
1

Quintet, Tools for Reliable Enterprise Computing

Werner Vogels, Dan Dumitriu, Mike Pantiz, Kevin Chipawolski, Jason Pettis

Department of Computer Science, Cornell University†

vogels@cs.cornell .edu

† Quintet is part of the research performed by the Reliable Distributed Computing Group at Cornell , and is supported by

DARPA/ONR under contract N0014-96-1-10014 and by Intel Corporation and Microsoft Corporation.

Abstract

This paper describes Quintet, a system for developing
and managing reliable enterprise servers. Quintet
provides tools for the distribution and replication of
server components to achieve guaranteed availability and
performance. It is targeted to serve the application tier in
multi -tier business systems, with components constructed
using Microsoft COM. Quintet takes a radical different
approach from previous systems that support object
replication, in that replication and distribution are no
longer transparent and are brought under full control of
the developer.

1 Introduction
In corporate settings the general enterprise computing

systems are becoming more and more organized as
distributed systems. These systems are critical to the
corporate operation and a strong need arises for making
these systems highly reliable. The first step in addressing
these needs has been taken by industry: based on their
experiences with dedicated cluster environments, new
cluster management software has been developed that
targets off-the-shelf enterprise server systems. In general
commercial cluster products provide functionality for the
migration of applications from failed nodes to surviving
nodes in the system. Although this offers some relief for
systems such as web servers, databases or electronic mail
processors, it does not facilitate the development of
systems that capable of exploiting the cluster
environments in all its potential.

A new research project at the Reliable Distributed
Systems group at Cornell addresses the problems of
building reliable enterprise systems. The project, dubbed
Quintet, focuses on development and runtime support for
components that make up the application tier of multi-tier
business systems. In our target systems this layer is
constructed out of servers build as collections of COM
components. Components developed using the tools
provided by Quintet are able to guarantee reliable
operation in a number of ways, and the system is

extensible in that new mechanisms and interfaces can be
added.

The project is concerned with research into two areas:
in the first area the quest is for what kind of development
tools are needed to build reliable distributed components
for enterprise computing, with a focus on eff iciency,
simplicity and ease of use. The second research area
concentrates on the infrastructure needed for reliabil ity
management on the high performance cluster systems
providing the component runtime environment.

This paper first provides some background on the way
Quintet views issues surrounding reliability and
distribution transparency. This is necessary to understand
the design choices that have been made. The section
following this provides an overview of Quintet's
functionality and the solutions that can be build with the
Quintet tools. After a description of the target
environment and relation between Quintet and MTS, the
paper describes in detail, the major components that make
up Quintet.

2 Reliability
Component reliability in Quintet addresses two aspects

of distributed computing: high-availabil ity and scalable
performance. The first is concerned with that given a limit
to the number of node failures, the system guarantees that
the remaining set of nodes continues to provide the
required functionality. The second aspect ensures that the
system, using adaptive methods, distributes the load over
available resources to guarantee optimal performance.

Reliabilit y in Quintet is described using a Quality of
Service specification. When a new component is added to
the system, the administrator describes the reliabilit y
requirements of the component, which are input for the
runtime system and for the component class factories. The
specification can be changed on-line and the system can
be requested to reconfigure accordingly.

The most obvious approach for providing high-
availabilit y and scalable performance is to replicate
components over several server nodes and to provide
client fail-over and load balancing to achieve the

2

reliabil ity goals. Although this is an approach that
certainly can be used in Quintet, several more tools to
design the distribution of server components, beside
active replication [3], are offered. The designer has a full
range of synchronization, replication, persistency, data
sharing & consistency, checkpoint & logging,
coordination and communication tools available to
construct components that are distributed in a fashion that
exactly match its reliability requirements.

3 Transparency
A decade of building large distributed systems in

industrial settings [4, 12] has a shown serious mismatch
between the available tools for constructing reliable
systems and the requirements of professional system
builders. Many of the problems can be reduced to the fact
that tools builders were trying to achieve the transparent
insertion of their technology, while system builders
needed full control to achieve acceptable performance or
efficient management.

