender “knows” at the time that it first learns that
its RDMC group has failed. Much as a TCP sender does
not learn that data in the TCP window has been received and
processed unless some form of end-to-end acknowledgement
is introduced, an RDMC sender trusts RDMC to do its job.
If a group is used for a series of transfers the sender will
lack certainty about the status of recently-transmitted mes-
sages (RDMC does not provide an end-to-end status reporting
mechanism). On the other hand, disruption will be sensed by
all RDMC group members if something goes wrong. More-
over, failure will always be reported when closing (destroy-
ing) the RDMC group. Thus, if the group close operation is
successful, the sender (and all receivers) can be confident that
every RDMC message reached every destination.

For most purposes listed in the introduction, this guarantee

is adequate. For example, if a multicast file transfer finishes
and the close is successful, the file was successfully delivered
to the full set of receivers, with no duplications, omissions or
corruption. Conversely, if the transfer fails, every receiver
learns this and the file transfer tool could simply retry the
transfer within the surviving members. If the tool was trans-
ferring a long sequence of files and the cost of resending them
were a concern, it could implement an end-to-end status check
to figure out which ones don’t need to be resent.

Systems seeking stronger guarantees can leverage RDMC
too. For example, Derecho augments RDMC with a replicated
status table implemented using one-sided RDMA writes [9].
On reception of an RDMC message, Derecho buffers it briefly.
Delivery occurs only after every receiver has a copy of the
message, which receivers discover by monitoring the status
table. A similar form of distributed status tracking is used
when a failure disrupts an RDMC group. Here, Derecho uses
a leader-based cleanup mechanism (again based on a one-
sided RDMA write protocol) to collect state from all sur-
viving nodes, analyze the outcome, and then tell the partici-
pants which buffered messages to deliver and which to discard.
Through a series of such extensions, Derecho is able to offer
the full suite of Paxos guarantees, yet transfers all messages
over RDMC.

Small messages. RDMC is optimized for bulk data move-
ment. The work reported here only looked at the large message
case. Derecho includes a small-message protocol that uses
one-sided RDMA writes into a set of round-robin bounded
buffers, one per receiver, and compares performance of that
method with that of RDMC. In summary, the optimized small
message protocol gains as much as a 5x speedup compared to
RDMC provided that the group is small enough (up to about 16
members) and the messages are small enough (no more than
10KB). For larger groups or larger messages, and for long se-
ries of messages that can be batched, the binomial pipeline
dominates.

Memory management. RDMC affords flexible memory
management. In the experiments reported here, we preregis-
ter memory regions that will be used with the RDMA NIC, but
allocate memory for each new message when the first block ar-
rives. Thus receivers perform a call to malloc on the critical
path. In applications that can plan ahead, better performance
can be achieved by performing memory allocation before the
start of a long series of transfers.

5 Experiments
5.1 Setup
We conducted experiments on several clusters equipped with
different amounts of memory and NIC hardware.

Fractus. Fractus is a cluster of 16 RDMA-enabled nodes run-
ning Ubuntu 16.04, each equipped with a 4x QDR Mellanox
NIC and 94 GB of DDR3 memory. All nodes are connected to
both a 100 Gb/s Mellanox IB switch and a 100 Gb/s Mellanox
RoCE switch, and have one-hop paths to one-another.
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(a) 256 MB multicasts. Note that the chain send and binomial
pipeline achieve very similar latency. (b) 8 MB multicasts.

Figure 4: Latency of MPI (MVAPICH) and several RDMC algorithms on Fractus. Group sizes include the sender, so a size of three means
one sender and two receivers.

Figure 5: Breakdown of transfer time and wait time of two nodes taking part in the 256 MB transfer. The majority of time is spent in hardware
(blue), but the sender (left) incurs a higher CPU burden (orange) than the receiver (right). Offloading RDMC fully into the hardware would
eliminate this residual load and reduce the risk that a long user-level scheduling delay could impact overall transfer performance.

