
Proving Hybrid Protocols Correct

Mark Bickford, Christoph Kreitz, Robbert van Renesse, Xiaoming Liu

Department of Computer Science, Cornell University, Ithaca, NY, U.S.A.
{markb,kreitz,rvr,xliu}@cs.cornell.edu

R. Boulton & P. Jackson, eds., 14th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2001), LNAI 2152, pp. 105–120, c©Springer Verlag, 2001.

Abstract. We describe a generic switching protocol for the construc-
tion of hybrid protocols and prove it correct with the Nuprl proof de-
velopment system. For this purpose we introduce the concept of meta-

properties and use them to formally characterize communication prop-
erties that can be preserved by switching. We also identify switching in-

variants that an implementation of the switching protocol must satisfy
in order to work correctly.

1 Introduction

Formal methods tools have greatly influenced our ability to increase the reliabil-
ity of software and hardware systems by revealing errors and clarifying critical
concepts. Tools such as extended type checkers, model checkers [9] and theorem
provers [2, 15, 23, 25] have been used to detect subtle errors in prototype code
and to clarify critical concepts in the design of hardware and software systems.
System falsification is already an established technique for finding errors in the
early stages of the development of hardware circuits and the impact of formal
methods has become larger the earlier they are employed in the design process.

An engagement of formal methods at an early stage of the design depends on
the ability of the formal language to naturally and compactly express the ideas
underlying the system. When it is possible to precisely define the assumptions
and goals that drive the system design, then a theorem prover can be used as a
design assistant that helps the designers explore in detail ideas for overcoming
problems or clarifying goals. This formal design process can proceed at a reason-
able pace, if the theorem prover is supported by a sufficient knowledge base of
basic facts about systems concepts that the design team uses in its discussions.

The Nuprl Logical Programming Environment (LPE) [10, 3] is a framework
for the development of formalized mathematical knowledge that is well suited to
support such a formal design of software systems. It provides an expressive formal
language and a substantial body of formal knowledge that was accumulated in
increasingly large applications, such as verifications of a logic synthesis tool [1]
and of the SCI cache coherency protocol [13] as well as the verification and
optimization of communication protocols [17, 12, 18].

We have used the Nuprl LPE and its database of thousands of definitions,
theorems and examples for the formal design of an adaptive network protocol
for the Ensemble group communication system [28, 11, 19]. The protocol is real-
ized as a hybrid protocol that switches between specialized protocols. Its design
was centered around a characterization of communication properties that can be

preserved by switching. This led to a study of meta-properties , i.e. properties of
properties, as a means for classifying those properties. It also led to the char-
acterization of a switch-invariant that an implementation of the switch has to
satisfy to preserve those properties.

In this paper we show how to formally prove such hybrid protocols correct.
In Section 2 we describe the basic architecture of hybrid protocols that are based
on protocol switching. We then discuss the concept of meta-properties and use
it to characterize switchable properties, i.e. communication properties that can
be preserved by switching (Section 3). In Section 4 we give a formal account of
communication properties and meta-properties as a basis for the verification of
hybrid protocols with the Nuprl system. In Section 5 we develop the switch-
invariant and formally prove that switchable properties are preserved whenever
the implementation of a switching protocol satisfies this invariant.

2 Protocol Switching

Networking properties such as total order or recovery from message loss can
be realized by many different protocols. These protocols offer the same func-
tionality but are optimized for different environments or applications. Hybrid

protocols can be used to combine the advantages of various protocols, but de-
signing them correctly is difficult, because they require a distributed migration
between different approaches to implementing the desired properties.

The Ensemble system [28, 11] provides a mechanism for switching between
different protocols at run-time. So far, however, it was not clear how to guarantee
that the result was actually correct , i.e. under what circumstances a switch would
actually preserve the properties of the individual protocols.

Our new approach to switching is to design a generic switching protocol (SP)
that would serve as a wrapper for a set of protocols with the same functional-
ity. This switching protocol shall interact with the application in a transparent
fashion, that is, the application cannot tell easily that it is running on the SP

rather than on one of the underlying protocols, even as the SP switches between
protocols. The kinds of uses we envision include the following:

– Performance. By using the best protocol for a particular network and appli-
cation behavior, performance can always be optimal.

– On-line Upgrading. Protocol switching can be used to upgrade network pro-
tocols or fix minor bugs at run-time without having to restart applications.

– Security. System managers will be able to increase security at run-time, for
example when an intrusion detection system notices unusual behavior.

In a protocol layering architecture like the one used in Ensemble the switching
protocol will reside on top of the individual protocols to be switched, coupled
by a multiplexer below them, as illustrated in Figure 1.

The basic idea of the switching protocol is to operate in one of two modes.
In normal mode it simply forwards messages from the application to the cur-
rent protocol and vice versa. When there is a request to switch to a different

106

Application (Process p1)

? 6

Upper Layers

? 6

Switching Protocol

?

6 ?6 ?6
Protocol1 Protocol2

?6 ?6
MULTIPLEX

? 6

Lower Layers

? 6

. . .

. . .

. . .

. . .

NET

Application (Process pn)

? 6

Upper Layers

? 6

Switching Protocol

?

