Quintet, Toolsfor Reliable Enter prise Computing

Werner Vogels, Dan Dumitriu, Mike Pantiz, Kevin Chipawolski, Jason Pettis
Department of Computer Science, Cornell University'
vogels@cs.cornell .edu

Abstract

This paper describes Quintet, a system for devel oping
and managing reliable enterprise servers. Quintet
provides tools for the distribution ard replication o
server components to achieve guaranteed avail ability and
performance. It is targeted to serve the apgication tier in
multi-tier business systems, with components constructed
using Microsoft COM. Quintet takes a radical different
approach from previous gstems that suppat objed
replication, in that replication and distribution ae no
longer transparent and are brought under full control of
the devel oper.

1 Introduction

In corporate settings the generad enterprise amputing
systems are beaming more and more organized as
digtributed systems. These systems are critical to the
corporate operation and a strong need arises for making
these systems highly reiable. The first step in addressng
these nedals has been taken by industry: based on their
experiences with dedicated cluster environments, new
cluster management software has been developed that
targets off-the-shelf enterprise server systems. In generd
commercial cluster products provide functionality for the
migration of applicaions from failed nodes to surviving
nodes in the system. Although this offers ssme relief for
systems guch as web servers, databases or eledronic mail
processors, it does not facilitate the development of
systems that capable of exploiting the duger
environmentsin all its potential.

A new research project at the Reliable Distributed
Systems group at Cornell addresses the problems of
building reliable enterprise systems. The projed, dubbed
Quintet, focuses on development and runtime support for
components that make up the applicaion tier of multi-tier
business systems. In our target systems this layer is
constructed aut of servers build as colledions of COM
components. Components developed uwsing the tods
provided by Quintet are able to guarantee reliable
operation in a number of ways, and the system is

extensible in that new mecdhanisms and interfaces can be
added.

The projed is concerned with reseach into two areas:
in the first areathe quest is for what kind of development
tods are needed to huild reiable digributed components
for enterprise omputing, with a focus on efficiency,
smplicity and ease of use. The sewnd research area
concentrates on the infrastructure neeaded for reliability
management on the high performance duster systems
providing the cmponent runtime environment.

This paper first provides ssme background on the way
Quintet views issles surrounding reliability and
digtribution transparency. Thisis necessary to understand
the design choices that have been made The sedion
following this provides an overview of Quintet's
functionality and the solutions that can be build with the
Quintet tods. After a description of the target
environment and reation between Quintet and MTS, the
paper describesin detail, the major components that make
up Quintet.

2 Reliability

Component reliability in Quintet addresses two aspeds
of distributed computing: high-availability and scalable
performance Thefirst is concerned with that given alimit
to the number of node fail ures, the system guarantees that
the remaining set of nodes continues to provide the
required functiondity. The second asped ensures that the
system, using adaptive methods, distributes the load over
available resources to guaranteeoptimal performance

Reliability in Quintet is described using a Quality of
Service spedfication. When a new component is added to
the system, the alministrator describes the reliability
requirements of the component, which are input for the
runtime system and for the component classfactories. The
spedfication can be danged on-line and the system can
be requested to reanfigure accordingly.

The most obvious approach for providing high-
availability and scalable performance is to replicate
components over several server nodes and to provide
client fail-over and load belancing to achieve the

T Quintet is part of the research performed by the Reliable Distributed Computing Group a Cornell, and is supported by
DARPA/ONR under contract NO014-96-1-10014 and by Intel Corporation and Microsoft Corporation.

reliability goals. Although this is an approach that
cetanly can be used in Quintet, severa more tods to
design the distribution of server components, beside
active replication [3], are offered. The designer has a full
range of synchronization, replication, persistency, data
shaing & consistency, chedkpoint & logging,
coordination and communicaion tods available to
construct components that are distributed in a fashion that
exactly match itsreliability requirements.

3 Transparency

A decade of building large distributed systems in
industrial settings [4, 12] has a shown serious mismatch
between the available tods for constructing reliable
systems and the requirements of professional system
buil ders. Many of the problems can be reduced to the fact
that tods buil ders were trying to achieve the transparent
insertion of their technology, while system builders
neeaded full control to achieve acceptable performance or
efficient management.

