
Treating Software-Defined Networks Like Disk
Arrays

Zhiyuan Teo, Ken Birman, Noah Apthorpe, Robbert Van Renesse, Vasily Kuksenkov
Department of Computer Science

Cornell University
Email: {zteo, ken, apthorpe, rvr, vasily}@cs.cornell.edu

Abstract—Data networks require a high degree of perfor-
mance and reliability as mission-critical IoT deployments increas-
ingly depend on them. Although performance and fault tolerance
can be individually addressed at all levels of the networking stack,
few solutions tackle these challenges in an elegant and scalable
manner. We propose a redundant array of independent network
links (RAIL), adapted from RAID, that combines software-
defined networking, disjoint network paths and selective packet
processing to improve communications bandwidth and latency
while simultaneously providing fault tolerance. Our work shows
that the implementation of such a system is feasible without
necessitating awareness or changes in the operating systems or
hardware of IoT and client devices.

I. INTRODUCTION

The potential uses of multiple paths in a network have at-
tracted significant attention, and many IETF standards [8] [10]
have been finalized or are now being finalized to expose and
exploit these capabilities. The reasons for this interest reflect
multiple goals: multipath networking provides (1) improved
resilience to failures and (2) improved network load-balancing,
leading to (3) better data throughput, and hence improved user
experience.

The basis for multipath networking is conceptually simple.
Multipath networking can be seen as another form of paral-
lelism, with the objective of improving network performance
subject to some underlying constraints. These underlying con-
straints are highly varied, and may not necessarily be bound
by engineering or physical limits. For example, one important
criteria in MPTCP [8] is flow fairness. Under this criteria,
subflows of MPTCP must not use an unfair share of network
link bandwidth should they transit the same physical link.
This constraint is not imposed by a topology or environmental
limit, but is nonetheless required for acceptable deployment.
The choice of which constraints to address will determine
the optimality of the resultant solution over a broad range of
applications.

For our work, we take the position that IoT devices are
closed black boxes that are not amenable to modification of
any kind, whether in software or hardware. This is a reason-
able assumption because many consumer or industrial grade
IoT devices are commodity-off-the-shelf components that are
generally designed to be tamper-proof and maintenance-free.
Critically, this constraint means that any kind of change
designed to improve networking experience must be confined
to the network switching equipment itself.

In our target setting, we assume that network operators use
switched Ethernet and are open to upgrading their switches to

OpenFlow [14]-capable models. However, we do not assume
that users can or will upgrade their IPv4 networking equipment
or software, although they may nonetheless desire the benefits
offered by multiple paths in the network. For example, in
networks created to support IoT instrumentation of the smart
power grid, embedded sensors may not be subject to repro-
gramming, but could benefit from the resilience offered by a
multipath network. Beyond these two assumptions, we do not
impose any other limitation, so users are free to run their own
protocols and software, oblivious to the underlying network.
We believe these assumptions to be valid and powerful, as they
cover many existing deployments and have the advantage of
frustration-free backward compatibility.

The contributions of our work are as follows:

• RAIL (Redundant Array of Independent Links), an
innovative set of network redundancy schemes adapted
from RAID, that collectively provide high speed and
reliable packet transportation, while being tunable in
terms of latency and bandwidth efficiency.

• The design of dedicated network processing units
(NPUs), analogous to RAID controllers, to support
RAIL schemes.

• Engineering solutions that require no changes to ex-
isting hardware and software beyond network switch
upgrades.

• A prototype and microbenchmarks to validate our
claims.

Taken together, our work fills an unoccupied niche in com-
puter networking by providing selectable (1) improvements
to end-to-end network performance through packet processing
and redundant routing and (2) the realization of high-assurance
networking through zero-downtime failure recovery, while be-
ing (3) a drop-in upgrade that is (4) fully backward-compatible
with existing end-host equipment.