6 ?6 ?6
Protocol1 Protocol2

?6 ?6
MULTIPLEX

? 6

Lower Layers

? 6

Fig. 1. Generic switching protocol for a protocol layering architecture

protocol, the SP goes into switching mode, during which the switching layer at
each process will deliver all messages that were sent under the old protocol while
buffering messages sent under the new one. The SP will return to normal mode
as soon as all messages for the old protocol have been delivered.

The above coarse description, which trivially generalizes to switching between
an arbitrary number of protocols, served as the starting point for proving the
correctness of the resulting hybrid protocol. The verification proceeded in two
phases. We first classified communication properties that are switchable, i.e. have
the potential to be preserved under switching, and then derived a switching in-

variant that a switching protocol must satisfy to preserve switchable properties.
The implementation of the SP (see [19]) was strongly influenced by the latter.

3 Meta-Properties: Classifying Switchable Properties

The main purpose of a switching protocol is to dynamically reconfigure a com-
munication protocol without noticeable effects for the application. This is not
possible for switching between arbitrary, functionally equivalent protocols, as the
current protocol does not have information about messages that were sent before
the switch took place but may need this information to accomplish its task.

A notion of correctness for switching protocols can thus only be expressed
relatively to the communication properties that it shall preserve. Because of the
broad range of applications there are many interesting properties that one may
want a communication system to satisfy. Table 1 lists some examples.

Usually, these properties are expressed as properties of global (systemwide)
or local (for one process) traces of Send/Deliver events. Reliability, for instance,
means that for every Send event in the global trace there are corresponding
Deliver events for all receivers.

Rather than studying the effects of the switching protocol on each commu-
nication property separately, we have developed a characterization of the ones

107

Reliability: Every message that is sent is delivered to all receivers
Integrity: Messages cannot be forged; they are sent by trusted processes
Confidentiality: Non-trusted processes cannot see messages from trusted ones
Total Order: Processes that deliver the same messages deliver them in the

same order
No Replay: A message body can be delivered at most once to a process

Table 1. Examples of commonly used communication properties

that are preserved by protocol switching. For this purpose, we introduce the
concept of meta-properties , i.e. properties of properties, that classify communi-
cation properties into those that are preserved by certain communication proto-
col architectures and those that are not. In this section we will give an intuitive
description of such meta-properties (see [19] for details). Their formalization as
used in the verification of the switching protocol will be described in section 4.2.

Our verification efforts showed that four meta-properties are important for
characterizing the effects of layered communication systems.

Safety. Safety [4] is probably the best-known meta-property. Safety means
that a property does not depend on how far the communication has progressed:
if the property holds for a trace, then it also holds for every prefix of that trace.
Total order, for instance, is safe since taking events of the end off a trace cannot
reorder message delivery. Reliability, however, is not safe since chopping off a
suffix containing a Deliver event can make a reliable trace unreliable.

Asynchrony. Any global ordering that a protocol implements on events can
get lost due to delays in the send and deliver streams through the protocol
layers above it. Only properties that are asynchronous, i.e. do not depend on the
relative order of events of different processes, are preserved under the effects of
layering. Total order is asynchronous as well, as it does not require an absolute
order of delivery events at different processes.

Delayable. Another effect of layered communication is local: at any process,
Send events are delayed on the way down, and Deliver events are delayed on
the way up. A property that survives these delays is called delayable. Total
order is delayable, since delays do not change the order of Deliver event. This
meta-property is similar to delay-insensitivity in asynchronous circuits.

Send Enabled. A protocol that implements a property for the layer above typ-
ically does not restrict when the layer above sends messages. We call a property
Send Enabled if it is preserved by appending new Send events to traces. Total
order is obviously send enabled. Send Enabled and Delayable are related, as both
are concerned with being unable to control when the application sends messages.

These four meta-properties are sufficient for properties to survive the effects
of delay in any layered environment. Since the switching protocol is based on a
layered architecture, these meta-properties will be important for a property to
be preserved by the switching protocol. However, two additional meta-properties
are necessary to describe the specific effects of switching.

108

Memoryless. When we switch between protocols, the current protocol may
not see part of the history of events that were handled by another protocol. It
thus has to be able to work as if these events never happened. A property is
memoryless if we can remove all events pertaining to a particular message from
a trace without violating the property. That is, whether such a message was ever
sent or delivered is no longer of importance. This does not imply, however, that a
protocol that implements the property has to be stateless and must forget about
the message. Total order is memoryless, since it only places conditions on events
that actually take place, but its implementations are certainly not stateless.

Composable. Protocol switching causes the traces of several protocols to be
glued together. Since we expect the resulting trace to satisfy the same properties
as the individual traces, these properties must be composable in the sense that
if they hold for any two traces that have no messages in common, then they
also must hold for the concatenation. Total order is composable, because the
concatenation of traces does not change the order of events in either trace.

Using the Nuprl system [3] we have shown that these six meta-properties
are sufficient for a communication property to be preserved by the switching
protocol: if such a property holds for the traces of the two protocols below the
switching protocol, then it also holds for the resulting trace above the switch. In
the following sections we will show how this is formally proven.

