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Abstract

In this paper we describe an efficient algorithm for the management of group-keys. Our
algorithm is based on a protocol for secure IP-multicast and is used to manage group-keys in
group-communication systems. Unlike prior work, based on centralized key-servers, our solution
is completely distributed and fault-tolerant and its performance is comparable to the centralized
solution.

1 Introduction

Increasingly many applications require multicast services, for example, teleconferencing, distributed
interactive simulation, collaborative work. To protect multicast message content, such applications
require secure multicast.

A multicast group can be efficiently protected using a single symmetric encryption key. This
key is securely communicated to all group members which subsequentally use it to encrypt/decrypt
group messages. The group-key is securely switched whenever the group membership changes,
thereby preventing old members from eavesdropping on current group conversations. The challenge
is to create an efficient and fast key-switch algorithm that can handle large groups and a high rate
of membership changes.

The general case of a multicast group includes scenarios where the group size is very large, up
to thousands or millions of members, and where there are few senders and many receivers. It also
includes a more specific case where there is symmetry between group members. By this we mean
that any member may be a source of multicast messages as well as a recipient. This work focuses
on the symmetric case.

IP-multicast is a widespread low-level multicast primitive. IP-multicast security has been ex-
tensively discussed in the literature [1, 5, 3, 2, 8, 11] and efficient solutions have been proposed
to secure it. These protocols all use centralized servers for key dissemination. The servers are
single points of failure. Our solution uses a Group Communication System (GCS), it is completely
distributed and fault-tolerant. It achieves low latency in the case of member join/leave, and its
performance is on par with the centralized solution. Our solution’s drawback is limited scalability,
up to the scalability of the GCS. Work is in progress to alleviate this limitation.

Our solution is related to other group-key architectures developed for GCSs. These works begin
with seminal research by Reiter [6, 9] and Gong [4], continuing to recent research on Ensemble [7].
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These results show how group keying can be integrated with a Group Membership Protocol (GMP)
to support such functions as securely managing keys at the group members, securely rekeying,
supporting secure channels between members (discussed below), signing messages and encrypting
the data segments of messages.

These real-world solutions, however, are limited by the scalability not just of the GMP itself
(in its underlying insecure mode), but also of the keying architecture. Elsewhere we have studied
GMP scalability and are arriving at some intriguing results, but there has been little attention by
the practical community to scalability of GCS key architectures.

Here we report on the first half of an effort to integrate such a scalable keying architecture
with the Ensemble system. This first step involves extending a powerful keying architecture to
support high availability. Elsewhere, we plan to report on the second half, which will investigate
systems issues and performance considerations arising when such a system is engineered for high
performance and studied carefully under controlled test situations.

2 Model

We assume processes in the group can send and receive point-to-point and multicast messages,
and have access to trusted authentication and authorization services. We also assume that the
authentication service allows processes to open secure channels. A secure channel between a pair
of processes allows the secure exchange of private information.

We use a GCS [10] to provide reliable communication and group membership services. All
processes, inside a group, have knowledge of the set of currently live and accessible members.
When some process crashes, or a network partition occurs, processes receive a view notification
event, describing the current membership. This is also called a view-change. The GCS allows only
trusted and authorized members into the group. Since all group members have the same view of the
membership, we number them lexicographically from 1 to n. When we refer to the group leader,
we implicitly refer to member number 1 (denoted my).

We use the notations:

my — My, : M = Member m, sends message M to members m,,m,.

{X}k, ks = A tuple consisting of message X signed with key K, and X signed with key K5. Note
that such a tuple can be signed in a manner that would prevent intruders from tampering
with either component of the pair.

Group Members: are denoted by mq ...m,,.

Subgroup keys: are denoted by Kg, where S is the subset of members

2.1 Liveness and Safety

Distributed protocols should be live and safe. In this section we define these properties formally,
and discuss the manner in which our protocols satisfy them.

Liveness: We say that a protocol is live if when the network is stable! then the protocol eventually
terminates.

!Network stability means that no link failures, nor process crashes occur, and all messages arrive on time.



Safety: We say that a protocol is safe if it does not reveal the group key to unauthorized members.

In the article body we describe protocols in a terse fashion. Here we describe the manner in
which a protocol is actually executed, and how its liveness is ensured. A protocol is described as
a series of send/multicast events between members, and as local computation steps. For example,
protocol P in Figure 1 securely switches the group key.