II. BACKGROUND

A. Ethernet and the Spanning Tree Protocol

Conventional Ethernet is poorly matched to our goal of
providing a multipath-capable network because it has an im-
portant restriction that mandates a spanning tree topology for
correct operation. This spanning tree requirement is not arbi-
trary; it was designed to connect all participating hosts while
eliminating catastrophic network loops. Conventional Ethernet



networks perform loop elimination and spanning tree construc-
tion by running a distributed algorithm such as the Spanning
Tree Protocol (STP) or the improved Rapid Spanning Tree
Protocol (RSTP) [19]. In STP and RSTP, Ethernet switches
in the same network segment collaborate and agree on which
network links to use such that a single spanning tree connects
the entire network without any cycles. In the process, STP or
RSTP disables links that would otherwise result in loops. All
traffic transits the spanning tree, which becomes a network-
wide bottleneck. Accordingly, conventional Ethernet networks
do not typically feature link redundancies, and where such
redundancies exist, they cannot be taken advantage of without
special configuration. Worse, failure recovery and redundant
link activation typically take between several seconds to half
a minute, resulting in network hiccups even if no apparent
physical partitions have been introduced.

B. Link-layer multipath techniques

To circumvent the shortcomings of a network spanning
tree, link-layer techniques for enabling multiple paths over
Ethernet have been developed [2] [11]. ECMP [2] is a load-
balancing strategy that takes advantage of link redundancies
in a network. Under ECMP, each flow is hashed to a single
path from a set of available paths between the source and the
destination. Although each flow transits only a single path, the
overall effect is to spread distinct flows across all the available
paths, thus load-balancing the network as a whole.

Another link-layer protocol for removing the single span-
ning tree restriction is Multiple Spanning Tree Protocol
(MSTP) [11]. MSTP allows concurrent multiple spanning
trees to exist within the same network by mapping each
spanning tree to a multiple spanning tree instance (MSTI).
Each virtual LAN in the network can then be associated with
one of the spanning tree instances, thus improving aggregate
network availability and reliability when link breakages hap-
pen. Bottlenecks are also reduced because the network now
distributes its load over a greater number of transit links.
However, within an MSTI, participants are still subject to
spanning tree outages and repair time. Thus, while some
VLANs may experience little disruption, other VLANs may be
severely impacted. This can seem counterintuitive especially if
redundant physical paths do exist in the network and no actual
physical partitioning was caused.

Unfortunately, ECMP and MSTP are not true multipath
techniques because each flow does not simultaneously traverse
different paths. The ‘multipath’ in these approaches are aggre-
gate statements that multiple flows will take different singular
routes through the same physical network. Thus, while the
network experiences better load balancing and reliability as a
whole, the failure of a single link would still be catastrophic
for flows transiting that link.

C. Network-layer multipath techniques

Attempts at multipath networking have also been made on
layer 3 protocols and have recently started to gain traction
on modern operating systems, although widespread support is
still sparse [9]. MPTCP [8] is a protocol designed to improve
overall connection performance by splitting a TCP flow into
subflows, each of which are transmitted down different net-
work interfaces. These interfaces may be real or virtual, so

a multi-homed setup is not necessary although it is desirable
[10]. In an ideal setting, each participating network interface
takes a completely disjoint path to the destination, maximizing
throughput. Should any subflow fail due to a link breakage, the
remaining subflows transparently take up the load and present
the illusion of continuity to the user.

Because MPTCP operates at the network layer, it is com-
patible with any existing network switch that can carry IP
traffic. However, MPTCP does not have knowledge of the
underlying link layer and actual physical communications
paths so it is possible for subflows to transit the same physical
links. Thus a single failure of the shared link can still lead to
multiple subflow losses.

D. Software-defined networking

To build a network free of the restrictions from con-
ventional Ethernet, we turn to software-defined networking.
Software-defined networking (SDN) is a modern abstraction
that allows access to a network switch’s routing fabric. In
SDN models, the switch’s control plane is made accessible
to a special external software entity known as a controller, to
which all data switching decisions are delegated.