Sierra. The Sierra cluster at Lawrence Livermore National
Laboratory consists of 1,944 nodes of which 1,856 are des-
ignated as batch compute nodes. Each is equipped with two
6-core Intel Xeon EP X5660 processors and 24GB memory.
They are connected by an Infiniband fabric which is structured
as a two-stage, federated, bidirectional, fat-tree. The NICs are
4x QDR QLogic adapters each operating at a 40 Gb/s line rate.
The Sierra cluster runs TOSS 2.2, a modified version of Red
Hat Linux.
Stampede-1. The U. Texas Stampede-1 cluster contains 6400
C8220 compute nodes with 56 Gb/s FDR Mellanox NICs.
Like Sierra, it is batch scheduled with little control over node
placement. We measured unicast speeds of up to 40 Gb/s.
Apt Cluster. The EmuLab Apt cluster contains a total of 192
nodes divided into two classes: 128 nodes have a single Xeon
E5-2450 processor with 16 GB of RAM, while 64 nodes have
two Xeon E5-2650v2 processors and 64 GB of RAM. All have
one FDR Mellanox CX3 NIC which is capable of 56 Gb/s.

Interestingly, Apt has a significantly oversubscribed TOR

network that degrades to about 16 Gb/s per link when heav-
ily loaded. This enabled us to look at the behavior of RDMC
under conditions where some network links are much slower
than others. Although the situation is seemingly ideal for tak-
ing the next step and experimenting on hybrid protocols, this
proved to be impractical: Apt is batch-scheduled like Sierra,
with no control over node placement, and we were unable to
dynamically discover network topology.

Our experiments include cases that closely replicate the
RDMA deployments seen in today’s cloud platforms. For
example, Microsoft Azure offers RDMA over Infiniband as
part of its Azure Compute HPC framework, and many ven-
dors make use of RDMA in their own infrastructure tools,
both on Infiniband and on RoCE. However, large-scale end-
user testbeds exposing RoCE are not yet available: operators
are apparently concerned that heavy use of RoCE could trigger
data-center-wide instability. Our hope is that rollout of DC-
QCN will reassure operators, who would then see an obvious
benefit to allowing their users to access RoCE.
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In all of our experiments, the sender(s) generates a message
containing random data, and we measure the time from when
the send is submitted to the library to when all clients have
gotten an upcall indicating that the multicast has completed.
The largest messages sent have sizes that might arise in appli-
cations transmitting videos, or when pushing large images to
compute nodes in a data analytics environment. Smaller mes-
sage sizes are picked to match tasks such as replicating photos
or XML-encoded messages. Bandwidth is computed as the
number of messages sent, multiplied by the size of each mes-
sage, divided by the total time spent (regardless of the number
of receivers). RDMC does not pipeline messages, so the la-
tency of a multicast is simply the message size divided by its
bandwidth.

5.2 Results
Figure 4 compares the relative performance of the differ-
ent algorithms considered. For comparison, it also shows the
throughput of the heavily optimized MPI Bcast() method
from MVAPICH, a high-performance computing library that
implements the MPI standard on Infiniband networks (we
measured this using a separate benchmark suite). As antici-
pated, both sequential send and binomial tree do poorly as the
number of nodes grows. Meanwhile chain send is competi-
tive with binomial pipeline, except for small transfers to large
numbers of nodes where binomial pulls ahead. MVAPICH
falls in between, taking from 1.03× to 3× as long as binomial
pipeline. Throughout the remainder of this paper we primarily
focus on binomial pipeline because of its robust performance
across a range of settings, however we note that chain send can
often be useful due to its simplicity.

5.2.1 Microbenchmarks
In Table 1 we break down the time for a single 256 MB trans-
fer with 1 MB blocks and a group size of 4 (meaning 1 sender
and 3 receivers) conducted on Stampede. All values are in
microseconds, and measurements were taken on the node far-
thest from the root. Accordingly, the Remote Setup and Re-
mote Block Transfers reflect the sum of the times taken by the
root to send and by the first receiver to relay. Roughly 99% of
the total time is spent in the Remote Block Transfers or Block
Transfers states (in which the network is being fully utilized)
meaning that overheads from RDMC account for only around
1% of the time taken by the transfer.

Figure 5 examines the same send but shows the time usage
for each step of the transfer for both the relayer (whose times
are reported in the table) and for the root sender. Towards the

Remote Setup 11
Remote Block Transfers 461
Local Setup 4
Block Transfers 60944
Waiting 449
Copy Time 215
Total 62084

Table 1: Time (microseconds) for key steps in a transfer.

Figure 6: Multicast bandwidth (computed as the message size di-
vided by the latency) on Fractus across a range of block sizes for
messages between 16 KB and 128 MB, all for groups of size 4.