4 Formalization

A formal verification of the switching protocol with a formal proof system has to
be based on an appropriate formalization of the underlying concepts in the lan-
guage of the proof system. The formal language of the Nuprl proof development
system [10, 3], an extension of Martin-Löf’s intuitionistic Type Theory [22], al-
ready provides formalizations of the fundamental concepts of mathematics, data
types, and programming.

Nuprl supports conservative language extensions by user-defined concepts
via abstractions and display forms . An abstraction of the form

operator-id(parameters) ≡ expression with parameters

defines a new, possibly parameterized term in terms of already existing type-
theoretical expressions. Display forms can be used to change the textual repre-
sentation of this term on the screen or within formal printed documents almost
arbitrarily. In particular they can be used to suppress the presentation of implicit
assumptions and thus ease the comprehensibility of formal text.

The Nuprl proof development system supports interactive and tactic-based
reasoning in a sequent-based formalism, decision procedures, an evaluation mech-
anism for programs, and an extendable library of verified knowledge from various
domains. A formal documentation mechanism supports the automated creation
of “informal documents” from the formal objects. The technical report [5], con-
taining a complete formal account of the work described in the following sections,
for instance, was created entirely from within Nuprl.

109

4.1 A Formal Model of Communication

To support a formal verification of communication protocols, we have devel-
oped a formal model of distributed communication systems and their proper-
ties. Our model formalizes notions for the specification of distributed algorithms
introduced by Lynch [20] and concepts used for the implementation of reliable
network systems [6], particularly of Ensemble and its predecessors [7, 27, 11].

Messages, Events, and Traces Processes multicast messages that contain a
body, a sender, and a unique identifier. We will consider two types of events .
A Send(m) event models that some process p has multicast a message m. A
Deliver(p,m) event models that process p has delivered message m. A trace is
an ordered sequence of Send and Deliver events without duplicate Send events.

In order to be able to reason formally about messages, events and traces,
we introduce two classes MessageStruct and EventStruct of formal message

structures and event structures , respectively.
A message structure M ∈MessageStruct provides a carrier |M| and three

functions, content
M

, sender
M

, and uid
M

, which compute the body, sender, and
identifier of a message m ∈M . Two messages m1 and m2 are considered equal,
denoted by m

1
=

M
m

2
if they have the same content, sender, and identifier.

Similarly, an event structure E ∈EventStruct provides a carrier type |E|, a
message structure MS

E
, and three functions, is-send

E
, loc

E
, and msg

E
, where

is-send
E
(e) is true when the event e ∈|E| is a Send event (otherwise it is

a Deliver event); loc
E
(e), the location of the event e, is the identifier of the

process that sends or receives e; and msg
E
(e) is the message m ∈MS

E
contained

in the event e. Using the latter we define a binary relation, e
1
=m

E
e
2
, which holds if

the messages contained in the events e
1
and e

2
are equal wrt. =

M
. For example, e

1

and e2 might be Deliver events of the same message m at two different locations.

Given an event structure E, a trace is just a list of events of type |E|. The
data type of traces over E is thus defined as

Trace
E

≡ |E| List

All the usual list operations like length |tr|, selecting the i-th element tr[i],
concatenation tr1@tr2, prefix relation tr1

vtr2, and filtering elements that satisfy
a property P , [e ∈ tr|P], apply to traces as well.

For process identifiers we introduce a (recursively defined) type PID that
contains tokens and integers and is closed under pairing. A similar type, called
Label, will be later be used to tag events processed by different protocols.

Properties of Traces A trace property is a predicate on traces that describes
certain behaviors of communication. We formalize trace properties as proposi-
tions on traces, i.e. as functions from Trace

E
to the type P of logical propositions.

TraceProperty
E

≡ Trace
E

→ P

All traces that we consider must satisfy at least three basic properties. Every de-

110

livered message must have been sent before (causality), no message is sent twice,
and no message is delivered twice (replayed) to the same process. These assump-
tions are made implicitly in the implementation of communication systems but
need to be made explicit in a formal account.

Causal
E
(tr)

≡ ∀i<|tr|.∃j<|tr|. j≤i ∧ is-send
E
(tr[j]) ∧ tr[j] =m

E
tr[i]

No-dup-send
E
(tr)

≡ ∀i,j<|tr|. (is-send
E
(tr[i]) ∧ is-send

E
(tr[j]) ∧ tr[j] =m

E
tr[i])

⇒ i = j

No-replay
E
(tr)

≡ ∀i,j<|tr|. (¬is-send
E
(tr[i]) ∧ ¬is-send

E
(tr[j])

∧ tr[j] =m

E
tr[i] ∧ loc

E
(tr[i]) = loc

E
(tr[j])

) ⇒ i = j

The properties reliability (for multicasting), integrity , confidentiality , and total

order (c.f. Section 3) can be formalized as follows.