The pinnacle of transparent operation can be found in
the attempts to provide fully automatic object repli cation.
By using language or ORB features the repli cation of
objects could be automated without the need for any
changes to the objects, while using state machine
replication. Products such as Orbix+Isis[6] and projects
such as Electra [7] have been successful in implementing
these techniques, but their success in the hands of users
was very limited.

It all observed systems [12] it turned out that server
developers want to worry about replica configuration,
intervene in failure detection or enabling explicit
synchronization between repli cas. There was only a small
class of server applications where the designer did not
care about the impact of replication, and most of these
involved server repli cas that needed no access to shared
resources and were not part of a larger execution chain.
The majority of systems, in which transparent repli cation
is used, become more complex, suffer reduced
performance and potential incorrect behavior traceable to
the lack of control, within the application, concerning how
replication is performed. There is a strong analogy with
starting additional threads in a previously single threaded
program, where the designer is not aware of the added
concurrency.

In addition to the transparency limitations just
described, automatic object repli cation exposed problems
in the area of efficiency. Apart from the fact that the state-
machine repli cation is a very heavyweight mechanism
when used with more than two replicas, a generic
replication mechanism needs to be conservative in its
strategies and may be very limited in terms of available
optimizations. When allowing the developer control over

what and especiall y when to repli cate, optimizations can
be made using the semantics of the application.

These observations have resulted in that in Quintet
distribution in all its aspects is made explicit. Although
there are many tools available to help with operations
such as replication, the developer decides, what, where
and when to replicate. Some of the management and
support tools, such as the shared data structure toolkit,
rely on generic repli cation, but the developers that use
them are aware of the implications of importing this
functionality.

The decision to give full control to the developer is in
strong contrast with the current trends in reliable
distributed object research, were transparency is still
considered the Holy Grail [12]. These systems [8,9,14]
experience the same limitations that the serious use of our
systems exposed. Only by restricting the useable model
will these systems be able to support developers in a
consistent manner. Quintet does not restrict the traditional
programming model in any way and provides the
developer with more tools to do his/her job.

4 Quintet goals
Quintet targets the development of client/server

computing in multi-tier enterprise systems, where there
are reliabil ity requirements for the servers. In the
prototype system, the servers are implemented using
Microsoft COM component technology.

The central research goal of Quintet is to find the
collection of tools that is most useful for the developers of
reliable components. Given that this is not an area were
past experience can drive the selection of these tools, the
project is started with building a limited set of essential
tools and interfaces. Iterative, based on user feedback, the
tool collection is changed to meet the real needs. One of
the major reasons for targeting COM based server
environments, is that there is a perceived need for
reliabil ity and the project is very li kely to get valuable
feedback from the user community to ensure the much
needed improvement cycles. An overview of the initial
tool set appears in a later section of this paper.

The server components developed with Quintet need to
be COM aware as all services offered are only available
through COM interfaces. Although the majority of
client/server interaction is envisioned to be DCOM based,
the system can support client/server communication based
on RPC, sockets or integrate an IIOP-bridge. In all cases
however the components are implemented as COM
classes and instantiated through COM class factories.

In a traditional DCOM client/server system the event
that triggers the instantiation of a component in that of a
CreateInstance call at the client system. For reliable COM
server components the rules for instantiation can be more

3

complex and are often based on the reliabilit y QoS
specification for the particular component. For example
server components can out-live client connections to
ensure real-time volatile state replication, where the
component is only made persistent and decommissioned
after no new client connection was made within a given
time period.

In the selection of the initial set of tools it is assumed
that instances of the same component have a certain need
for cooperation. The basic communication tool for
example is pre-configured to provide a component with
primitives to communicate with all other instances of the
same component and to receive membership style
notifications. Quintet based replicated components are not
forced to maintain identical state, the developer chooses
when and what to repli cate, to which components. How
optimistic (or pessimistic) the state repli cation strategy is,
depends on application tradeoffs, and can be adjusted on
the fly. Cooperation in Quintet is not limited to
components of the same class. Different components, can
transfer state, synchronize, vote for leadership, use shared
data structures and use the communication tools in
explicit manners, etc.