1. The group leader chooses a new key.

2. The leader uses secure channels to send the key securely to the members.

Figure 1: Protocol P

This protocol is safe since it uses secure channels to group members, all of which are trusted.
However, as stated above, P is not live. Notice that the protocol requires all processes to receive
the new-key. If some member fails and never recovers during the execution the protocol blocks. To
make the protocol fault-tolerant we restart the protocol in case of a view change. Another problem
we face is protocol termination. Before starting to use a key, participants need to know that all
members of the view have received that key. That is, all group members should be notified that
the protocol has terminated. We use a two phase protocol for this purpose:

1. Each group member, once it receives the group-key from the leader, sends an acknowledgment
(in the clear) to the leader.

2. The leader, once it receives acknowledgments from all group members, multicasts a ProtoDone
message.

3. A member that receives a ProtoDone message knows that the protocol has terminated and
the new key can now be used.

We implicitly add these steps to all protocols thereby ensuring their liveness. This allows us to
specify protocols in a more succinct fashion.

3 The centralized solution (C)

Here we describe a protocol by Wong, Gouda and Lam [2]. A keygraph is defined as a directed tree
where the leafs are the group members and the nodes are keys. A member knows all the keys on
the way from itself to the root. The keys are distributed using a key-server. In Figure 2 we see a
typical key-graph for a group of 8 members.

Each member m; shares a key with the server, K;, and also shares keys with subgroups in the
tree. For example, member m; knows keys Ky, Kq9, K14, K1g. It shares Ky with the server, Ko
with member msy, K14 with members mo, m3, m4, and Kig with members my,...msg.

The tree is built by the key server, it initially has secure channels with each of the members.
It uses these channels to create the higher level keys. For example, in order to create key Kio it



Figure 2: A keygraph for a group of 8 members.

encrypts Ko with keys K; and Ky, and sends {Ki2}k, Kk, to members mj, my. Only members
my1 and mo will be able to decrypt this message and retrieve Kjs. In the same manner keys
K34, K56, K73 are established. To establish K74 the server chooses Ky4 encrypts it with K9 and
K34 and sends {Ki4} K, ks, to members my,...m4. In similar manner Ksg is established. Key

Kg is then encrypted with K4, K53 and multicast.

Figure 3 describes this through a time-line diagram. First, keys K? = {Kj2, K34, K56, K73}
are created. Then, keys K% = {K14, K53} are created based on K?2. Finally, the group-key Kig is

established using K*.

Figure 3: The creation of a keygraph on a time-line.

Time flows from top to bottom. First,

K? = {K13, K34, K56, K73} is created, then K* = {K14, Ksg}, then the group-key.

The group key needs to be replaced if some member joins or leaves. This is performed through



key-tree operations.

Join: Assume member mg joins the group. S picks a new (random) group-key Kig encrypts it
with Ko, Ki1g and multicasts it to the group. Member mg uses Kg to decrypt it, and the
existing members use Kig to decrypt it.

Leave: Assume member m; leaves, then the server needs to replace keys K14, and Kig. It chooses
new key Koy, encrypts it with Ko, K34 and sends to msg, m3, my4. It then chooses Ksg and
uses K94 and Kxg to disseminate it.

In this scheme each member stores [oga(n) keys, while the server keeps a total of n keys. The
server uses n secure channels to communicate with the members. It is possible to create the full
tree using a single multicast.

It is possible, and in fact more efficient, to use trees of degree larger than 2. Here and through
the paper we discuss binary trees for simplicity. The analysis for trees of degree three or more is
essentially the same for the centralized solution as well as our algorithm.

Trees become imbalanced after many additions and deletions, and it becomes necessary to
rebalance them. We do not discuss this issue for brevity, but note only that well known tree-
algorithms can be used for this purpose.

4 Our solution

The problem with the previous solution is that it is not fault-tolerant, and relies on a centralized
server which has knowledge of all the keys. We desire a completely distributed solution. Our
protocol uses no centralized server, and members play symmetric roles.