The most widely deployed SDN standard today is known
as OpenFlow [14]. OpenFlow is managed by the Open Net-
working Foundation and has seen significant evolution through
multiple versions. To provide maximum compatibility, we
describe RAIL implementation using OpenFlow 1.0.

E. RAID

We conjecture that a parallel exists between disks and
network paths as data mediums, so the performance and
protection schemes deployed on disks are also applicable in a
network. RAID [18] is the classic work that explores various
techniques of storing data on a set of independent disks for
the purpose of improving redundancy and performance. Data
storage using RAID is organized into standardized schemes or
levels, each scheme providing a different set of benefits and
tradeoffs.

III. RAID AND RAIL

We propose a set of user-tunable parameters to improve
the performance and/or reliability of a flow. These parameters
are conceptually similar to those available in RAID, the set
of redundancy schemes used in disk arrays. The analogue of
disks in our system are disjoint paths, hence the term redundant
array of independent links (RAIL).

In the case of RAIL, the tunable parameters can be seen
as a continuum of tradeoffs between latency/reliability and
bandwidth efficiency. At one extreme end of the spectrum,
each packet in a flow can be replicated onto multiple disjoint
paths. The receiving end delivers the first arriving packet to
the application and discards the duplicates. Such a scheme
minimizes latency and improves the stability of the flow, while
also tolerating up to n− 1 link or switch failures, at a cost of
n times the bandwidth.

On the other extreme end of the spectrum, each disjoint
path can be seen as a separate channel through which data can
be sent, so each successive packet in a flow can be transferred



down whichever path is first available (thus avoiding the
problem of sending too many packets down congested paths).
In a lightly loaded network, approximately 1/n of the packets
in a flow can be sent down each path. This scheme maximizes
bandwidth efficiency but clearly sacrifices on flow stability and
latency, since the entire flow is now dependent on the slowest
link. It also does not tolerate link failures since this scheme
does not feature any redundancy.

In between these two ends, a parity protection scheme
may be used to provide low-cost tolerance to link failure.
Alternatively, a simple and more general k out of n scheme
may be used to replicate packets such that a flow can tolerate
a loss of up to n− k disjoint paths, while providing a lower-
bound latency performance of the n− k+1th slowest disjoint
path.

Like RAID controllers, RAIL schemes depend on network
processing units (NPUs) to handle flow packets, so we present
their design first.

A. Network Processing Unit

The NPU is an abstraction that provides realtime packet
processing services. NPUs have been proposed in the past
[24] [23] to perform in-line network packet processing. In
the context of our work, NPUs need to provide services that
include (but are not limited to) automatic packet buffering,
re-ordering, rewriting and de-duplication.

One of the responsibilities of the NPU in all RAIL schemes
(except RAIL 1) is the tagging of ingress packets. The NPU
does this by rewriting Ethernet packet headers. Each disjoint
path is associated with a destination meta-address, which can
be any unique Ethernet MAC address that is not an in-use or
reserved (eg. broadcast and null) address. To designate a packet
for transit over a certain disjoint path, its Ethernet destination
field is overwritten with the meta-address of the selected
path. At the OpenFlow switch, rules are installed to match
these special Ethernet addresses, with corresponding actions
to forward matching packets down their respective disjoint
paths. Tagging packets this way permits efficient forwarding
of disjoint path packets as the switch hardware can perform
header matching and packet forwarding at line rate.

It is important to note that tagged packets do not need to
be equally distributed across the selected disjoint paths. This
allows the controller to collaborate with the NPU on dynamic
traffic shaping strategies. For example, across disjoint network
paths that have large bandwidth disparities, the controller may
choose to instruct the NPU to tag proportionately more packets
(or more aggregate bytes) for higher bandwidth disjoint paths,
favoring them over those with lower available capacities.