Given that all distribution is explicit, a major concern
in Quintet is that the exposed complexity could make the
development task more hazardous, yielding systems that
are more error prone and thus implicitl y defeating the
reliabil ity goals. The tools and interfaces are designed
with care to match the existing COM programming
practices as much as possible, making the transition for
developers as simple as possible. Recently, in good
Windows tradition, experiments have started with
programming Wizards to try to assist in the more complex
tasks.

The second major goal of Quintet is to build an
efficient runtime environment to support the development
of complex tools. In Quintet new algorithms for scalable
lightweight object membership, fast distributed
synchronization, eff icient component migration, are being
prototyped. The Core Technology (QCT), which
implements the underlying communication system, is
designed with high-performance cluster communication
interfaces in mind. More detail s can be found in the
section that describes QCT.

5 Relation with MTS
Although the Microsoft Transaction Server (MTS) is

concerned with offering solutions to server components
with a different set of requirements, Quintet has in its
implementation some solutions that are similar to MTS.
The way the component management service is the
container server for the components it manages and the
way it maintains contexts for each component instances
are similar to the way MTS manages its components. The

similarity is based on that this is the correct way of
managing COM objects.

Two other mechanisms in Quintet have identical
counterparts in MTS: Security is implemented using a role
based management system and long running components
can be temporarily retired without notifying the connected
clients. The role-based security was chosen based on a
research decision and its similarity to the MTS solution
can be seen as accidental. The retire operation was added
to Quintet, based on the argumentation by the MTS
architects that memory consumption by long running
components is the limiting factor in scaling component
servers such as MTS and Quintet. We do not have any
experiences that support this claim, but the arguments
seem reasonable and by implementing the facil ity Quintet
can be used to research this issue.

6 Target environment
Quintet is designed to function on a collection of server

nodes, organized into a cluster, with some form of cluster
management software offering basic services such as node
addressing, node enumeration, object naming and basic
security. The prototype implementation of Quintet uses
the Microsoft Cluster Service (MSCS) [11], LDAP
accessible naming service (active directory) and the
standard NT/DCOM security mechanisms (LanManager).

Currently Quintet assumes cluster sizes of 4 to 16
nodes. Although nothing in its design prohibits the use of
larger sized clusters, the distributed algorithms used in the
Core Technology are optimized towards clusters of this
size. The implementation is modular in the sense that the
Core Technology components can be replaced if the need
for that arises. A fundamental assumption in the
construction of the system is that the intra-cluster
communication can be performed an order of magnitude
faster than the client/server interaction.

Although a first concern of Quintet is correctness of the
services it offers, providing scalable performance is
important second goal. A related measurement project is
started in which MSCS and DCOM are thoroughly
analyzed to understand the performance boundaries of
these technologies [13], and to be able to offset Quintet
introduced overhead and costs correctly.

7 System overview
Components developed with Quintet are available on

the server nodes through application servers (Quintet
Component Manager) that are configured to export the
components through the traditional component
registration channels. Instantiation requests arrive at the
servers, which are responsible for the loading and
unloading of class factories, and tracking component
instances.

4

A variety of different styles can be used in developing
reliable components, all depending on the particular
reliabil ity requirements of the application. Components
can be longer running, actively repli cated components,
where each new client connection only triggers the
instantiation of some client state. Or each new
instantiation request can result in the creation of two
instances at different nodes that collaborate in a
primary/backup fashion.

In general the class factories implement client
management and replica instantiation, while the
components implement the repli cation strategy. In
implementing each of these task the developer is assisted
by Quintet functionality. Quintet provides default
implementations for general cases.

The current Quintet prototype consists of seven major
building blocks

1. Core Technology. The communication system on
which the component manger and the component
runtime are based. It provides membership and
multicast communication functionality.