First we describe the basic protocol, denoted B. In order to make protocol B completely
distributed we use the notion of subtrees agreeing on a mutual key. Informally, this means that
two groups of members, L and R, securely agree on a mutual encryption key. Assume that m; is
L’s leader, m, is R’s leader, L has group key K7, and R has group key Kp. The protocol used to
agree on a mutual key is as follows:

1. my; chooses a new key Krp, and sends it to m, using a secure channel.

2. my encrypts Kpr with Ky and multicasts it to L; m, encrypts Kpr with Kr and multicasts
to R.

3. All members of L U R securely receive the new key.

Formally, agree is defined as a protocol by which two subtrees, L and R, possessing secret keys
K7 and Kp respectively, choose a new key and securely communicate it to all members L U R.

We say that m; is the leader of L U R, and it is also the leader of L. We denote the subtree of
which p € G is the leader by G(p). For example, in the context of G = {1,2,3,4,5,6,7,8},G(1) =
G,G(2) ={2},G(3) ={3,4},G(5) = {5,6,7,8}.

We use the agree primitive to obtain our solution. Below is an example for the creation of a
completely distributed key-tree for a group of 8 members (see Figure 4):



1. Members 1 and 2 agree on mutual key Ko
Members 3 and 4 agree on mutual key K3y
Members 5 and 6 agree on mutual key Ksg
Members 7 and 8 agree on mutual key Krg

2. Members 1,2 and 3,4 agree on mutual key K4
Members 5,6 and 7,8 agree on mutual key Ksg

3. Members 1,2,3,4 and 5,6,7,8 agree on mutual key Kig

Each round’s steps occurs concurrently. In this case, the algorithm takes 3 rounds, and each
member stores 3 keys. We now describe the algorithm in the general case, where a key-graph
should be built for a group of size N. We assume for simplicity that N = 2". If N # 2" the same
algorithm is applicable, but it’s description is more complex and harder to understand.

Base case: If the group contains 0 or 1 members, then we are done. If the group contains 2
members then use the agreement primitive to agree on a mutual key.

Recursive step (N = 2"*!): Split the group into two subgroups, L and R, containing each 2"
members. Apply the algorithm recursively to L and R. Now, each subgroup possess a key,
K1, and Kpg respectively. Apply the agreement procedure to L and R such that they agree
on a group key.

This algorithm takes logon rounds to complete. Each member stores [ogan keys.

Figure 4: Our solution for a group of 8 members.

In case of join, new nodes are added. For example, if member myg joins then key Kig is added
(see Figures 5,6). The protocol then works as follows:

1. Members my,...,mg and mg agree on a mutual key Kig

2. Kjg is the new group key.

In case of failure, some of the tree nodes are replaced. For example, if member my fails then
keys K14 and K3 must be replaced; see Figure 7.
We use a similar strategy to choose new keys:

1. Members mo and ms, m4 agree on mutual key Koy.
2. Members mq, mg, my and ms, mg, m7, mg agree on mutual key Kog

In general this takes O(logzan) rounds. With a tree of degree d, it requires O(loggn) rounds.



Figure 5: Single member join case.
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Figure 6: The join algorithm: members m; and mg agree on key Ki9. Member m; encrypts Kig
with Kig and sends it to members my,...,ms.

4.1 Safety

Here we give an informal proof showing why the basic protocol is safe.

First, we need to show why the tree build protocol is safe. During the build we use the agree
sequence multiple times. This sequence is safe by induction: It is safe for two members because they
simply use a secure channel to communicate. Assume it is safe for subtrees up to size n. Leader
my passes Kpp to m, using a secure channel. Leaders m; and m, then use (safe by induction)
subgroup keys K, Kp to encrypt K prior to dissemination.

The join protocol is safe using a similar argument. The leave protocol is safe since we discard
all keys that the leaving member has known, and do not use them to disseminate the new group
key.

The optimized solution can be shown to be safe using an analogous argument, though we omit
the proof for brevity considerations.



Figure 7: The single member failure case.

4.2 Optimized solution (O)

The basic protocol can be improved to achieve latency of 2 rounds. We state the optimized protocol
O, and then provide an example run. Assume for simplicity that N = 2".
We describe the optimized algorithm recursively:

Base case (N =0,1,2): If the group contains 0 or 1 members we are done. If the group contains
2 members then member m; is the leader, it chooses key K2 and sends it using a secure
channel to ms.