Reliable
E
(tr)

≡ ∀e ∈ tr. is-send
E
(e) ⇒

∀p:PID. ∃e
1
∈ tr. ¬is-send

E
(e

1
) ∧ e =m

E
e

1
∧ loc

E
(e

1
) = p

Integrity
E
(tr)

≡ ∀e ∈ tr. (¬is-send
E
(e) ∧ trusted(loc

E
(e))) ⇒

∀e1
∈ tr. (is-send

E
(e1) ∧ e =m

E
e1) ⇒ trusted(loc

E
(e1))

Confidential
E
(tr)

≡ ∀e ∈ tr. (¬is-send
E
(e) ∧ ¬trusted(loc

E
(e))) ⇒

¬(∃e
1
∈ tr. is-send

E
(e

1
) ∧ e =m

E
e

1
∧ trusted(loc

E
(e

1
)))

TotalOrder
E
(tr)

≡ ∀p,q:PID. tr↓p �tr↓q = tr↓q �tr↓p

where trusted(p) characterizes trusted processes, tr↓p is the trace tr delivered
at process p (the projection of all Deliver(p,m) events from trace tr), and tr1 �tr2

denotes the restriction of tr
1
to events whose messages also occur in tr

2
.

tr↓p ≡ [e ∈ tr |¬is-send
E
(e) ∧ loc

E
(e)=p]

tr1 �tr2
≡ [e1

∈ tr1| ∃e2
∈ tr2. e1=

m

E
e2]

In the following investigations we also need a notion of refinement on trace
properties, which is defined as follows.

P B Q ≡ ∀tr:Trace
E
. P(tr) ⇒ Q(tr)

4.2 Meta-Properties

Meta-properties are predicates on properties that are used to classify which prop-
erties are preserved by a protocol layer. In principle, any predicate on properties
could be meta-property. But the meta-properties that we are specifically inter-

111

ested in are the ones that describe how passing events through a protocol layer
affects the properties of the traces above and below that layer. We say that a
reflexive and transitive relation R on traces preserves a property P if, whenever
two traces tr

1
and tr

2
are related by R, and P holds for trace tr

1
, then it also

holds for tr
2
. A similar definition is also given for ternary relations.

R preserves P

≡ ∀tru,trl
:Trace

E
. (P(tr

l
) ∧ tru R tr

l
) ⇒ P(tru)

R preserves3 P

≡ ∀tru,tr1
,tr

2
:Trace

E
. (P(tr

1
) ∧ P(tr

2
) ∧ R(tru,tr1

,tr
2
))

⇒ P(tru)

Preservation by a (binary or ternary) relation R is thus a predicate on proper-
ties, i.e. a meta-property. Note that preservation automatically makes the effects
of the relation R transitive, even if R is not. Below, we will formalize six such
relations that describe the meta-properties discussed in Section 3.

Safety. Safety means that if the property holds for a trace, then it is also sat-
isfied for every prefix of that trace. The corresponding relation Rsafety specifies

that the trace above the protocol (tru) is a prefix of the one below (tr
l
).

tru R safety
E

tr
l

≡ tru v tr
l

Asynchrony. A property is asynchronous if it does not depend on the rela-
tive order of events at different processes. The corresponding relation Rasynch
specifies that two traces are related if they can be formed by swapping adjacent
events that belong to different processes. Events belonging to the same process
may not be swapped.

tru R async
E

tr
l

≡ tru swap-adjacent
[loc

E
(e)6=loc

E
(e′)]

tr
l

where tr
1
swap-adjacent[c(e;e′)] tr

2
denotes that tr

1
can be transformed into tr

2

by swapping adjacent events e and e′ of tr
1
that satisfy the condition c(e; e′).

Delayable. A property is delayable if it survives delays of Send events on
the way down and of Deliver events on the way up. The corresponding relation
Rdelayable specifies that adjacent Send and Deliver events in the lower trace
may be swapped in the upper. Events of the same kind or containing the same
message may not be swapped.

tru R delayable
E

tr
l

≡ tru swap-adjacent[e 6=m

E
e
′ ∧ is−send

E
(e)6=is−send

E
(e′)] tr

l

Send Enabled. A property is Send Enabled if it is preserved by appending
Send events to traces. The corresponding relation Rsend-enabled specifies that
the upper trace is formed by adding Send events to the end of the lower trace.

tru R send-enabled
E

tr
l
≡ ∃e:|E|. is-send

E
(e) ∧ tru = tr

l
@[e]

112

Memoryless. A property is memoryless if we can remove all events pertain-
ing to a particular message from a trace without violating the property. The
corresponding relation Rmemoryless defines that the upper trace can be formed
from the one below by removing all events related to certain messages.

tru R memoryless
E

tr
l

≡ ∃e:|E|. tru = [e1
∈ tr

l
| e 6=m

E
e

1
]

Composable. A property is composable if it is preserved when two traces
that have no messages in common are concatenated. The corresponding relation
Rcomposable is ternary, as it characterizes the upper trace tr as concatenation of
two lower traces without common messages.