2. Server Component Management. Provides the
registering and loading of the server components.
Manages component placement, fault monitoring and
handling, security and basic system management.

3. Server Component Development. The basic tools for
the developer to construct the server components

4. Server Component Runtime. Tool implementation and
management, is part of the component manager.

5. System Management Tools. A collection of tools for
administrators to monitor and manage the system and
its individual components.

6. Client Runtime. Mechanisms to support connections
to potentially repli cated components by regular
DCOM clients. Support for failover to alternative
component instances upon failure.

Each of the different areas is described in detail in
following sections.

7.1 Core Technology
Quintet Core Technology (QCT) is the basic building

block for the server management and component runtime.
It is a lightweight implementation of a Group
Communication Service, specifically targeted towards
high-performance clusters. It uses MSCS style addressing
and makes use of some of the nodes management features
of the MSCS management software [11]. It used this
information to locate other Quintet component managers,
and to determine which network interfaces to exploit for
intra-cluster network communication.

QCT is designed to run over both reliable and
unreliable interconnects and is optimized towards user-
level communication interfaces such as VIA [10] and U-
Net [2]. However until stable, commercial strength
versions of these interfaces are available, QCT primarily
uses traditional network communication as not to
compromise its reliabil ity goals. The low-level message
handling interfaces make extensive use of asynchronous
message transfer and NT completion ports to optimize
interaction with the network.

QCT offers Virtual Synchrony [5] guarantees on its
communication primitives, ensuring the ordering of
messages in relation to membership changes and atomicity
on all message delivery. The communication interface
provides a multicast primitive to send all members in a
group and a send primitive to address a single member.
Messages sent with the multicast primitive can be send
with either the basic guarantees (atomicity) or can be
extended with a total order guarantee ensuring that all
members see all messages in this group in the same order.

QCT provides an internal interface, mainly used by the
component managers (see next section). The components
and class factories see a higher level interface for
communication. To make the system scalable and not
overuse the heavy weight virtual synchronous
membership for each instantiation of a component, a
lightweight component membership mechanism is layered
over the basic system.

Each component is automatically a member of its
ClassGroup, which provides membership notification and
communication to all instances of a single component
class. All the class factories of the same component class,
present at the different component managers see
membership change notifications whenever a component
is instantiated or destructed. The class factories also see
membership changes whenever a new instance of the
particular class factory joins the system. The components
only see changes in the component membership, not of
the factories, and the components only receive
membership updates if they explicitl y register for it. The
virtual synchronous membership agreement algorithm is
only run in case of the failure of an object manager, or
when a class factory at a component manager is unloaded.

Components can make use of the group communication
interface outside of the ClassGroups by using self-defined
groups and names. In this case the component can choose
to either use the lightweight component membership or
the more heavyweight low-level QCT interface.

7.2 Component Management
The Quintet Component Manager (QCM) is the central

unit in the management of the reliable components. The
functionality of the manager includes: loading of
component libraries, starting of class factories, performing

5

security checks, client administration & configuration,
failure handling, dynamic load management and system
administration. The manager contains the Core
Technology and the runtime for the tool collection.

QCM is registered at each server node to implement all
the component classes it manages, resulting in that the
Service Control Manager at the node routes regular
DCOM instantiation requests for the components to
QCM. The method by which a client receives information
about which node to contact for its instantiation request
depends on the particular client technique used, which are
described in the section on the client runtime. The class
factories for the requested component are expected to
collaborate on providing a hint to the QCM at which node
the instantiation is preferred. This information is relayed
to the client moniker or the proxy process. If the class
factories suggest “don’ t care” the QCM makes a decision
based on the QoS spec for the component.

For each component instance the QCM maintains a
shadow object (context object in MTS terms), where the
object references, returned to the client, refer to. The
shadow object contains administration, statistic and debug
information. Longer running components, with a low
method invocation frequency, can be request to persist
their state and then destruct themselves. At the next
method request, directed to the shadow object, the
component is reloaded from the saved state. This
mechanism can not be used for all types of components,
as for example components engaged in active repli cation
can not be decommissioned.