Base case (N = 4): In this case, we use the following protocol:

1. (a) Leaders locally choose new keys:
mq chooses K14, K19
mg chooses K3y
(b) Using secure channels:
mip — mg K14,K12
mi1 — ms: Ky
ms3 — my : Kzy

2. In the clear:
m3 — My : {K14}K34

m, m, m, m,
i K14 i i K34 i
oKz T
| | kg
| | ok

Figure 8: A time-line diagram of the optimized key-graph with 4 members.



We provide this case to show the two stages of the solution: the first stage is the choice of new
keys and their dissemination using secure channels, the second stage is the encryption and
dissemination of keys received in the first round, using multicast. See Figure 8 for a time-line
diagram.

Induction: Assume the group contains 2" members, and we can solve the problem in two rounds

for the 2™ case. Split the group G into two disjoint subgroups, L and R where | L |=| R |= 2.
For each member p € G Create the list of actions to be performed in stages 1 and 2, A} ; and
Ajp o respectively. Mark the leader of L as m; and the leader of R as m,.

The new stages are now:

Agjlz For all members different than m;, the actions are the same as before, i.e.,

An—l—l —

ol .1~ Member m initially sets AZiH = A}';. It adds another action to AZiH:

Choose a new key for the whole group, K, and sends it using a secure channel
to my.
Then, m; adds Krr as payload to all AZ”J messages.

AZEI: Initially, A;”El = Aj,. All members that receive Kpp during Agjl add the following

: n+1,
action to Aj%

encrypt K r with the subtree key and multicast it to G(p) \ {p}.

Our description is recursive, however, we emphasize that it takes only 2 communication phases
to perform the action lists by all members of G because the “stages” occur concurrently.
For example, below is an execution with 8 members.

1.

2.

(a) Member 1 chooses K2, K14, K13
Member 3 chooses K34
Member 5 chooses Ksg, K5g
Member 7 chooses Krg

(b) Using secure channels, the leaders send the chosen keys as follows:

my — my : Kig, K14, K18

my — m3 : K14, K1

mi1 — msy K18

ms3 — my : Ksy

ms — mg : Ks6, Ksg

ms — m7 : Ksg

mry — msg K78

Using regular communication, leaders send:
m3 — My : {K14}K34’ {K18}K14

ms — Me,7,8 : {KIS}Kss

my —mg : {K58}K7g

All members can now decrypt and get all keys on route to the root. For example, mg receives
Kg in stage 1, and {Kss}r.s {Kis} K, in stage 2. It can then decrypt and get Kis, K5g. This is



also shown in a time-line diagram in figure 9. The figure shows how action lists A, A are created.
Stage S1 shows all the messages that need to be sent for Kjg to reach all members. Ss shows the
protocol for subgroups L = {m1, ma, m3,m4} and R = {ms, mg, m7,mg}. Ay and Ay are then the
combination of S7 and Sy for the various members.

m, m, m, m, m; m; m, mg
| | s | |
ki K34 | Kss K78
SYI — —
3 {Kig {K58}

K18
K14
K12

K18
K14

Al

A2

Figure 9: A time-line diagram of the optimized key-graph with 8 members. Time flows from top
to bottom.

The join case is efficient using the regular solution, so we make no attempt to improve it.

In case a member leaves, the protocol is simplified. Examine the case where member m left the
group. The problem is to choose and distribute keys Ko4, Kog in 2 rounds. This works as follows
(Figure 10):

1. (a) mgy chooses Koy, Kog.

(b) Using secure channels:
my — m3 : Koy, Kog
mo — my : Kog

2. In the clear:
mg — myg : { Ko} Kuu, { K28} Koa
ms — me,7,8 + {Kag} s

10



my receives {Koa}r,,, {Kos}tk,, ms; it already has key K34 and it recovers Koy and Kog.
Members 6,7,8 receive {Kas} k., from ms; they have key Ksg and they recover Kog.

K28

{K28}_K58
(K28K24} {K28K24} K34
l/ \\
\ i

Figure 10: Optimizing the single member failure case.

The leave algorithm costs, in the case of a group of size n, logz(n) point-to-point messages
O(logz(n)) multicasts and the total amount of information passed is O(logan)? (see the Appendix 7
for a fuller description).