R composable
E
(tru,tr1

,tr
2
) ≡ tru = tr

1
@tr

2
∧ ∀e

1
∈ tr

1
.∀e

2
∈ tr

2
. e

1
6=m

E
e

2

Switchable Properties. The above collection of meta-properties and its for-
malization is the result of a complex formal analysis of the switching protocol.
The formal verification process with the Nuprl proof development system [3] re-
quired us to make many assumptions explicit that are usually implicitly present
in an informal analysis of communication protocols. This is reflected in the defini-
tion of switchable communication properties. A trace property P is switchable if
it requires the trace to be meaningful and satisfies all of the six meta-properties.

switchable
E
(P) ≡ P B Causal

E

∧ P B No-replay
E

∧ R safety
E

preserves P

∧ R async
E

preserves P

∧ R delayable
E

preserves P

∧ R send-enabled
E

preserves P

∧ R memoryless
E

preserves P

∧ R composable
E

preserves
3

P

In the following section we will show that switchable communcation proper-
ties are in fact preserved by the switching protocol.

5 Verification of Hybrid Protocols

In the previous sections we have given an abstract and formal characterization
of communication protocols whose properties can be preserved by switching. In
a similar way we will now develop an abstract characterization of the switch-
ing protocol in terms of a switching invariant . We will then prove that every
implementation of a switching protocol that satisfies the switching invariant is
guaranteed to preserve switchable properties. In this paper, we will focus on the
highlights of this proof and the underlying formal theory. A complete account
of this theory, which has been developed entirely within the Nuprl proof devel-
opment system [3], can be found in the technical report that has been created
automatically from the formal theory [5].

113

In order to prove the switching protocol to work correctly for a switchable
property P we have to show that if P holds for the traces tr

1
and tr

2
of the two

protocols below the switching protocol, then P also holds for the trace tru above
the switch. That is, an application cannot tell easily that it is running a hybrid
protocol with a switch instead of one of the individual protocols.

tr1 tr2

tru

tru

? 6

Switching Invariant

?

6 ? 6 ? 6
� �

? 6 ? 6

? 6

�
? 6

�

? 6

The presence of the switch has two effect on the traces. First, the two traces
tr

1
and tr

2
will be merged in some way, and second, the order of some events in

the merged trace may be modified due to the effects of layering.

To investigate these effects separately we introduce a virtual middle trace

tr
m

that consists of the events of tr
1

and tr
2
. We will study what local switch

invariants such a trace must satisfy to guarantee that a property, which holds on
its subtraces, also hold for the whole trace. We will then link tr

m
to tr

1
and tr

2
by

merging and to tru by introducing global and local delays and additional Send

events and derive a global switch invariant , which models the basic architecture
of the switching protocol described in Section 2 and guarantees its correctness.

To be able to identify the origin of events in a merged trace we define a class
TaggedEventStruct of tagged event structures as subtype of EventStruct. A
tagged event structure TE ∈TaggedEventStruct provides the same components
as any element of EventStruct but an additional function tag

TE
that computes

the label tg ∈Label of an event e ∈|TE|. By TaggedEventStruct
E

we denote
the subclass of tagged event structures whose components as event structure are
identical to those of E. Traces over tagged events are defined as before, but every
event of such a trace tr is associated with a tag as well. This enables us to define
the subtrace of tr that consists of all events with a given tag tg as

tr|tg ≡ [e ∈ tr | tag
TE
(e)=tg]

Note that the notion tr|tg contains an implicit index TE, whose display is sup-
pressed to simplify the notation.

We will need the following property. It characterizes tagged traces in which
events with the same message have the same tag.

Tag-by-msg
TE
(tr)

≡ ∀i,j<|tr|. tr[i]=m

TE
tr[j] ⇒ tag

TE
(tr[i])= tag

TE
(tr[j])

114

5.1 The Local Switching Invariant

A local switch invariant I on a trace tr shall guarantee that a switchable property
P holds for tr whenever P holds for all subtraces tr|tg. If this is the case we say
that I fuses P :

I fuses P ≡ ∀tr:Trace
E
. I(tr) ⇒ (∀tg:Label.P(tr|tg)) ⇒ P(tr)

From the description of the switching protocol we know that if two messages
are sent using different protocols, then the second message will be buffered at
a location until the first one has been delivered. In other words, if two Send

events have different tags, then at any location, the first message must have
been delivered before the second. This requirement is represented by the follow-
ing invariant.

switch inv
TE
(tr)

≡ ∀i,j,k<|tr|.(i<j ∧ is-send
TE
(tr[i]) ∧ is-send

TE
(tr[j])

∧ tag
TE

(tr[i]) 6=tag
TE
(tr[j]) ∧ tr[j]↓

TE
tr[k])

⇒ ∃k’<k. loc
TE
(tr[k’])= loc

TE
(tr[k]) ∧ tr[i]↓

TE
tr[k’]

where e↓
TE

tr[k] denotes that a message related to the event e is delivered at
time k in tr:

e↓
TE

tr[k] ≡ e =m

TE
tr[k] ∧ ¬is-send

TE
(tr[k])

switch inv
TE

is sufficient to fuse switchable properties, provided the trace de-
scribes a meaningful communication, i.e. does not contain duplicate send events.

Theorem 1.

` ∀TE:TaggedEventStruct. ∀P:TraceProperty
E
. switchable

TE
(P)

⇒ (No-dup-send
TE

∧ switch inv
TE

) fuses P

Proof. Theorem 1 is the result of a series of steps that refine the invariants for fusing
certain classes of properties until we arrive at the fusion condition for the class of
switchable predicates.