It is possible to migrate active components to other
nodes in the system, and there are two mechanisms from
which the component state at the new node can be
recreated: the component can implement an IMigrateState
interface or the manager can forcibly use the checkpoint
and reload mechanism. Requests from clients that are not
yet updated with the new location of the migrated
component are forwarded based on information in the
shadow object. The shadow object is garbage collected
after the component is destructed.

Each node in the cluster runs one or more component
managers. How many managers run at a node depends on
the particular component configuration. If a component is
considered to be unreliable, for example during a
development phase, its potential failure is isolated from
the rest of the component system by running the
component in a separate address space attached to a
private manager. In this if a component crashes it wil l not
cause the failure of the other components. For scheduling
and network efficiency it is desirable to have a single
component manager per node, controll ing all components
at that node. The first QCM process runs as an NT
service, any additional processes are started by the first
QCM process. The primary QCM process is under control

of an MSCS resource monitor to ensure automatic restart
in case of failure.

7.3 Component Development Tools
Quintet offers a collection of tools for the developer to

use for the construction of the class factories and the
components. The following is a short list of the most
important tools.

Basic membership & communication. As already
described in the section on Core Technology, each
component and its class factory are automaticall y a
member of its ClassGroup. The components can register
for receiving membership change notifications, when it
provides its ConnectionPoint interface for receiving
messages. Next to the use of the ClassGroup the
component is free to create, join and leave other groups
and communicate using those groups. The component,
however, cannot leave its ClassGroup other than through
destruction.

State maintenance. A component can implement a
shared state interface and register this interface with the
object manager. State update can be performed manually
by a component notifying the component manager that it
now want its state transferred to all other components that
have registered the same component state interface. If
needed, any synchronization before the state update is to
be handled by the component itself. The component
manager retrieves the state from requesting component
and updates all components in total order.

The developer can also choose for an automated
version of state update. Components notify the QCM
whenever the state has changed, and whenever they are in
a position to receive the state update. As soon as all
components have signaled their availabil ity the
component manager updates the state. Any confli ct
resolution needs to be implemented by the component
state receive routines. An example where this kind of
automation is useful is when using a primary component
with a collection of hot standbys.

Shared data structures. To support simpli fied state
sharing strategies Quintet offers a collection of data
structures (hash table, associative sets, queues, etc.) that
can be shared among component instances. The object
managers implement the runtime for this and ensure that
component instances which share interface references to a
shared data structure, always have access to a local copy.
Updates to the data structures are guaranteed to keep all
replicas in a consistent state.

Voting. A component can propose an action, on which
the participating components vote to accept or reject.
More complex algorithms for quorum techniques, barrier
synchronization, distributed transactions and leader

6

election are implemented using this basic voting interface.
This is similar to the services in [1].

State persistence. Quintet offers a persistent object
store to the components from which the components can
be initialized. The mechanism is used for crash recovery,
system startup and the decommissioning and restart of
long running components. Components are not
automaticall y persistent, they use a checkpoint and
logging interface to explicitly persist their state.

7.4 Component Runtime
Many of the tools Quintet offers to the developer have

a significant runtime component to them. The majority of
the current tool collection is implemented uses the
faciliti es offered by QCT. Except for some management
modules, the communication between tool instances runs
over the same heavyweight communication endpoint as
the ClassGroup of the component that uses the tool. The
lightweight addressing space is divided such that class
factories, component instances and tools can be addresses
separately and messages can be multi cast to the
appropriate subsets. This sharing is an optimization, when
the runtime detects that a tool instance is use by different
components, it creates its own heavyweight endpoint.

An example of a tool with a major runtime component
is the one that implements shared data structures. The
runtime implements the data structures itself, the
distributed access, the consistent updates, and the replica
& location management to ensure that components always
local read access.

To ease the development of new tools, a small support
toolkit was buil t that implements basic data types,
message handling and the serialization of basic data types
through QCT.