4.3 3 round solution (O3)

The optimized solution, as stated above, has an efficiency problem with respect to multicast mes-
sages. FEach subtree-leader sends logs(n) multicast messages, potentially one for each level of
recursion. Since there are n/2 such members, we have O(n * logz2(n)) multicast messages sent in a
typical run of the protocol.

Here we improve O and create protocol Os. Protocol O3 is equal to O except for one detail, in
each view, a member m, is chosen. All subtree-leaders, in stage 2, send their multicasts messages
point-to-point to m,. Member m, concatenates these messages and sends them as one (large)
multicast. The other members will unpack this multicast and use the relevant part. This scheme
reduces costs to n/2 point-to-point messages from subtree leaders to m,, and one multicast message
by mg. Hence, we add another round to the protocol but reduce multicast traffic.

4.4 Costs

Here, we compare the 3-round solution with the regular centralized solution. There are three
comparisons — building the key-tree, the join algorithm and the leave algorithm. Protocol O3
includes a liveness-ensuring stage discussed in the model Section 2. We do not include this sub-
protocol in protocol costs, since the centralized solution does not include an equivalent stage. We
use tables to compare the solutions and we use the following notations:

# pt-2-pt: The number of point-to-point messages sent.
# multicast: The number of multicast messages sent.
# bytes: The total number of bytes sent
# rounds: The number of rounds the algorithm takes to complete
First, we compare the case of building a key-tree for a group of size 2" where there are no

preexisting subtrees.
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‘ ‘ # pt-2-pt ‘ # multicast ‘ # bytes ‘ # rounds ‘
regular 0 1 (O(nlogan) | 1
distributed | O(n) 1 (O(nlogan) | 3

Protocol O3 takes O(n) more point-to-point messages. These messages are sent concurrently,
and are fairly small, hence, their impact is minor. Both protocols require a single (large) multicast.
O3 takes 2 more rounds of communication. Protocol C requires the key-server to know all the
key-tree, a total of n keys. The other members need keep logs(n) keys. O3 requires only knowledge
of logon keys from all members.

The leave algorithm costs:

‘ ‘ # pt-2-pt ‘ # multicast ‘ # bytes ‘ # rounds ‘
regular 0 1 O(logan) 1
distributed | logan logan O((logan)?) | 2

The join algorithm costs:

‘ ‘ # pt-2-pt ‘ # multicast ‘ # bytes ‘ # rounds ‘
regular 0 1 O(1) 1
distributed | 1 2 O(1) 2

5 Performance

Here we describe the performance of our algorithm in the context of the Ensemble [10] Group
communication system.

We tested our rekeying system on a group of machines, all running versions of the BSD operating
system. We used three groups of machines. The first group contained 16 PentiumPro 200Mhz ma-
chines connected through 10Mbit/sec switched Ethernet. The connection to the outside is through
a 100Mbit/sec connection. The second group included 8 PentiumPro 200Mhz machines connected
through a Myrinet LAN, and to the rest of the network through a gateway. The third group con-
tained 2 Pentium 120Mhz connected through a shared 10Mbit/sec Ethernet to the network. The
three groups were connected through 10Mbit/sec Ethernet.

Our test program uses a view-size parameter, n. Each run of the program creates a group of size
n, each group member on a different machine. Once the group reaches size n, the leader performs
a rekey operation. When the rekey is complete, the leader waits until the group stabilizes. The, it
removes a random member from the group. When the new view (size n — 1) stabilizes, it performed
another rekey operation. This alternating process is repeated for the duration of several minutes
and rekey times are measured.

In order to focus on the running time of the communication protocol, we did not use PGP
in this experiment. Therefore “secure channels” used in the second phase of the protocol are not
really secure. Since Ensemble caches secure channels, when they are actually used, using real secure
channels and would complicate the timed behavior of our protocol.

We performed the above measurement for groups of sizes 3 to 24, and got two times, a low and
a high for each parameter n. This is depicted in Figure 11, where the z-axis denotes group size,
and the y-axis denotes time in seconds. There are three time-lines in the diagram. One for the low
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times, one for the high times, and another for prompt times (see below). Note that the low times
are higher than the high times. This is because in the lower view change, the leader has to merge
log(n) partitions, where in the higher case, it only needs to allow a single member to an existing
group.