1. We begin by proving an invariant for the preservation of all properties P that are
memoryless, composable, and safe, denoted by the meta-property MCS

TE
(P). A suf-

ficient condition is single-tag-decomposability , meaning that any nonempty trace can
be decomposed into two traces with no messages in common, such that all events of
the (non-empty) second trace have the same tag.

single-tag-decomposable
TE

(tr)

≡ tr 6=[] ⇒ ∃tr1,tr2:TraceTE
. tr = tr1@tr2 ∧ tr26=[]

∧ ∀e1
∈tr1.∀e2

∈tr2. e1 6=
m
E e2

∧ ∃tg:Label. ∀e2
∈tr2. tag

TE
(e2) = tg

By induction over the length of a trace we prove that any single-tag-decomposable
safety property is a fusion condition for any MCS property.

` ∀TE:TaggedEventStruct. ∀P,I:TraceProperty
TE

. MCS
TE

(P) ⇒
R safety

TE
preserves I ∧ I � single-tag-decomposable

TE

⇒ I fuses P

115

2. In the next step we refine single-tag-decomposability to a more constructive condi-
tion that we call switch decomposability . It says that it must be possible to charac-
terize timing of some send events in a trace (i.e. their indices) by some decidable
predicate Q that satisfies a number of closure conditions.

switch-decomposable
TE

(tr)

≡ tr = [] ∨ ∃Q:IN→ � . decidable(Q) ∧ ∃i<|tr|. Q(i)

∧ ∀i<|tr|. Q(i) ⇒ is-send
TE

(tr[i])

∧ ∀i,j<|tr|. Q(i) ∧ Q(j) ⇒ tag
TE

(tr[i]) = tag
TE

(tr[j])

∧ ∀i<|tr|. Q(i) ⇒ ∀i≤j<|tr|. ClQ(j)

where ClQ(j), the message closure of Q at time j is defined as

ClQ(i) ≡ ∃k<|tr|. Q(k) ∧ tr[k] =m
E tr[i]

By partitioning the trace into those events that satisfy ClQ(i) and those that don’t
we can prove that switch-decomposability refines single-tag-decomposability.

` ∀TE:TaggedEventStruct
(switch-decomposable

TE
∧ Tag-by-msg

TE
∧ Causal

TE
∧ No-dup-send

TE
)

� single-tag-decomposable
TE

3. In the third step we show that a certain strengthening of switch inv
TE

refines
switch-decomposability. For this purpose we have to find a predicate Q that satisfies
the five conditions for switch-decomposability.

If the trace satisfies switch inv
TE

and causality, then it must contain a Send event.
We define Q to hold on all indices that are related to the index ls of the last Send

event by the transitive closure of the relation R switchtr , which relates Send events
whose messages were delivered out of order at some location.

i R switchtr j ≡ is-send
TE

(tr[i]) ∧ is-send
TE

(tr[j])

∧ (i<j ∧ tr[j]↓<

TE
tr[i] ∨ j<i ∧ tr[i]<

TE
tr[j])

where e↓<

TE
tr[k] denotes that the event e is delivered at some time before time k.

It is fairly easy to prove that Q has the first four of the five required properties. For
the fifth, however, we need more than just switch inv

TE
and Causal

TE
. We have

to assume that the trace tr has a certain normal form, in which Send events occur
as late as possible and asynchronous Deliver events match the order of their Send

events. Since the algorithm for generating this normal form can be shown to pre-
serve asynchronous and delayable properties, we call this property an asynchronous-

delayable normal form or AD-normal .

AD-normal
TE

(tr)

≡ ∀i<|tr|. (is-send
TE

(tr[i]) ∧ ¬is-send
TE

(tr[i+1]) ⇒ tr[i] =m
E tr[i+1]

∧ (∃j,k<|tr|. j<k ∧ is-send
TE

(tr[j]) ∧ tr[j]↓
TE

tr[i+1]

∧ is-send
TE

(tr[k]) ∧ tr[k]↓
TE

tr[i])

⇒ loc
TE

(tr[i]) = loc
TE

(tr[i+1]))

This property, together with causality and no-duplicate-deliver suffices to prove the
fifth property of Q. Thus altogether we have proved the following

` ∀TE:TaggedEventStruct
(switch inv

TE
∧ Causal

TE
∧ AD-normal

TE
∧ No-replay

TE
)

� switch-decomposable
TE

116

4. Putting the above results together we can show

` ∀TE:TaggedEventStruct. ∀P:TraceProperty
TE

.

MCS
TE

(P) ∧ P � (Causal
TE

∧ No-replay
TE

)

⇒ (switch inv
TE

∧ AD-normal
TE

∧ No-dup-send
TE

) fuses P

In the last step we prove that the normal form requirement can be removed if we
assume the predicate P to be asynchronous and delayable.