Tagging packets with their disjoint path meta-addresses is a
necessary step, but alone is not sufficient for the functioning of
the system. When individual disjoint path latencies are differ-
ent, it is possible for network packets arrive out of order. The
direct delivery of these potentially reordered packets may have
unintentional effects on the receiving system. For example,
TCP may interpret out-of-order packets as an indication of
packet loss and accordingly retransmit the previous packet,
while reducing the data transmission rate. This runs counter
to our design goal of non-interference with user protocols

and systems. Therefore, the NPU also needs to provide some
mechanism to preserve packet ordering at the egress switch.

To introduce packet ordering, some notion of sequencing
is required. The intuitive answer to this is to use the sequence
information provided by the packet itself. Unfortunately some
IPv4 traffic, notably UDP, do not contain a sequence num-
ber field. Although it would be relatively straightforward to
augment the packet with an extra integer field, in practice
this is risky because large packets may be written with no
headroom for extra data, and the inclusion of these mere extra
few bytes may cause the packet to exceed the network’s MTU
value. This is disastrous as it would result in that packet being
dropped. Thus, the key challenge in including a sequence
number is the identification of a non-critical field that can be
overwritten for this purpose. In our system, we have chosen to
repurpose the 16-bit Ethertype field for sequencing. While this
is a reserved field that is used for classifying Ethernet traffic
type, we reasoned that the field was safe to hijack because
Ethernet forwarding does not depend on the value stored
there. Furthermore, because RAIL only handles IPv4 traffic,
all network packets encountered by the NPU will effectively
have a constant value of 0x0800 in the Ethertype field.

To ensure that our use of the Ethertype field does not
interfere with other network devices that interpret reserved
Ethertype values, we picked the IEEE unallocated range [6]
0xB000 to 0xC000. This gives the system 4096 possible
sequence values before wrapping, which is sufficient in our
experience.

After flow rules on all involved switches have been set up,
the last practical matter pertains to packet reassembly on the
NPU at the egress switch. During RAIL service negotiation,
the NPU is informed of the set of reserved destination Ethernet
addresses corresponding to the original flow, and the original
destination Ethernet address for that flow. Incoming packets
are then binned according to the original flows they map to.
Duplicates are discarded. Whenever sufficient packets have
arrived, the original packet is reconstructed and rewritten to
reflect its original Ethernet destination address and Ethertype
(which is always 0x0800). The packet is then put into a
re-order buffer that maintains the original packet sequence.
The re-order buffer releases packets from the NPU as they
become available in the correct sequence. The egress switch
then forwards the packet along to the true destination.

B. RAIL 1

We now describe the individual RAIL schemes. Recall that
the equivalent scheme in RAID 1 is a simple mirroring process
that trades storage capacity for speed and fault tolerance.
Analogously, the RAIL 1 scheme replicates data packets across
multiple disjoint paths, with the effect that latency and fault
tolerance is improved at the cost of bandwidth efficiency. If the
disjoint paths have approximately similar end-to-end latencies,
RAIL 1 may also reduce latency variance.

For simplicity, we describe the flow rules and actions
for a unidirectional data transfer. Bidirectional data transfer
can be achieved either by relying on the network’s intrinsic
backward path over its spanning tree, or by installing another
unidirectional RAIL scheme in the opposite direction. Bidirec-



tional data transfers are not required to employ identical RAIL
schemes in each direction.

On the ingress switch, a single matching rule for the
selected network flow is installed with an action that multicasts
packet output to physical ports corresponding to the relevant
disjoint physical links. The switch automatically replicates the
network packets without further intervention from the con-
troller. Switches along the disjoint paths act as mere waypoints
and thus only need one rule each to forward network packets
to the next hop. Because the egress switch potentially receives
redundant copies of each network packet, de-duplication is
required. At this egress switch, the subflows are redirected
to an NPU that removes redundant packet copies, before re-
emitting the packet back to the switch for delivery to the
destination.