The pinnacle of transparent operation can be found in
the dtempts to provide fully automatic objed replication.
By using language or ORB features the replication of
objeds could be automated without the need for any
changes to the objects, while using state machine
replication. Products such as Orbix+lSg[6] and projeds
such as Eledra [7] have been successful in implementing
these techniques, but their successin the hands of users
was very limited.

It all observed systems [12] it turned aut that server
developers want to worry about replica configuration,
intervene in faillure detedion or enabling explicit
synchronization between replicas. There was only a small
class of server applications where the designer did not
care about the impact of replication, and most of these
involved server replicas that needed no accessto shared
resources and were not part of a larger exeaition chain.
The majority of systems, in which trangparent replication
is used, become more wmplex, suffer reduced
performance and potentia incorred behavior traceable to
the lack of control, within the appli cation, concerning how
replication is performed. There is a strong analogy with
starting additional threals in a previoudly single threaded
program, where the designer is not aware of the alded
concurrency.

In addtion to the transparency limitations just
described, automatic oljed replicaion exposed problems
in the aea of efficiency. Apart from the fact that the state-
machine replicaion is a very heavyweight mecanism
when used with more than two replicas, a generic
replication medianism needs to be mnservative in its
strategies and may be very limited in terms of available
optimizations. When allowing the developer control over

what and espedally when to replicae, optimizations can
be made using the semantics of the appli cion.

These observations have resulted in that in Quintet
distribution in al its aspeds is made eplicit. Although
there ae many tods available to help with operations
such as replication, the developer deddes, what, where
and when to replicate. Some of the management and
support tods, such as the shared data structure todkit,
rely on generic replicaion, but the developers that use
them are aware of the implications of importing this
functionality.

The dedsion to give full control to the developer isin
strong contrast with the arrent trends in reliable
distributed object reseach, were transparency is dill
considered the Holy Grail [12]. These systems [8,9,14]
experience the same limitations that the serious use of our
systems exposed. Only by restricting the useable model
will these systems be able to support developers in a
consistent manner. Quintet does not restrict the traditional
programming modd in any way and provides the
developer with more tods to do higher job.

4 Quintet goals

Quintet targets the development of client/server
computing in multi-tier enterprise systems, where there
are rdiability requirements for the servers. In the
prototype system, the servers are implemented uwsing
Microsoft COM component technol ogy.

The cetral reseach goal of Quintet is to find the
colledion of toolsthat is most useful for the devel opers of
reliable mmponents. Given that this is not an area were
past experience ca drive the seedion of these tods, the
projed is garted with building a limited set of esential
tods and interfaces. Iterative, based on user feedback, the
tod colledion is changed to med the red neeals. One of
the mgjor reasons for targeting COM based server
environments, is that there is a percdved needl for
reliability and the projed is very likely to get valuable
feedback from the user community to ensure the much
needed improvement cycles. An overview of the initial
tod set appeasin alater sedion of this paper.

The server components devel oped with Quintet need to
be COM aware as dl services offered are only available
through COM interfaces. Although the mgjority of
client/server interaction is envisioned to be DCOM based,
the system can support cli ent/server communication based
on RPC, sockets or integrate an [|OP-bridge. In all cases
however the mponents are implemented as COM
classes and instantiated through COM classfactories.

In a traditional DCOM client/server system the event
that triggers the instantiation of a component in that of a
Createlnstance cdl at the client system. For reliable COM
server components the rules for instantiation can be more

complex and are often based on the reiability QoS
spedfication for the particular component. For example
server components can out-live dient connedions to
ensure real-time volatile state replication, where the
component is only made persistent and decommissoned
after no new client connedion was made within a given
time period.

In the seledion of the initial set of tods it is asumed
that instances of the same component have a certain need
for cooperation. The basic communication tod for
example is pre-configured to provide a component with
primitives to communicae with al other instances of the
same @mponent and to recéve membership style
notifications. Quintet based replicated components are not
forced to maintain identicd date, the developer chooses
when and what to replicae, to which components. How
optimigtic (or pesgmistic) the state replicaion strategy is,
depends on application tradeoffs, and can be adjusted on
the fly. Cooperation in Quintet is not limited to
components of the same dass Different components, can
transfer state, synchronize, vote for leadership, use shared
data structures and we the @mmunication tods in
explicit manners, etc.