For this purpose we apply general theorem about the existence of partially sorted
lists. It says that, if swapping adjacent elements e and e′ in a list tr for which a
decidable predicate GOOD(e, e′) does not hold increases the number of good pairs,
then we may reach a list tr′ in which all adjacent pairs satisfy GOOD (proof by
induction over the number of bad pairs).
By instantiating GOOD with a localized version of AD-normal

TE
we can show that

a trace can be converted into normal form.

` ∀TE:TaggedEventStruct. ∀tr:Trace
TE

switch inv
TE

(tr) ∧ No-dup-send
TE

(tr)

⇒ ∃tr’:Trace
TE

. switch inv
TE

(tr’) ∧ AD-normal
TE

(tr’)

∧ tr (R delayable
TE

∨ R asynch
TE

)∗ tr’

Since switchable properties are preserved by R delayable
TE

∨ R asynch
TE

, Theo-
rem 1 follows from the above two results. �

The proof of Theorem 1 was developed completely within the Nuprl proof
development system. Further details can be found in [5].

5.2 Global Correctness of Switching

Theorem 1 states that a switchable property P holds on a tagged event trace
trm whenever P holds for all subtraces trm|tg, provided trm satisfies the local
switch invariant and does not contain duplicate Send events.

The global switch invariant expresses that some virtual inner trace tr
m
, which

is created by merging the traces tr1 and tr2 of the protocols below and is linked
to the upper trace tru by introducing global and local delays and additional Send

events, must satisfy the local switch invariant and be free of duplicates.
In the formal model, we describe the traces tr

1
and tr

2
by a single lower

trace tr
l
of tagged events. tr

l
is related to tr

m
by allowing adjacent events with

different tags to be swapped, which accounts for the effects of buffering during
switch mode. tr

m
is related to tru by allowing (global and local) delays and

enabling Send events.

Rtag ≡ (swap-adjacent
[tag(e)6=tag(e′)]

)∗

R layer
TE

≡ (R async
TE

∨ R delayable
TE

∨ R send-enabled
TE
)∗

where R∗ denotes the transitive closure of a relation R. Note that R layer
TE

is
the same as R layer

E
if TE ∈TaggedEventStruct

E
.

The definition of the global switch invariant summarizes all the above insights
into a single relation between the lower and the upper trace.

117

full switch inv
TE

(tru;trl
) ≡ ∃tr

m
:Trace

TE
. tr

l
Rtag

TE
tr

m

∧ switch inv
TE

(tr
m
)

∧ tr
m

R layer
TE

tru

∧ No-dup-send
E
(tru)

Switching protocols that implement this invariant, support all protocols that
implement switchable properties. Whenever a switchable property P holds for all
traces tr

l
|tg of the individual protocols below a switching protocol that satisfies

the global switching invariant, then it also holds for the trace tru above it. In
the Nuprl proof development system this theorem, which is an straightforward
consequence of Theorem 1, is formalized as follows.

Theorem 2 (Correctness of Switching).

` ∀E:EventStruct. ∀P:TraceProperty
E
. ∀TE:TaggedEventStruct

E

∀tru:TraceE
. ∀tr

l
:Trace

TE
.

(switchable
E
(P) ∧ full switch inv

TE
(tru;trl

))

⇒ (∀tg:Label. P(trl|tg)) ⇒ P(tru)

5.3 Implementation Aspects

The implementation of a switching protocol was developed in parallel to the
formal verification efforts, and took into account that the switch has to satisfy the
global switch invariant. Together with the fact that switching protocols designed
according to the description in Section 2 are live, this gives us assurance that
the resulting hybrid protocol works correctly.

We have evaluated the performance implications of using the switching proto-
col by switching between two well-known total order protocols [19], one based on
a centralized sequencer [16] and the other using a rotating token with a sequence
number [8]. These two protocols have an interesting trade-off. The sequencer-
based algorithm has low latency, but the sequencer may become a bottleneck
when there are many active senders. The token-based algorithm does not have a
bottleneck, but the latency is relatively high under low load. Experiments have
shown that having the switch follow a small hysteresis at the cross-over point
has the potential of achieving the best of both

6 Conclusion

We have designed a generic switching protocol for the construction of adap-
tive network systems and formally proved it correct with the Nuprl Logical
Programming Environment. In the process we have developed an abstract char-
acterization of communication properties that can be preserved by switching
and an abstract characterization of invariants that an implementation of the
switching protocol must satisfy in order to work correctly.

118

There has been a flurry of research on the verification of software systems
and communication protocols (see e.g. [14, 21, 24, 26]). But most approaches so
far provided only a-posteriori verifications of well-understood algorithms. To
our knowledge this is the first case in which a new communication protocol
was designed, verified, and implemented in parallel. Because of a team that
consisted of both systems experts and experts in formal methods the protocol
construction could proceed at the same pace of implementation as designs that
are not formally assisted, and at the same time provide a formal guarantee for
the correctness of the resulting protocol.

The verification efforts revealed a variety of implicit assumptions that are
usually made when reasoning about communication systems and uncovered mi-
nor design errors that would have otherwise made their way into the imple-
mentation (such as to use switching for arbitrary protocols). This demonstrates
that an expressive theorem proving environment with a rich specification lan-
guage (such as provided by the Nuprl LPE) can contribute to the design and
implementation of verifiably correct network software.