A tool that does not make use of the QCS facilities is
the Persistent Object Store, which uses the checkpoint and
logging facility offered by MSCS [11]. This ensures that
the data is always available to the nodes that are active in
the cluster as MSCS terminates minority partitions that
have no access to the shared Quorum resource. The
Quorum resource is a shared disk, which also stores the
checkpoints and logs.

7.5 System Management
Experiences show that complex server systems such as

Quintet are only as useful as the system management tools
and interfaces that accompany it. Without these tools the
system becomes painful to use, diff icult to monitor and
diverts the attention of the developer from the most
important task: developing robust components.

The key system management tool is a traditional Win32
explorer style application, which can be used for all the
administrative tasks. The management tool is developed

as a traditional COM client/server application, with the
server functionality implemented in the Component
Managers. There are command line counterparts of the
tool, but they are geared towards the use in shell scripts.
Several tool instances can be running at the same time.
The tools are augmented with failure detection
mechanisms outside of the scope of COM to ensure timely
failover to another component manager, in the case of a
manager or node crash. The RPC timeout mechanism in
COM is very tolerant but a 30 seconds delay is
unacceptable for Quintet purposes.

The management tool provides developers with the
possibili ty to add components to cluster through drag and
drop, and specify the Reliability QoS spec and the
security information for the new component. The tool can
be used to control manager and component configuration,
and runtime control tasks, such as component migration,
can be performed manually.

The Component Managers contain several methods to
monitor the operation of system and to monitor
components on an individual basis. Information ranging
from statistics to individual method invocation and results
can be monitored and displayed in the management tool.

The tool can be extended on a per-component basis
with component specific control and management
functionality (see the section on extensibility).

7.6 Client Runtime
Client access to the component instances is stil l a major

research issue. Currently two approaches are under
investigation: In the first approach the client is failover
aware and uses a reconnect mechanism to hookup with an
alternative component instance. The second approach
leaves the client unaware of the new situation and uses a
local proxy process through which all call s to the
component repli cas are routed.

Although prototypes of both approaches are
implemented and running, the diff iculty is in determining
whether all cases are handled correctly. Real COM
client/server system often have very rich interaction
patterns and some of the pre-built MS support
components implemented using ATL or MFC introduce
additional levels of complexity.

The failover aware approach has its limitations as COM
insists on making distribution of the component fully
transparent and treats each component as if it is local,
providing no failure information about the distributed
case. Quintet's support here consist of a set of monikers
that internall y interact with the component managers to
connect to a selected node and are also responsible for the
selection of new nodes after failure occurs. The developer
in the design of the client needs to catch these failures and
use the moniker to reconnect. This approach has only

7

been made to work in C/C++ COM environments and
have not found their counterpart (yet) in VB and Java.

The most promising of the two approaches is the one
that uses a local proxy to implement the client/server
interaction. The proxy receives component information
from the component manager and registers itself at the
local node as implementing these components. The
Service Control Manager at the local node then routes all
create requests to the local proxy. The proxy interacts
with the Component Manager to create the correct
forwarding path and upon server failure or component
migration adjusts the path accordingly. The proxy is
efficient in that it inspects the stack of the incoming RPC
call to do some cut-through routing without the need to
implement the interface locall y and full y execute each
RPC invocation. As always Connection Points (COM's
version of callbacks) make the whole mechanism more
complex, and are handled with support from the
Component Managers. The Managers keep track of this
kind of full duplex connection, and ensure that upon client
handoff to another component instance, the component
that now handles the client has the right client routing
information.

8 Extensibility
The base system is extensible by developers in a

number of ways:

1. Component specific management modules can be
added to the management tools.

2. Component specific debug support can be added to
component managers.

3. Runtime support for new tools can be added to the
component managers.

4. General component management can be added to the
component managers.

The extensions to the management tools and the
component managers are implemented as COM
components and loaded on demand though the regular
configuration information in the NT registry. Each
extension type needs to implement a predefined interface
through which the component can be initialized and given
access to environment it executes in.