Given that all digribution is explicit, a mgjor concern
in Quintet is that the exposed complexity could make the
development task more hazardous, yielding systems that
are more aror prone and thus implicitly defeating the
reliability goals. The tods and interfaces are designed
with cae to match the eisting COM programming
practices as much as possble, making the transtion for
developers as s$mple as posshle. Recently, in good
Windows tradition, experiments have dstarted with
programming Wizardsto try to assst in the more complex
tasks.

The seaond maor goal of Quintet is to huild an
efficient runtime environment to support the development
of complex tods. In Quintet new agorithms for scalable
lightweight objed membership, fast distributed
synchronization, efficient component migration, are being
prototyped. The Core Tednology (QCT), which
implements the underlying communication system, is
designed with high-performance duster communicetion
interfaces in mind. More details can be found in the
sedion that describes QCT.

5 ReationwithMTS

Although the Microsoft Transaction Server (MTYS) is
concerned with offering solutions to server components
with a different set of reguirements, Quintet has in its
implementation some solutions that are similar to MTS.
The way the @mponent management service is the
container server for the cmponents it manages and the
way it maintains contexts for each component instances
are similar to the way MTS manages its components. The

similarity is based on that this is the crred way of
managing COM objeds.

Two ahea medanisms in Quintet have identical
counterpartsin MTS: Seaurity isimplemented usingarole
based management system and long running components
can be temporarily retired without notifying the mnneded
clients. The role-based seaurity was chosen based on a
reseach dedsion and its smilarity to the MTS solution
can be seen as acddental. The retire operation was added
to Quintet, based on the argumentation by the MTS
architeds that memory consumption by long running
components is the limiting factor in scaling component
servers such as MTS and Quintet. We do not have any
experiences that support this claim, but the aguments
seem reasonable and by implementing the facility Quintet
can be used to research thisisaue.

6 Target environment

Quintet is designed to function on a wlledion of server
nodes, organized into a clugter, with some form of cluster
management software offering basic services such asnode
addressng, node enumeration, object naming and basic
seaurity. The prototype implementation of Quintet uses
the Microsoft Cluster Service (MSCS) [11], LDAP
accessble naming service (active diredory) and the
standard NT/DCOM seaurity mechanisms (LanManager).

Currently Quintet assumes cluster sizes of 4 to 16
nodes. Although nothing in its design prohibits the use of
larger sized clusters, the distributed algorithms used in the
Core Tedhnology are optimized towards clusters of this
size. The implementation is modular in the sense that the
Core Tecdhnology components can be replaced if the need
for that arises. A fundamental assuumption in the
congtruction of the system is that the intra-cluster
communication can be performed an order of magnitude
faster than the cli ent/server interaction.

Although afirst concern of Quintet is corrednessof the
services it offers, providing scdable performance is
important second goal. A rdated measurement projed is
gtarted in which MSCS and DCOM are thoroughy
anadyzed to understand the performance boundaries of
these technologies [13], and to ke able to offset Quintet
introduced overhead and costs corredly.

7 System overview

Components developed with Quintet are available on
the server nodes through application servers (Quintet
Component Manager) that are configured to export the
components through the traditionad component
registration channels. Instantiation reguests arrive d the
servers, which are responsible for the loading and
unloading o class factories, and tracking component
instances.

A variety of different styles can be used in developing
reliable cmponents, al depending on the particular
reliability requirements of the application. Components
can be longer running, actively replicaed components,
where ech new client connedion only triggers the
ingtantiation of some dient state. Or each new
instantiation request can result in the credion of two
instances a different nodes that collaborate in a
primary/backup fashion.

In general the class factories implement client
management and replica instantiation, while the
components implement the replication strategy. In
implementing each of these task the devel oper is asgsted
by Quintet functiondity. Quintet provides default
implementations for general cases.

The airrent Quintet prototype wmnsists of seven major
buil ding Hocks

1. Core Technology. The @mmunication system on
which the mponent manger and the component
runtime ae based. It provides membership and
multicast communication functionality.