So far we have limited ourselves to investigating sufficient conditions for a
switching protocol to work correctly. However, some of the conditions on switch-
able properties may be stricter than necessary. Reliability, for instance, is not a
safety property, but we are confident that it is preserved by protocol layering and
thus by our hybrid protocol. We intend to refine our characterization of switch-
able predicates and demonstrate that larger class of protocols can be supported.

Also, we would like to apply our proof methodology to the verification of pro-
tocol stacks. To prove that a given protocol stack satisfies certain properties, we
have to be able to prove that these properties, once “created” by some protocol,
are preserved by the other protocols in the stack. We believe that using meta-
properties to characterize the properties preserved by specific communication
protocols will make these investigations feasible.

Our case study has shown that formal methods are moving into the design
and implementation phases of software construction as well as into the testing
and debugging phases. The impact of formal methods is larger the more they
are engaged at the earliest stages of design and implementation. We believe that
the early use can add value to all subsequent stages, including the creation of
informative documentation need for maintenance and evolution of software.

Acknowledgements This work was supported by DARPA grants F 30620-98-2-0198
(An Open Logical Programming Environment) and F 30602-99-1-0532 (Spinglass).

References

1. M. Aagaard & M. Leeser. Verifying a logic synthesis tool in Nuprl. In G. Bochmann
& D. Probst, eds., Workshop on Computer-Aided Verification, LNCS 663, pages
72–83. Springer, 1993.

2. ACL2 home page. http://www.cs.utexas.edu/users/moore/acl2.
3. S.Allen, R. Constable, R.Eaton, C. Kreitz, L. Lorigo. The Nuprl open logical envi-

ronment. In D. McAllester, ed., 17th Conference on Automated Deduction, LNAI
1831, pages 170–176. Springer, 2000.

119

4. B. Alpern & F. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987.

5. M. Bickford, C. Kreitz, R. van Renesse. Formally verifying hybrid protocols with
the Nuprl logical programming environment. Technical report Cornell CS:2001-
1839, Cornell University. Department of Computer Science, 2001.

6. K. Birman. Building Secure and Reliable Network Applications. Manning Publish-
ing Co. & Prentice Hall, 1997.

7. K. Birman & R. van Renesse. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, 1994.

8. J. Chang & N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on

Computer Systems, 2(3):251–273, 1984.
9. E. M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999.

10. R.Constable, S. Allen, M. Bromley, R. Cleaveland, J. Cremer, R. Harper, D. Howe,
T. Knoblock, P. Mendler, P. Panangaden, J. Sasaki, S. Smith. Implementing Math-

ematics with the Nuprl proof development system. Prentice Hall, 1986.
11. M. Hayden. The Ensemble System. PhD thesis, Cornell University. Department of

Computer Science, 1998.
12. J. Hickey, N. Lynch, R. van Renesse. Specifications and proofs for Ensemble layers.

In R. Cleaveland, ed., 5th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, LNCS 1579, pages 119–133. Springer, 1999.
13. D.Howe. Importing mathematics from HOL into NuPRL. In J. von Wright,

J. Grundy, J. Harrison, eds., Theorem Proving in Higher Order Logics, LNCS 1125,
pages 267–282. Springer, 1996.

14. D.Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, W. Stephan, and A. Wolpers.
Verification support environment (VSE). Journal of High Integrity, 1997.

15. Isabelle home page. http://www.cl.cam.ac.uk/Research/HVG/Isabelle.
16. M. Kaashoek, A. Tanenbaum, S. Flynn-Hummel, H. E. Bal. An efficient reliable

broadcast protocol. Operating Systems Review, 23(4):5–19, 1989.
17. C. Kreitz, M. Hayden, J. Hickey. A proof environment for the development of group

communication systems. In C. & H. Kirchner, eds., 15th Conference on Automated

Deduction, LNAI 1421, pages 317–332. Springer, 1998.
18. X.Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman, R.Constable.

Building reliable, high-performance communication systems from components. Op-

erating Systems Review 34(5):80–92, 1999.
19. X.Liu, R. van Renesse, M. Bickford, C. Kreitz, R. Constable. Protocol switching:

Exploiting meta-properties. In Luis Rodrigues & Michel Raynal, eds., International

Workshop on Applied Reliable Group Communication. IEEE CS Press, 2001.
20. N.Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
21. Z. Manna & A. Pnueli. Temporal Verification of Reactive Systems. Springer, 1995.
22. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
23. Nuprl home page. http://www.cs.cornell.edu/Info/Projects/NuPrl.
24. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal

of Computer Security, 6:85–128, 1998.
25. PVS home page. http://pvs.csl.sri.com.
26. John Rushby. Systematic formal verification for fault-tolerant time-triggered algo-

rithms. IEEE Transactions on Software Engineering, 25(5):651–660, 1999.
27. R. van Renesse, K. Birman, S. Maffeis. Horus: A flexible group communication

system. Communications of the ACM, 39(4):76–83, 1996.
28. R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, D. Karr. Building adaptive

systems using Ensemble. Software—Practice and Experience, 1998.

120