We also measured the time Ensemble takes to perform a simple view change. This is depicted
as the lowest line in the graph, prompt. The actual time the rekeying protocol requires, is the
difference between the hi,lo and prompt lines.

0.2

Figure 11: Rekey time, the y-axis denotes time in seconds, the z-axis denotes group size. The time
lines are “lo” for the low view, “hi” for high view, and “prompt” for a simple view-change.

The difference between the high,low and prompt lines is more or less constant and is about 40
milliseconds at 24 machines. We believe this is fast enough for most uses of group rekeying, and
shows our algorithm as efficient and scalable to large groups.

6 Conclusions

We have shown how to convert a centralized and non-fault-tolerant protocol into one which is
decentralized and tolerant of failures, and yet has nearly the same cost as the original protocol.

While O3 as stated, requires a group communication system it uses a relatively minor part
of the provided functionality. It could be run, with relatively minor adjustments, over wide-area
Internet applications. We are in the process of examining this approach and will report our findings
elsewhere.
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7 Appendix

7.1 A: The cost of the leave algorithm, optimized case

Examine a tree of depth n. W.l.o.g. m; leaves, and mgy chooses new keys K = {Ko3, K94, Kog,...}
to replace all the keys from mq to the root. Member mo sends the new keys to sub-leaders
ms, ms, Mg, M17,Man 41, ... through secure channels. All new keys are sent to msg, all keys ex-
cept Koz are sent to 5, K{Ko3, Kos} are sent to 5 and etc. Typical sub-leader p encrypts the
received keys with the key of G(p) and multicasts this information to the members. The com-
munication cost is loga(n) point-to-point messages and logs(n) multicasts. The total amount of
information passed is O(logan)?.

7.2 B: The complete algorithm

This appendix section aims to clarify and describe how key-trees are managed and how they evolve
between group views, when group-views may dynamically change.

For example, examine a group G of 8 members myq,...mg with a complete binary key-tree.
Assume member m; fails and the key-tree is split into three disjoint components: {ms}, {ms, m4},
{ms, mg,m7,mg} (see Figure 12). Each of the components possesses a complete key-tree. The
algorithm merges the subtrees together into a single key-tree.

14
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Figure 12: An example of a merge after failure.

An example of a merge sequence is depicted in Figure 13. Three groups G1, G2 and G3 where
G1 = {m1,ma}, G2 = {mg, ms,ms}, G3 = {mg, m7, mg, mg} merge together. The algorithm merges
the smaller components first, and works its way until all components are merged.

We term any set of members that have a spanning key-tree a subgroup. For example, in the
first case the subgroups are {ms}, {ms,ms}, {ms, mg, m7, mg}, and in the second, G1,G2,G3 are
the subgroups. The leader of a sub-group is its least ranked member. For example, the leader of
{ms, me, m7,mg} is ms. The leader of sub-group G is called a sub-leader, and is denoted by L(G).

When a new view is initiated, a spanning key-tree for all the view members is created out of
existing partial key-trees. To this end each sub-leader sends its key-tree structure to the group
leader L(G). The structure of the key-tree includes only key names, not actual key values. While
the group key-tree structure is known to all group members, actual key values are kept secret. A
member may know only the keys on the path from itself to the root. We denote key-tree structures
as S-trees.

L(G) computes the new key-tree structure and broadcasts it to the view. The sub-leaders
follow the protocol steps required of them to build a full key-tree. Once sub-leaders are done, and
all group members received all the key-information, they send an acknowledgment back to L(G).
When L(G) gets acknowledgments from all group members it knows that the full tree has been
created, and it sends a Done message to the group.

Some notation: A, B,C,T, T, T, denote trees. k,k" denote keys, T'(k, A, B) is a tree with k
is the top key, A is the left subtree, and B is the right subtree. If X is a tree then h(X) is it’s
height and K (X) is its top key. The algorithm described below merges two trees, A, B, together
into merge(A, B).
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Figure 13: An example of merging several disjoint components.

For example, in the failure case, the protocol would work as follows:

7.3 Local computation by the leader

The leader receives a list of S-trees £. In order to merge them together, it sorts £ according to
height into an array. Iteratively, the smallest two S-trees are poped out, merged, and returned to
the array. The merge sequence is complete when a single S-tree remains.