Figure 7: 1 byte messages/sec. (Fractus)

end of the message transfer we see an anomalously long wait
time on both instrumented nodes. As it turns out, this demon-
strates how RDMC can be vulnerable to delays on individual
nodes. In this instance, a roughly 100 µs delay on the relayer
(likely caused by the OS picking an inopportune time to pre-
empt our process) forced the sender to delay on the following
step when it discovered that the target for its next block wasn’t
ready yet. The CORE-Direct functionality would mitigate this.

In Figure 6, we examine the impact of block size on band-
width for a range of message sizes. Notice that increasing the
block size initially improves performance, but then a peak is
reached. This result is actually to be expected as there are
two competing factors. Each block transfer involves a certain
amount of latency, so increasing the block size actually in-
creases the rate at which information moves across links (with
diminishing returns as the block size grows larger). However,
the overhead associated with the binomial pipeline algorithm
is proportional to the amount of time spent transferring an indi-
vidual block. There is also additional overhead incurred when
there are not enough blocks in the message for all nodes to get
to contribute meaningfully to the transfer.

Finally, Figure 7 measures the number of 1 byte messages
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Figure 8: Total time for replicating a 256MB object to a large number
of nodes on Sierra.
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Figure 9: Distribution of latencies when simulating the Cosmos stor-
age system replication layer.

delivered per second using the binomial pipeline, again on
Fractus. Note, however, that the binomial pipeline (and in-
deed RDMC as a whole) is not really intended as a high-speed
event notification solution: were we focused primarily on de-
livery of very small messages at the highest possible speed and
with the lowest possible latency, there are other algorithms we
could have explored that would outperform this configuration
of RDMC under most conditions. Thus the 1-byte behavior of
RDMC is of greater interest as a way to understand overheads
than for its actual performance.

5.2.2 Scalability
Figure 8 compares scalability of the binomial pipeline on
Sierra with that of sequential send (the trend was clear and
Sierra was an expensive system to run on, so we extrapo-
lated the 512-node sequential send data point). While sequen-
tial send scales linearly in the number of receivers, binomial
pipeline scales sub-linearly, which makes an orders of magni-
tude difference when creating large numbers of copies of large
objects. This graph leads to a surprising insight: with RDMC,
replication can be almost free: whether making 127, 255 or
511 copies, the total time required is almost the same.

Although we did not separately graph end-of-transfer time,
binomial pipeline transfers also complete nearly simultane-
ously: this minimizes temporal skew, which is important in
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Figure 10: Aggregate bandwidth of concurrent multicasts on Fractus
and the Apt cluster for cases in which we varied the percentage of
active senders in each node-group (in a group with k senders, we used
k overlapped RDMC groups with identical membership). The Apt
cluster has an oversubscribed TOR; our protocols gracefully adapt to
match the available bandwidth.

parallel computing settings because many such systems run
as a series of loosely synchronized steps that end with some
form of shuffle or all-to-all data exchange. Skew can leave the
whole system idle waiting for one node to finish. In contrast,
the linear degradation of sequential send is also associated
with high skew. This highlights the very poor performance
of the technology used in most of today’s cloud computing
frameworks: not only is copy-by-copy replication slow, but it
also disrupts computations that need to wait for the transfers
to all finish, or that should run in loosely synchronized stages.

Next, we set out to examine the behavior of RDMC in ap-
plications that issue large numbers of concurrent multicasts to
overlapping groups. We obtained a trace sampled from the
data replication layer of Microsoft’s Cosmos system, a data
warehouse used by the Bing platform. Cosmos currently runs
on a TCP/IP network, making no use of RDMA or multicast.
The trace has several million 3-node writes with random tar-
get nodes and object sizes varying from hundreds of bytes to
hundreds of MB (the median is 12MB and the mean 29 MB).
Many transfers have overlapping target groups.

To simulate use of multicast for the Cosmos workload, we
designated one Fractus node to generate traffic, and 15 nodes
to host the replicas. The system operated by generating objects
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(c) 10 KB Transfers

Figure 11: Comparison of RDMC’s normal hybrid scheme of polling and interrupts (solid), with pure interrupts (dashed). There is no
noticeable difference between pure polling and the hybrid scheme. All ran on Fractus.
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Figure 12: CORE-Direct experiment using a chain multicast protocol to send a 100 MB message. The left is a run using hybrid polling/in-
terrupts; on the right is a run with purely interrupts. Both experiments were on Fractus.

filled with random content, of the same sizes as seen in the
trace, then replicating them by randomly selecting one of the
possible 3-node groupings as a target (the required 455 RDMC
groups were created beforehand so that this would be off the
critical path). Figure 9 shows the latency distribution for 3
different send algorithms. Notice that binomial pipeline is al-
most twice as fast as binomial tree and around three times as
fast as sequential send. Average throughput when running with
binomial pipeline is around 93 Gb/s of data replicated, which
translates to about a petabyte per day. We achieve nearly the
full bisection capacity of Fractus, with no sign of interference
between concurrent overlapping transfer. The RDMC data pat-
tern is highly efficient for this workload: no redundant data
transfers occur on any network link.