2. Server Component Management. Provides the
registering and loading of the server components.
Manages component placement, fault monitoring and
handling, seaurity and basic system management.

3. Server Component Development. The basic tods for
the devel oper to construct the server components

4. Server Component Runtime. Tod implementation and
management, is part of the component manager.

5. System Management Tools. A colledion of tods for
adminigtrators to monitor and manage the system and
itsindividual components.

6. Client Runtime. Mechanisms to support connedions
to potentially replicaded components by regular
DCOM clients. Support for failover to dternative
component instances upon fail ure.

Each of the different areas is described in detail in
following sedions.

7.1 Core Technology

Quintet Core Tedchnology (QCT) is the basic building
block for the server management and component runtime.
It is a lightweight implementation of a Group
Communication Service spedfically targeted towards
high-performance dusters. It uses MSCS style addressng
and makes use of some of the nodes management features
of the MSCS management software [11]. It used this
information to locate other Quintet component managers,
and to determine which network interfaces to exploit for
intra-cluster network communication.

QCT is designed to run over boah reiable and
urreliable interconneds and is optimized towards user-
level communication interfaces such as VIA [10] and U-
Net [2]. However until stable, commercial strength
versions of these interfaces are available, QCT primarily
uses traditiona network communication as not to
compromise its reliability goals. The low-level message
handling interfaces make extensive use of asynchronous
message transfer and NT completion ports to gptimize
interaction with the network.

QCT offers Virtual Synchrony [5] guarantees on its
communication primitives, ensuring the ordering o
messages in relation to membership changes and atomicity
on al messge ddivery. The cmmunication interface
provides a multicast primitive to send all members in a
group and a send primitive to address a single member.
Messages ent with the multicast primitive an be send
with either the basic guarantees (atomicity) or can be
extended with a total order guarantee @suring that al
members eeall messages in this groupin the same order.

QCT provides an internal interface, mainly used by the
component managers (see next sedion). The cmponents
and class factories e a higher levd interface for
communication. To make the system scalable axd not
overuse the heavy weight virtual synchronous
membership for each ingantiation of a component, a
li ghtwei ght component membership medanism is layered
over the basic system.

Each component is automatically a member of its
Clas<Group, which provides membership notification and
communication to al instances of a single cmponent
class All the dassfactories of the same cmponent class
present at the different component managers e
membership change notifications whenever a component
is ingantiated or destructed. The dass factories aso see
membership changes whenever a new instance of the
particular class factory joins the system. The components
only see dhanges in the component membership, not of
the factories, and the components only receve
membership updates if they explicitly register for it. The
virtual synchronous membership agreament agorithm is
only run in case of the failure of an olhject manager, or
when a classfactory at a component manager is unloaded.

Components can make use of the group communication
interface outside of the ClassGroups by using self-defined
groups and names. In this case the cmponent can choose
to either use the lightweight component membership o
the more heavyweight low-level QCT interface

7.2 Component Management

The Quintet Component Manager (QCM) is the centra
unit in the management of the reliable mmponents. The
functionality of the manager includes. loading of
component libraries, starting o classfactories, performing

seaurity chedks, client administration & configuration,
failure handling, dynamic load management and system
adminigration. The manager contains the Core
Tedhnology and theruntime for thetod coll edion.

QCM isregistered a each server node to implement al
the cmponent classes it manages, resulting in that the
Service Control Manager at the node routes regular
DCOM ingantiation requests for the @mponents to
QCM. The method by which a client recaves information
about which node to contact for its instantiation request
depends on the particular client technique used, which are
described in the sedion on the dient runtime. The dass
factories for the requested component are expeded to
coll aborate on providing a hint to the QCM at which node
the instantiation is preferred. This information is relayed
to the dient moniker or the proxy process If the dass
factories suggest “don’'t care” the QCM makes a dedsion
based on the QoS specfor the mmponent.

For each component instance the QCM maintains a
shadow object (context objed in MTS terms), where the
objed references, returned to the client, refer to. The
shadow object contains administration, satistic and debug
information. Longer running components, with a low
method invocation frequency, can be request to persst
their state and then destruct themselves. At the next
method request, direded to the shadow objed, the
component is reloaded from the saved state. This
medhanism can not be used for al types of components,
as for example components engaged in active replicaion
can not be demmmissoned.