Assuming component S-trees are balanced binary AVL trees, the merged S-tree is also AVL.
This property guaranties that the route from all members to the root is of length O(log(n)). Hence,
the failure of any single member will force the system to discard only O(log(n)) sub-keys, out of
the total n — 1 sub-keys used in the key-tree.

7.4 Two-way-merge

Here we describe the algorithm by which two S-trees A and B are merged. We denote by
merge(A, B) the merged tree.

The base case is when A and B are of equal height. In this case a new key name k is chosen,
and merge(A, B) =T (k, A, B).

When h(A) # h(B), we assume w.l.o.g. h(A) > h(B), and A = T(_, A1, As). Match h(B)
against the height of A’s subtrees A;, A>. Recursively merge B with the smaller subtree (if there
exists a smaller one). When a subtree A’ such that h(B) = h(A') or h(B) = h(A’) + 1 is found,
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1. mg — my : T(Ksq,m3,my)
2. ms = mg : T(Ksg, T(Kss, ms, ms), T'(Krg,my7, ms))

3. mo — G : T(Kgg,T(K24,mg,T(K34,m3,m4)),
T(K587T(K567m57mﬁ)aT(K787m77m8)))-

4. my and mg create : T(Kaog, mo, T(K34, m3, my)).
meo and ms create :
T(KZS,T(K24,m2,T(K34,mg,m4)),
T(Kss,T(Ks6,m35,m6), (K78, m7,M8)))-

5. mg, mq, ms5, Mg, M7, Mg — My : Ack

6. my — G : Done

Figure 14: Complete protocol for a simple failure case. G = m;y ... mg, member m; fails and
components {ma}, {ms,ms}, {ms, mg, m7, mg} merge.

choose a new key name key and create a key-tree A'B = T'(key, A’, B). Now set merge(A,B) = A
where A’ is replaced by A'B.

Claim: if A and B are AVL trees then merge(A, B) is also AVL.

Proof:

o If h(A) = h(B) then merge(A, B) is also AVL.
e Assume correctness all for all trees A, B where ||h(A) — h(B)|| < n.

e Proof for h(A) = h(B) + n+ 1. A = T(key, Ay, As), hence, tree B is added to the smaller
subtree of A. If h(A;) = h(As3) then the new tree will be T'(key, A1, T (key', A2, B)) which is
AVL since h(Ay) +1 = h(T(key', A, B). If, w.l.o.g., h(A1) = h(A2) +1 then the new tree will
also be: T'(key, A1, T (key', As, B)). It is AVL since in this case h(A41) = h(T(key', A2, B)). O

7.5 Evaluation of the group S-tree

The leader computes the group S-tree and multicasts it to the group. Each sub-leader infers the
steps it must complete to create the tree, and agree on key values. A sub-leader may take part in
several two-way-merges. For maximal parallelism each two-way-merge is performed as follows:

Assume subtrees A’ (A’ as part of larger tree A) and B are merged in the group S-tree. The
leaders L(A’) and L(B) engage in the following protocol:

1. (a) L(A") = L(B) : Karp, key_wval
L(A’) chooses a new key named K 4 p with value key_val and sends it using a private
connection to L(B).
(b) L(A,) -G {KA/B}KAI
L(A") sends the group the new key K 4 g encrypted with K 4. Only members of A’ can
decrypt this message and extract K /.
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Figure 15: Merge. Two sub-groups are merged, mg and {my, ma, m4, ms, mg}.

(c) L(A") = G : {keys above K4 p}Kap
L(A") sends the group the keys in A above A’. Only members of A’ U B can extract
these keys.

2. L(B') > G : {Kyp}Kp
L(B) sends the group the new key of T'(_, A’, B). Only members of B can extract it.

For example, in the failure of Figure 14 members mo and ms create : Thy = T (Kaog, mo, T(K34,
ms, ’ITL4)) Members mo and ms create ng = T(Kgg,T24,T(K58, T(K56, ms, m6), T(K78, mr, mg)))
This is performed as follows:

A common tree to {msq} and {ms,m4} is created by:

1. mo — M3 : K24
2. ms3 — G : {K24}K34
A common tree to {mg, m3, m4} and {ms, mg, m7,mg} is created by:

1. (a) mo — ms : Kog
(b) mo — G: {KQg}K24

2. ms — G: {KQg}Kg,g
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Claim: a complete n-way-merge can be performed in 2 parallel stages. Note that when per-
forming several such merges in one step, step 1.c is problematic. The difficult point is that L(A’)
need not necessarily know all the keys above it when it performs stage 1.c. Therefore, it sends only
those keys it knows at the time. We shall show that inspite of this difficulty, the protocol does
indeed complete in 2 parallel stages.