C. RAIL 0

On the other end of the RAID spectrum of tradeoffs is the
ability to aggregate multiple storage volumes into one single
logical volume. This maximizes the storage efficiency of the
scheme, but completely trades away any fault tolerance. In
RAIL 0, the available disjoint physical link bandwidths are
aggregated together into one logical link. This translates to
maximal bandwidth utilization efficiency, but has a statistically
greater failure rate than RAIL 1 or even single path connec-
tions. RAIL 0 also suffers from higher packet jitter and higher
latency, since the latency effects of all links will be evident at
the destination.

At the ingress switch, several flow rules are required. First,
a rule is installed to divert the flow into an NPU that tags each
packet with the meta-address of some disjoint path. Another
set of rules matches each meta-address and forwards the tagged
packets onto their corresponding disjoint path. Switches along
the disjoint paths merely forward packets on to their respective
next hops, so only one rule is required on each of them.

At the egress switch, a set of rules are installed to forward
the tagged packets to a local NPU. This NPU will buffer,
reorder and rewrite packets such that emitted packets appear
identical in content and sequence to the original flow at the
ingress switch. Another rule on the egress switch then takes
these packets to the actual destination.

D. RAIL 3 - 6

RAID levels 3-5 1 are similar on account of using parity
protection to secure data from single failures, with the only
differences being the sizes and placements of parity blocks.
In RAID 3, this parity block size is one byte while RAID
4 uses a larger block size. Both RAID 3 and RAID 4 use
a dedicated parity disk. RAID 5 is similar to RAID 4, except
that parity blocks are distributed evenly over all disks. Because
these schemes are conceptually identical, we describe RAIL 4.
The RAIL 4 scheme has a relatively light traffic footprint while
being tolerant of single failures.

At the ingress switch, rules are installed to divert a target
flow into the NPU. For each ingress packet, the NPU needs

1We omit the discussion of RAIL 2 because RAID 2 uses Hamming codes
and the equivalent network scheme is needlessly complicated without yielding
significant benefits.

to split the Ethernet payload into n − 1 disjoint fragments,
where n is the number of disjoint paths chosen. If the resultant
fragments have uneven sizes, for parity computation purposes
the smaller ones are padded to the right with a zero such
that all fragments have the same size. A parity fragment is
then constructed by computing the XOR of all fragments,
essentially assuming the form of forward error correction.

Each of the n fragments are then given an Ethernet header
with its original source address, designated disjoint path des-
tination meta-address, and an Ethertype corresponding to the
sequence number of the fragment. The synthesized packets are
then sent to the switch for transmission along disjoint paths.
Padding bytes are not sent with the fragments.

At the egress switch, subflows are sent to the local NPU.
Because of the presence of a parity subflow, only n − 1
packets are required for the reconstruction of an original
packet so the flow is able to tolerate the complete loss of
one disjoint path. However this reconstruction is tricky: if the
excluded fragment had been padded for parity computation, its
regeneration will include the padding byte. To fix this problem,
the reconstruction process consults the size field in the IPv4
header and checks this against the sum of all fragment sizes. A
difference signifies the presence of the padding byte and it is
truncated from the regenerated fragment. The original Ethernet
payload can then be recovered by rejoining the fragments in
sequence order. Finally, the Ethernet header is prepended to
yield the original packet. The NPU then buffers and reorders
the packet for appropriate release to the egress switch, which
then conveys the packet on to the destination.

RAIL 6 could theoretically improve upon the reliability
offered by RAIL 4 to tolerate double losses, although its
implementation is significantly more complicated due to the
need to construct a computationally-expensive second parity
packet.

E. Generalized k of n RAIL protection schemes

If the RAIL 0 and RAIL 1 schemes are conceptually at
diametrically opposed ends of the tradeoff spectrum, then other
alternative schemes can be designed to bridge the gap and
provide continuity between the two extremes. We now describe
a general scheme that is identical in spirit to hybrid RAID 1
+ 0 setups. This scheme is computationally cheap and simple
to implement, albeit imperfect in its bandwidth usage.