A second experiment looked at group overlap in a more con-
trolled manner with a fixed multicast message size. In Figure
10 we construct sets of groups of the size given by the X-axis
label. The sets have identical members (for example, the 8-
node case would always have the identical 8 members), but
different senders. At each size we run 3 experiments, vary-
ing the number of senders. (1) In the experiment correspond-
ing to the solid line, all members are senders (hence we have
8 perfectly overlapped groups, each with the same members,
but a different sender). (2) With the dashed line, the number
of overlapping groups is half the size: half the members are
senders. (3) Finally, the dotted line shows performance for a
single group spanning all members but with a single sender.

All senders run at the maximum rate, sending messages of the
size indicated. Then we compute bandwidth by measuring the
time to transfer a given sized message to all of the overlapping
groups, and dividing by the message size times the number of
groups (i.e. the total bytes sent).

Again, we see that full resources of the test systems were
efficiently used. On Fractus, with a full bisection capacity
of 100Gbps, our peak rate (seen in patterns with concurrent
senders) was quite close to the limits, at least for larger mes-
sage sizes. On Apt, which has an oversubscribed TOR, the
bisection bandwidth approaches 16Gbps for this pattern of
communication, and our graphs do so as well, at least for the
larger groups (which generated enough load to saturate the
TOR switch).

5.2.3 Resource Considerations
RDMA forces applications to either poll for completions
(which consumes a full core), or to detect completions via in-
terrupts (which incurs high overheads and delay). RDMC uses
a hybrid solution, but we wanted to understand whether this
has any negative impacts on performance. Our first test isn’t
shown: we tested the system with pure polling, but found that
this was not measurably faster than the hybrid.

Next, as shown in Figure 11 we compared RDMC in its
standard hybrid mode with a version running using pure in-
terrupts, so that no polling occurs. For the latter case, CPU
loads (not graphed) are definitely lower: they drop from al-
most exactly 100% for all runs with polling enabled, to around
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10% for 100 MB transfers and 50% for 1 MB transfers. With
10 KB transfers, there was only a minimal difference since
so much time was spent processing blocks. Despite the con-
siderable improvement in CPU usage, the bandwidth impact is
quite minimal, particularly for large transfers. A pure-interrupt
mode may be worthwhile for computationally intensive work-
loads that send large messages, provided that the slightly in-
creased transfer delay isn’t a concern.

On hardware that supports CORE-Direct we can offload an
entire transfer sequence as a partially-ordered graph of asyn-
chronous requests. Here, our preliminary experiments were
only partially successful: a firmware bug (a NIC hardware is-
sue) prevented us from testing our full range of protocols. Fig-
ure 12 shows results for chain send, where the request pattern
is simple and the bug did not occur. The left graph uses a hy-
brid of polling and interrupts, while the right graph uses pure
interrupts. As seen in the graphs, cross-channel generally pro-
vides a speedup of about 5%, although there is one scenario (a
single sender transmitting in groups of size 5-8, in polling-only
mode) in which our standard RDMC solution wins.

5.3 Future Work: RDMC on TCP
When Ganesan and Seshadri first explored multicast overlay
topologies, they expressed concern that even a single lagging
node might cause cascading delay, impacting every partici-
pant and limiting scalability [7]. This led them to focus their
work on dedicated, synchronous, HPC settings, justifying an
assumption that nodes would run in lock-step and not be ex-
posed to scheduling delays or link congestion.

However, today’s RDMA operates in multi-tenant environ-
ments. Even supercomputers host large numbers of jobs, and
hence are at risk of link congestion. RDMA in standard Eth-
ernet settings uses a TCP-like congestion control (DCQCN or
TIMELY). Yet we do not see performance collapse at scale.
Our slack analysis suggests a possible explanation: the bi-
nomial pipeline generates a block-transfer schedule in which
there are opportunities for a delayed node to catch up. As we
scale up, delays of various kinds do occur. Yet this slack ap-
parently compensates, reducing the slowdown.