Proof:

e Base case: Two trees can be merged in two steps.

e Induction: Assume n trees can be merged in two phases. Now we need to show for n+1 trees.
We merge first the smaller n trees into tree 7. Denote the last tree by 75, and assume w.l.o.g
that h(T1) > h(T:), and that h(To) = h(T}’), where Ty is a subtree of Ty. The final tree
will be T1 with T replaced with Ty = T'(k, Ty, T>). The leader of Ty chooses K (Ty9) = k
and passes it to T/, hence members of T}/ know all the keys on the path to the root in
merge(Ty,Ty). Members of Ty know the keys on the path to the root of Ty (by assumption).
They know £ since it is passed from L(7y/) to L(T%) and to T. Since L(T}/) multicasts all
the keys (it initially knows) above T}/ encrypted with k& then T5 have knowledge of the same
key-set as members of Ty,. By the induction hypothesis, T7: know all the keys above & when
the protocol completes, hence 75 will know these keys as well. O

7.6 The protocol in 3 stages

In order to turn the protocol from 2 to 3 stages, we use the same trick as we used in chapter 1. We
use member L(G) to gather all the would-be-multicasts of of stages 1 and 2. L(G) then multicasts
them bundled up in one message. Each member picks the relevant part, and decrypts.

7.7 State kept in the group

Each member needs to keep log(n) keys, namely, all the keys from itself to the root. Also, it needs
to keep the structure of the key tree. This is required so that it will be able to recover from group
member failures and group partitions.

A member should keep the structure of the subtree of which it is a leader and the list of leaders
above it. To show this is enough, examine what happens when there is a failure in the group. The
tree is disconnected into several disjoint components. These components should be reconnected into
a single tree. To do so, all component leaders should sent their tree structure the leader, which will
reconnect the tree. Hence, in the event of failure, a member should know : (1) If it is a sub-leader.
(2) What is the tree structure of its sub-tree.

For example, in the scenario in Figure 7, a group of 8 members my, . .. mg with a complete binary
key-tree, splits due to the failure of m;. Three components are created: {ms}, {ms, mq}, {ms, me, m7,mg}.
Member ms need not remember anything. Member m3 keeps the structure 7'(_, ms,m4) and mem-
ber ms keeps T'(_, T'(-,ms5,mg), T'(,m7,mg)). This is enough.

Here we account for the total amount of memory required by the key-tree algorithm throughout
the group. We do the accounting for a complete binary tree, of n leaves. An actual tree for n leaves
is an AVL tree, which has properties not far from a complete binary tree.

First we count the state kept regarding the tree structure. The total state needed is a function,
f, with the following properties:
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e f(1)=1

o f(n)=n/2+2xf(n/2). Since for a tree A = T'(| A1, A), the state kept in Ay, Ag is 2x f(n/2),
and L(A;) should also keep the state of Ag, which is of size n/2.

The first equation is derived from the fact that the group tree leader should know all the tree,
and besides, each subtree should keep f(n/2) state. Hence, we account the tree leader for keeping
the state of right half of the tree (size n/2), and add the state kept by each tree half. It can be
shown that these recursive equations for f admit the solution f(n) = O(nlog(n)).

Each member needs to keep the set of keys on the way to the root, and the set of leaders above
it. This amounts to O(logn) information. Summing over all the tree, this amounts to O(n x logn).

To summarize O(n * logn) information is required for this protocol.

7.8 Summary

This section has described the algorithms required to manage the key-tree for a dynamic peer-
group. We have shown that our algorithm can recover from any failure or group reconfiguration
in 2-3 rounds with O(n)log(n) communication while requiring O(n * log(n)) memory for state
information. The centralized algorithm, that does not have fault-tolerance properties, requires a
single communication round and O(n * log(n))) memory (with a smaller factor however).
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