It is posshle to migrate active cmponents to aher
nodes in the system, and there ae two mecdanisms from
which the omponent state at the new node @n be
reaeaed: the cmmponent can implement an IMigrateState
interface or the manager can forcibly use the chedpoint
and rel oad medhanism. Requests from clients that are not
yet upchted with the new location of the migrated
component are forwarded based on information in the
shadow object. The shadow objed is garbage lleded
after the component is destructed.

Each node in the duster runs one or more cmponent
managers. How many managers run at a node depends on
the particular component configuration. If a component is
considered to be unreliable, for example during a
development phase, its potential failure is isolated from
the rest of the @mponent system by running the
component in a separate aldress gace dtached to a
private manager. In thisif a component crashes it will not
cause the failure of the other components. For scheduling
and network efficiency it is desirable to have a singe
component manager per node, controlling all components
at that node. The firda QCM process runs as an NT
service any additional processes are started by the first
QCM process The primary QCM processis under control

of an MSCS resource monitor to ensure automatic restart
in case of failure.

7.3 Component Development Tools

Quintet offers a colledion of tods for the developer to
use for the congtruction of the dass factories and the
components. The following is a short list of the most
important tods.

Basic membership & communication. As aready
described in the sedion on Core Technology, each
component and its class factory are automaticdly a
member of its ClassGroup. The mmponents can register
for receving membership change naotifications, when it
provides its ConnedionPoint interface for receving
messages. Next to the use of the ClassGroup the
component is free to create, join and leave other groups
and communicae using those groups. The @mponent,
however, cannot leave its ClassGroup other than through
destruction.

State maintenance. A component can implement a
shared state interface and register this interface with the
objed manager. State update can be performed manudly
by a component notifying the component manager that it
now want its state transferred to all other components that
have registered the same @mponent date interface If
nealed, any synchronization before the state update is to
be handled by the component itself. The component
manager retrieves the state from requesting component
and updites al componentsin total order.

The developer can adso choose for an automated
version of state update. Components notify the QCM
whenever the ate has changed, and whenever they arein
a position to receve the state update. As on as al
components have signded their availability the
component manager updates the state. Any conflict
resolution neals to be implemented by the mmponent
state receve routines. An example where this kind of
automation is useful is when using a primary component
with a @lledion of hot standbys.

Shared data structures. To support smplified state
sharing strategies Quintet offers a colledion of data
structures (hash table, associative sets, queues, etc.) that
can be shared among component instances. The objed
managers implement the runtime for this and ensure that
component instances which share interfacereferencesto a
shared dhta structure, always have accessto a local copy.
Updates to the data structures are guaranteed to keep all
replicas in a consistent state.

Voting. A component can propose an action, on which
the participating components vote to accept or rejed.
More @omplex algorithms for quorum techniques, barrier
synchronization, distributed transactions and leader

eedion areimplemented using this basic voting interface
Thisisamilar to the servicesin [1].

State persistence. Quintet offers a perdgstent object
store to the components from which the momponents can
be initialized. The mechanism is used for crash recvery,
system startup and the decommissoning and restart of
long running components. Components are not
automaticdly persistent, they use a chedkpoint and
logging interfaceto explicitly persist their state.

7.4 Component Runtime

Many of the tods Quintet offers to the devel oper have
a significant runtime component to them. The majority of
the arrent tod colledion is implemented uses the
faciliti es offered by QCT. Except for some management
modules, the communicaion between tod instances runs
over the same heavyweight communication endpoint as
the ClassGroup of the component that uses the tod. The
lightweight addressng space is divided such that class
factories, component instances and tods can be addresses
separately and messages can be multicas to the
appropriate subsets. This sharingis an optimization, when
the runtime deteds that a tod instanceis use by different
components, it createsits own heavyweight endpoint.

An example of atod with a magjor runtime cmponent
is the one that implements shared daa structures. The
runtime implements the data structures itsdf, the
digtributed access the cmnsistent updates, and the replica
& location management to ensure that components always
local read access

To ease the development of new tods, a small support
todkit was built that implements basic data types,
message handling and the serialization of basic data types
through QCT.