Given a set of n selected disjoint paths, the paths are first
ordered in a ring. Each successive ingress packet is duplicated
over the next k+1 paths in the ring. For example, if n = 3 and
k = 1, the first packet in the flow will be sent over paths 1 and
2, the second packet over paths 3 and 1, the third packet over
paths 2 and 3. This scheme has the property that the failure
of any k paths still allows complete reconstruction of the
original flow at egress. Additionally, the ratio of the bandwidth
efficiency of this scheme to the maximum possible without
duplication is 1

k+1 . Tuning the parameter k therefore allows the
user to set the tradeoff between fault tolerance and bandwidth
efficiency. When k = 0, the algorithm converges to RAIL 0,
with maximum bandwidth efficiency but no fault tolerance.
On the other hand, when k = n− 1, the algorithm converges
to RAIL 1, tolerating the failure of all but 1 disjoint path,
at the cost of experiencing a 1/n bandwidth efficiency ratio.



Fig. 1. The topology used in our evaluation. Bold lines represent spanning tree links.

The manner in which packets are tagged and forwarded at the
ingress switch, as well as untagged, de-duplicated, reordered
and reassembled at the egress switch, is exactly identical to
the process described in RAIL 0.

F. Scaling the RAIL service

The main bottleneck in a RAIL deployment is the NPU, as
real-time packet processing is an intensive operation. A single
NPU on an ingress switch may not be sufficient to support all
interested clients simultaneously.

To solve this problem, service may be linearly scaled by
attaching additional NPUs where they are needed. This is
typically as simple as identifying a spare port on the ingress
OpenFlow switch and plugging another new NPU into that
port; the OpenFlow controller can then register the NPU
for immediate use. The controller may also load-balance the
locally NPUs dynamically by shunting flows to less-loaded
units.

If no more spare ports are available, a possible solution
would be to spread wire connections on the existing switch
over two new switches, effectively spacing out the cables over
more switch ports to avail more attachment points for NPUs.
The old network topology can be functionally retained by
bridging these two switches with a high speed interconnect,
for example through a 40Gbps link aggregation switch port.

IV. EVALUATION

To evaluate our system, we used a Dell Force10 S4810
switch partitioned by port banks into five OpenFlow instances,
in effect simulating five physical OpenFlow switches (Fig 1).
The instances were connected in a way to simulate a network
topology with three disjoint paths between a source to a
destination. All physical links had a capacity of 10Gbps except
for one link on each disjoint path, which was deliberately
throttled in hardware to 1Gbps. Therefore, the total bandwidth
available to any single disjoint path between two end hosts that
traversed this network was 1Gbps. Because there were three
disjoint paths available, the maximum available bandwidth was
3Gbps. A spanning tree-based path, on account of a singular
end-to-end path, therefore had an available capacity of only
1Gbps. Two additional systems were introduced to the edge

network switches connecting the two end hosts to inject cross
traffic into the spanning tree path.

Two NPUs were connected to the experimental setup.
One NPU was located on each virtual switch corresponding
to the edge network switches that connected the two end
hosts. The NPUs were NetFPGA 10G cards, each providing
four 10-Gigabit Ethernet ports connected to a Xilinx Vertex-
5 FPGA. Purpose-designed logic in the FPGA performed
the various duties of rewriting, reordering and deduplicating
packets. The cards were well-suited for line rate traffic; during
experiments, we noticed no dropped packets and the latency
cost of forwarding packets through the card was too small to
measure.