The observation has an interesting practical consequence: it
suggests that RDMC might work surprisingly well over high
speed datacenter TCP (with no RDMA), and perhaps even in a
WAN network. In work still underway, we are porting RDMC
to access RDMA through LibFabrics from the OpenFabrics
Interface Alliance (OFI) [16]. LibFabrics is a mature solution
used as the lowest layer of the message passing interface (MPI)
library for HPC computing. The package uses a macro expan-
sion approach and maps directly to RDMA as well as to other
hardware accelerators, or even standard TCP. When the port is
finished, we plan to closely study the behavior of RDMC in a
variety of TCP-only settings.

6 Related Work
Replication is an area rich in software libraries and systems.
We’ve mentioned reliable multicast, primarily to emphasize

that RDMC is designed to replicate data, but is not intended
to offer the associated strong group semantics and multicast
atomicity. Paxos is the most famous state machine replication
(consensus) technology. Examples of systems in this category
include the classical Paxos protocol itself, our Derecho library,
libPaxos, Zookeeper’s ZAB layer, the head-of-log mechanism
in Corfu, DARE, and APUs [1, 9, 10, 12, 13, 18, 24]. Derecho
demonstrates that RDMC can be useful in Paxos solutions, but
also that additional mechanisms are needed when doing so:
RDMC has weaker semantics than Paxos.

We are not the first to ask how RDMA should be exploited
in the operating system. The early RDMA concept itself dates
to a classic paper by Von Eicken and Vogels [23], which in-
troduced the zero-copy option and reprogrammed a network
interface to demonstrate its benefits. VIA, the virtual interface
architecture then emerged; its “Verbs” API extended the UNet
idea to support hardware from Infiniband, Myrinet, QLogic
and other vendors. The Verbs API used by RDMC is widely
standard, but other options include the QLogic PSM subset of
RDMA, Intel’s Omni-Path Fabric solution, socket-level offer-
ings such as the Chelsio WD-UDP [3] embedding, etc.

Despite the huge number of products, it seems reasonable to
assert that the biggest success to date has been the MPI plat-
form integration with Infiniband RDMA, which has become
the mainstay of HPC communications. MPI itself actually
provides a multicast primitive similar to the one described in
this paper, but the programming model imposed by MPI has
a number of limitations that make it unsuitable for the appli-
cations that RDMC targets: (1) send patterns are known in
advance so receivers can anticipate the exact size and root of
any multicast prior to it being initiated, (2) fault tolerance is
handled by checkpointing, and (3) the set of processes in a
job must remain fixed for the duration of that job. Even so,
RDMC still outperforms the popular MVAPICH implementa-
tion of MPI by a significant margin.

Broadcast is also important between CPU cores, and the
Smelt library [11] provides a novel approach to address this
challenge. Their solution is not directly applicable to our set-
ting because they deal with tiny messages that don’t require the
added complexity of being broken into blocks, but the idea of
automatically inferring reasonable send patterns is intriguing.

Although our focus is on bulk data movement, the core ar-
gument here is perhaps closest to the ones made in recent op-
erating systems papers, such as FaRM [5], Arrakis [17] and
IX [2]. In these works, the operating system is increasingly
viewed as a control plane, with the RDMA network treated as
an out of band technology for the data plane that works best
when minimally disrupted. Adopting this perspective, one can
view RDMC as a generic data plane solution well suited to
out-of-band deployments. A recent example of a database op-
timized to use RDMA is Crail [20].

7 Conclusions
Our paper introduces RDMC: a new reliable memory-to-
memory replication tool implemented over RDMA unicast.
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RDMC is available for download as a free, open-source li-
brary, and should be of direct use in O/S services that currently
move objects either one by one, or over sets of side-by-side
TCP links. The protocol can also be used as a component in
higher level libraries with stronger semantics.

RDMC performance is very high when compared with the
most widely used general-purpose options, and the protocol
scales to large numbers of replicas. RDMC yields a benefit
even if just 3 replicas are desired. In fact replication turns
out to be remarkably inexpensive, relative to just creating one
copy: one can have 4 or 8 replicas for nearly the same price as
for 1, and it takes just a few times as long to make hundreds of
replicas as it takes to make 1. Additionally, RDMC is robust
to delays of various kinds: Normal network issues of data loss
and duplication are handled by RDMA while RDMC’s block-
by-block sending pattern and receiver-receiver relaying com-
pensate for occasional scheduling and network delays. The
RDMC code base is available for download as part of the Dere-
cho platform (https://GitHub.com/Derecho-Project).
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