A tod that does not make use of the QCS facilities is
the Persistent Object Siore, which uses the chedpoint and
logging facility offered by MSCS [11]. This ensures that
the data is always avail able to the nodes that are active in
the duster as MSCS terminates minority partitions that
have no access to the shared Quorum resource The
Quorum resource is a shared disk, which also stores the
chedkpoints and logs.

7.5 System Management

Experiences ow that complex server systems such as
Quintet are only as useful asthe system management tods
and interfaces that accompany it. Without these tods the
system becomes painful to use, difficult to monitor and
diverts the atention of the developer from the most
important task: devel oping robust components.

The key system management tod isatraditional Win32
explorer style application, which can be used for dl the
adminigrative tasks. The management tod is devel oped

as a traditional COM client/server applicaion, with the
server functiondity implemented in the Component
Managers. There ae command line cunterparts of the
tod, but they are geaed towards the use in shell scripts.
Several tod instances can be running at the same time.
The tods are augmented with falure detedion
mechanisms outside of the scope of COM to ensure timely
failover to another component manager, in the ase of a
manager or node aash. The RPC timeout mechanism in
COM is very tolerant but a 30 sewmnds delay is
unacceptable for Quintet purposes.

The management tod provides developers with the
posshili ty to add components to cluster through drag and
drop, and spedfy the Reiability QoS spec and the
seaurity information for the new component. The tod can
be used to control manager and component configuration,
and runtime @ntrol tasks, such as component migration,
can be performed manualy.

The Component Managers contain several methods to
monitor the operation of system and to monitor
components on an individua basis. Information ranging
from statistics to individual method invocation and results
can be monitored and displayed in the management tod.

The tod can be etended on a per-component basis
with component spedfic ocontrol and management
functionality (seethe sedion on extensihility).

7.6 Client Runtime

Client accessto the mmponent instancesis gill amajor
reseach isale. Currently two approaches are under
investigation: In the first approach the dient is failover
aware and uses aremnned mechanism to hookup with an
aternative component instance The semnd approach
leaves the dient unaware of the new situation and uses a
local proxy process through which al cdls to the
component repli cas are routed.

Although prototypes of both approaches are
implemented and running, the difficulty is in determining
whether all cases are handed corredly. Real COM
client/server system often have very rich interaction
patterns and some of the pre-built MS support
components implemented using ATL or MFC introduce
additional levels of complexity.

The fail over aware approach hasits limitations as COM
insists on making dstribution of the emponent fully
transparent and treats each component as if it is local,
providing no failure information about the distributed
case. Quintet's support here wmnsist of a set of monikers
that interndly interact with the component managers to
conned to a seleded node and are also responsible for the
seledion of new nodes after failure ocaurs. The devel oper
in the design of the dient neals to cach these failures and
use the moniker to remnned. This approach has only

been made to work in C/C++ COM environments and
have not found their counterpart (yet) in VB and Java.

The most promising o the two approaches is the one
that uses a local proxy to implement the dient/server
interaction. The proxy receves component information
from the component manager and registers itself at the
local node as implementing these @mponents. The
Service Control Manager at the local node then routes all
create requests to the local proxy. The proxy interacts
with the Component Manager to create the wrred
forwarding peth and upon server failure or component
migration adjusts the path accordingly. The proxy is
efficient in that it inspeds the stack of the incoming RPC
call to do some ait-through routing without the neel to
implement the interface locally and fully execute exch
RPC invocation. As aways Connedion Points (COM's
version of callbacks) make the whole mechanism more
complex, and are handled with support from the
Component Managers. The Managers ke track of this
kind o full dugex connedion, and ensure that upon client
handoff to another component instance the component
that now handles the dient has the right client routing
information.

8 Extensibility

The base system is extensible by developers in a
number of ways:

1. Component spedfic management modules can be
added to the management tod's.

2. Component spedfic debug support can be added to
component managers.

3. Runtime support for new tods can be added to the
component managers.

4. Genera component management can be added to the
component managers.

The etensions to the management tods and the
component managers are implemented as COM
components and loaded on demand though the regular
configuration information in the NT registry. Each
extension type nedals to implement a predefined interface
throughwhich the cmponent can be initialized and gven
accessto environment it exeatesin.