To benchmark end-to-end bandwidth in our system, we
ran iperf, a TCP/UDP bandwidth measurement tool to mea-
sure aggregate bandwidth between two hosts. Because of a
persistent hardware configuration issue in the 10G network
interface cards we used, the MTU used in the experiments was
536 bytes. Cross traffic was generated by running bidirectional
iperf. End-to-end latencies were measured using the system
ping utility and listed respectively in the table as min/avg/max
over 100 samples. Our microbenchmark results are as follows:

A. Microbenchmark results

Ethernet
STP RAIL 0 RAIL 1 RAIL 4

latency1

min/avg/max

0.122ms
0.152ms
0.185ms

0.126ms
0.166ms
0.196ms

0.125ms
0.160ms
0.210ms

0.125ms
0.158ms
0.184ms

bandwidth1 0.85Gbps 2.55Gbps 0.85Gbps 1.52Gbps
latency2

min/avg/max

4.017ms
11.911ms
17.506ms

0.126ms
3.244ms
13.157ms

0.125ms
0.161ms
0.200ms

0.126ms
0.175ms
0.215ms

bandwidth2 0.51Gbps 2.02Gbps 0.85Gbps 1.52Gbps
link
failures
tolerated

0 0 2 1

1 Without cross traffic. 2 With cross traffic.



V. RELATED WORK

Path splicing [16] is a mechanism that provides multiple
paths through a network through multiple routing trees. By
allowing traffic to switch routing trees at each forwarding node,
the system ensures path reliability even where disjoint path
routing may fail. Path splicing has fast recovery time but flows
are not redundantly routed and it experiences latency stretch.

Multiple Topologies for IP-only Protection Against Net-
work Failures [12] describes the use of multiple topologies
for transparent routing recovery and fault tolerance. Routers
precompute some backup topologies and reroutes packets
along the backup paths in the event of failures. It performs
very well in realistic scenarios even though IP traffic only take
single routes at any instance.

STAR [22] is a spanning tree-compatible protocol that
improves QoS routing in an extended LAN. Packets are
forwarded over the spanning tree by default but may also
take shorter, non-spanning tree alternate paths where they are
available.

SPAIN [21] is an Ethernet-based solution that implements
redundancy by mapping strategically computed paths to sep-
arate VLANs. SPAIN provides increased bisection bandwidth
and resistance to network failures. However, its implementa-
tion relies on static, pre-installed paths, and does not adapt to
substantial network topology changes. SPAIN also does not
offer a continuum of latency/bandwidth tradeoffs.

802.1 Ethernet link aggregation [7] combines several phys-
ically distinct network links on a switch into a single large log-
ical link, similar to RAIL 0. With appropriate failover recovery,
Ethernet link aggregation can also improve the resilience of
the network against individual link failures. However, only
two switching elements may participate in each aggregated
link. When a participant switch fails, the entire aggregated link
also fails. This is fundamentally different from RAIL 0, where
link aggregation is the result of multiple paths across multiple
switches. If a switch fails in RAIL 0, the aggregated link can
continue to exist with reduced bisectional bandwidth. Ethernet
link aggregation can be seen as a special case of RAIL 0, the
latter of which is a more general scheme that allows for finer
control.

Various work have been proposed to perform the high
speed packet processing as required by an NPU. Split SDN
Data Plane (SSDP) architectures [24] and loadable packet
processing modules [23] offer industrial-strength alternatives
to the FPGA designs in this paper, by integrating the packet
processing requirements into an alternate data path that is
directly connected to a switch co-processor. NetSlice [13] and
DPDK [1] offer software alternatives that allow user-space
programs a way to rapidly access and process network packets.

VI. CONCURRENT AND FUTURE WORK

We would like perform more exhaustive benchmarks com-
paring our system to MPTCP and other related solutions. An
obvious concern that was not discussed here is security. Two
general classes of issues exist with data transport: confidential-
ity and anonymity. The topic of security involves a non-trivial
discussion and merits its own paper.

VII. CONCLUSION

We presented the design of a novel solution that provides
tunable high performance and reliability for OpenFlow data
networks via RAIL schemes that are analogous to RAID.
RAIL schemes are supported by network processing units,
similar to RAID controllers. Our proposed system is backward-
compatible with existing hardware and software. RAIL service
capacity can be scaled linearly by adding more NPUs as
required. Finally, the evaluation shows that our proposed
system is practical and offers real, tangible improvements over
existing network setups.