To enable the development of these extensions, the
component manager and the administration tool export a
set of interfaces that can be used by each extension to
implement its functionality.

9 Current Status
There are a number of major research issues that have

not been worked out yet. The most important issue is that
of inter-component dependencies, the obvious solution

seems to hint to the use of component groups and manage
the groups as single units, but as yet it is uncertain what
the best way is to express the dependencies and how to
manage them at runtime. Whether the current approach to
client runtime is the right one, remains an open issue until
there is more experience with larger scale systems using
this technology.

Quintet is a system under development. At this moment
a prototype is implemented and in is use for the
development of a set of applications that are to stress the
system to its limits.

Building support tools for reliable systems puts unusual
pressure on the robustness of the system before it can be
released for alpha & beta tests. Any form of instabil ity of
the system is counter-productive. Many more
development cycles will need to be spent before Quintet
will have the robustness such that it is ready for
experiments within industrial settings. The first public
alpha distributions are expected in September of 1998.

References
[1] Badovinatz, P., Chandra, T.D., Gopal, A.,

Jurgensen, D., Kirby, T., Krishnamur, S., and
Pershing, J., "GroupServices: infrastructure for
highly available, clustered computing",
unpublished document, December 1997

[2] Basu, A., Buch, V., Vogels, W., and von Eicken,
T., "U-Net: A User-Level Network Interface for
Parallel and Distributed Computing" Proceedings
of the 15th ACM Symposium on Operating Systems
Principles (SOSP), Copper Mountain, Colorado,
December 3-6, 1995

[3] Birman, K.P., Building Secure and Reliable
Network Applications. Manning Publishing
Company, and Prentice Hall, 1997

[4] Birman, K., "Reliable Multicast Goes Mainstream",
Bulletin of the Technical Committee on Operating
Systems and Application Environments (TCOS)
Spring 1998 (Volume 10, Number 1)

[5] Birman, K., and Renesse, R. van, “Software for
Reliable Networks” , in Scientific American, May,
1996

[6] Landis, S.,and Maffeis, S. "Building reliable
distributed systems with CORBA," Theory and
Practice of Object Systems, John Wiley & Sons,
New York, 1997. 5.

[7] Maffeis, S., "Adding group communication and
fault-tolerance to CORBA," in Proc. Usenix Conf.
on Object-Oriented Technologies, June 199

8

[8] Narasimhan, P., Moser, L.E., and Melliar-Smith,
P.M., "Exploiting the Internet Inter-ORB Protocol
interface to provide CORBA with fault tolerance,"
in Proceeding .of the 3rd Conference. on Object-
Oriented Technologies and Systems, Portland, OR,
June 1997.

[9] Singhai, A., Sane, A., and Campbell , R.H.,
“Quarterware for Middleware”, Proceedings of the
International Conference on Distributed
Computing Systems, Amsterdam, The Netherlands,
1998.

[10] The Virtual Interface Architecture Specification
1.0, http://www.viarch.org

[11] Vogels, W., Dumitriu, D., Birman, K. Gamache,
R., Short, R., Vert, J., Massa, M., Barrera, J., and
Gray, J., "The Design and Architecture of the
Microsoft Cluster Service -- A Practical Approach
to High-Availabil ity and Scalabil ity", Proceedings
of the 28th symposium on Fault-Tolerant
Computing, Munich, Germany, June 1998.

[12] Vogels, W., van Renesse, R., and Birman, K., "Six
Misconceptions about Reliable Distributed
Computing", Proceedings of 5th SIGOPS European
Workshop, Sintra, Portugal, September 1998.

[13] Vogels, W., Dumitriu, D., Agrawal, A., Chia, T.,
and Guo K., "Scalabil ity of the Microsoft Cluster
Service", Proceedings of the 2nd Usenix NT
Symposium, Seattle, August 1998.

[14] Wang, Y., and Lee, W., "COMERA: COM
Extensible Remoting Architecture", Proceedings of
the 4th Conference. on Object-Oriented
Technologies and Systems, Santa Fe, NM, April
1998.