To enable the development of these extensions, the
component manager and the administration tod export a
set of interfaces that can be used by each extension to
implement its functiondity.

9 Current Status

There ae a number of mgjor research isaues that have
not been worked out yet. The most important isale is that
of inter-component dependencies, the obvious solution

seams to hint to the use of component groups and manage
the groups as single units, but as yet it is uncertain what
the best way is to express the dependencies and how to
manage them at runtime. Whether the arrent approach to
client runtime is theright one, remains an open is3Je until
there is more experience with larger scde systems using
thistechnology.

Quintet isa system under development. At this moment
a prototype is implemented and in is use for the
development of a set of applicaions that are to stressthe
system to itslimits.

Building support tods for reliable systems puts unusua
presaure on the robustness of the system before it can be
released for apha & beta tests. Any form of instability of
the system is counter-productive. Many more
development cycles will need to be spent before Quintet
will have the robustness sich that it is ready for
experiments within industrial settings. The first public
aphadistributions are expeded in September of 1998

References

[1] Badovinatz, P., Chandra, T.D., Gopa, A.,
Jurgensen, D., Kirby, T., Krishnamur, S., and
Pershing, J, "GroupServices: infrastructure for
highly available, clustered computing”,
unpublished document, December 1997

[2] Basu, A., Buch, V., Vogds, W., and von Eicken,
T., "U-Net: A User-Level Network Interface for
Parallel and Distributed Computing” Proceedings
of the 15th ACM Sympaosium on Operating Systems
Principles (SOSP), Copper Mountain, Colorado,
December 3-6, 1995

[3] Birman, K.P., Building Scure and Reliable
Network Applications. Manning Publishing
Company, and PrenticeHall, 1997

[4] Birman, K., "Reliable Multicast Goes Mainstrean”,
Bulletin of the Technicd Committee on Operating
Systems and Applicaion Environments (TCOS)
Spring 1998 (Volume 10, Number 1)

[5] Birman, K., and Renes®, R. van, “Software for
Reliable Networks’, in Scientific American, May,
1996

[6] Landis, S.,and Maffeis, S. "Building reliable
digtributed systems with CORBA," Theory and
Practice of Object Systems, John Wiley & Sons,
New York, 1997. 5.

[71 Maffes, S., "Adding goup communication and
fault-tolerance to CORBA," in Proc. Usenix Conf.
on Object-Oriented Techndogies, June 199

8]

[9]

[10]

[11]

[12]

[13]

[14]

Narasimhan, P., Moser, L.E., and Mdliar-Smith,
P.M., "Exploiting the Internet Inter-ORB Protocol
interface to provide CORBA with fault tolerance"
in Procedading .of the 3rd Conference. on Object-
Oriented Techndogies and Systems, Portland, OR,
June 1997.

Singhai, A., Sane, A., and Campbel, R.H.,
“Quarterware for Middleware”, Proceedings of the
International Conference on Distributed
Computing §stems, Amsterdam, The Netherlands,
1998

The Virtua Interface Architedure Spedfication
1.0, http://www.viarch.org

Vogeds, W., Dumitriu, D., Birman, K. Gamache,
R., Short, R., Vert, J., Mass, M., Barrera, J,, and
Gray, J., "The Design and Architedure of the
Microsoft Cluster Service -- A Practicd Approach
to High-Availability and Scalability", Procealings
of the 28" symposum on Faut-Tolerant
Computing, Munich, Germany, June 1998.

Voges, W., van Reness, R., and Birman, K., "Six
Misconceptions about Reliable Distributed
Computing’, Proceedings of 5" S GOPS European
Workshop, Sintra, Portugal, September 1998.

Vogeds, W., Dumitriu, D., Agrawal, A., Chia, T.,
and Guo K., "Scalability of the Microsoft Cluster
Service', Procealings of the 2™ Usenix NT
Sympaosium, Sedtle, August 1998.

Wang, Y., and Lee W., "COMERA: COM
Extensible Remoting Architedure”, Proceadings of
the 4th Conference. on Object-Oriented
Technologies and Systems, Santa Fe, NM, April
1998