REFERENCES

[1] Data Plane Development Kit. http://dpdk.org/
[2] IEEE 802.1Qbp. Equal Cost Multiple Paths, IEEE 2014.
[3] Reitblatt, Mark, et al. “FatTire: declarative fault tolerance for software-

defined networks.” Proceedings of the second ACM SIGCOMM work-
shop on Hot topics in software defined networking. ACM, 2013.

[4] Floodlight OpenFlow controller. http://www.projectfloodlight.org/floodlight/
[5] Al-Fares, Mohammad, et al. “Hedera: Dynamic Flow Scheduling for Data

Center Networks.” NSDI. Vol. 10. 2010.
[6] http://standards.ieee.org/develop/regauth/ethertype/eth.txt
[7] IEEE 802.1-AX 2008. Link Aggregation, IEEE 2008.
[8] A. Ford, C. Raichu, M. Handley, O. Bonaventure, “TCP Extensions for

Multipath Operation with Multiple Addresses”, IETF, RFC 6824, Jan.
2013. [Online]. Available: https://tools.ietf.org/html/rfc6824

[9] Kostopoulos, Alexandros, et al. “Towards multipath TCP adoption:
challenges and opportunities.” Next Generation Internet (NGI), 2010 6th
EURO-NF Conference on. IEEE, 2010.

[10] R. Winter, M. Faath, A. Ripke, “Multipath TCP Support for Single-
homed End-Systems”, IETF, Internet-Draft draft-wr-mptcp-single-
homed-05, Jul. 2013. [Online]. Available: https://tools.ietf.org/html/draft-
wr-mptcp-single-homed-05

[11] IEEE 802.1Q-2011. VLAN Bridges, IEEE 2011.
[12] Apostolopoulos, George. “Using multiple topologies for ip-only pro-

tection against network failures: A routing performance perspective.”
ICSFORTH, Greece, Tech. Rep (2006).

[13] Marian, Tudor, Ki Suh Lee, and Hakim Weatherspoon. “NetSlices:
scalable multi-core packet processing in user-space.” Proceedings of
the eighth ACM/IEEE symposium on Architectures for networking and
communications systems. ACM, 2012.

[14] OpenFlow Switch Consortium. “OpenFlow Switch Specification Ver-
sion 1.0.0.” (2009).

[15] Open vSwitch. http://openvswitch.org/
[16] Motiwala, Murtaza, et al., Path splicing. ACM SIGCOMM Computer

Communication Review. Vol. 38. No. 4. ACM, 2008.
[17] POX. http://www.noxrepo.org/pox/about-pox/
[18] Patterson, David A., Garth Gibson, and Randy H. Katz., A case for

redundant arrays of inexpensive disks (RAID). Vol. 17. No. 3. ACM,
1988.

[19] IEEE 802.1D-2004. Media Access Control (MAC) Bridges, IEEE 2004.
[20] Weatherspoon, Hakim, et al., Smoke and Mirrors: Reflecting Files at a

Geographically Remote Location Without Loss of Performance. FAST.
2009.

[21] Mudigonda, Jayaram, et al., SPAIN: COTS Data-Center Ethernet for
Multipathing over Arbitrary Topologies. NSDI. 2010.

[22] Lui, King-Shan, Whay Chiou Lee, and Klara Nahrstedt. ”STAR: a
transparent spanning tree bridge protocol with alternate routing.” ACM
SIGCOMM Computer Communication Review 32.3 (2002): 33-46.

[23] Narayanan, Rajesh, et al., A framework to rapidly test SDN use-
cases and accelerate middlebox applications. Local Computer Networks
(LCN), 2013 IEEE 38th Conference on. IEEE, 2013.

[24] Narayanan, Rajesh, et al., Macroflows and microflows: Enabling rapid
network innovation through a split SDN data plane. Software Defined
Networking (EWSDN), 2012 European Workshop on. IEEE, 2012.


