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ABSTRACT
When replicating data in a cloud computing setting, it is
common to send updates using reliable dissemination mech-
anisms such as network overlay trees. We show that as data
centers scale up, such multicast schemes manifest various
performance and stability problems.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
communication networks— Network Protocols; C.2.4 [Com-
puter-Communication Networks]: Distributed
Systems—Distributed applications, Cloud computing

General Terms
Reliability, Performance

Keywords
Reliable multicast, Cloud computing

1. INTRODUCTION
Data centers, and particularly massive ones that support

cloud computing, e-commerce, and social networking, neces-
sarily replicate data. Replication is done for many reasons:
to provision financial servers that respond to read-mostly re-
quests, to parallelize computation, to cache important data
items, for fault-tolerance, and the list goes on.

Since updates to replicated data can be thought of as reli-
able multicasts, data center multicast is an important tech-
nology. Nonetheless, a series of recent keynote speeches at
major conferences makes it clear that data center multicast
is a troubled area [19, 1, 6]. One might expect data cen-
ters to use IP multicast, but in fact this is rare, in part due
to concerns about flow control [18, 1]. Only TCP is really
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trusted today (because it backs down when loss occurs), and
indeed, TCP is the overwhelming favorite among data cen-
ter transport protocols [10, 6]. Using TCP to get reliable
multicast with high throughput produces an implicit TCP
overlay tree. But although such trees are easy to build, and
were repeatedly shown to work well analytically, in simula-
tions, or “in the lab” [2, 21, 3], in real data centers, they
have been reported to exhibit low throughput [6].

In this paper we probe the root cause of this gap between
predictions and reality. We study via mathematical analysis
and simulations the use of overlay trees composed of reliable
point-to-point links e.g., using TCP, for reliable multicast;
our multicast model is defined in Section 2. We show that
multicast oscillations and throughput collapse may result
from infrequent short delays, (e.g., of a tenth of a second),
which were not modeled or simulated before. Nodes can
experience such disturbances for a variety of reasons, such
as Java garbage collection pauses, Linux scheduling delays,
or flushing data to disk.

In Section 3, we present an analytical model capturing
such disturbances. We prove an upper bound on the aggre-
gate multicast throughput achievable in overlay trees in the
presence of short disturbances. The limiting factor for per-
formance is back-pressure, which is caused when disturbed
nodes fail to send acknowledgements upstream. This occurs
even in the absence of message loss, and without any retrans-
missions. In Section 4, we conduct simulations to validate
our analysis. For the purpose of again obtaining an upper
bound, we simulate an environment with ideal flow and con-
gestion control, without TCP’s slow start or retransmissions.

In Section 5, we present results from our analysis and
simulations. We find that in large trees, (10K-60K nodes,
a size not unreasonable in cloud settings), when each node
is disturbed for one second every hour on average, through-
put degradation (up to 90%) occurs even if message loss is
negligible. Under default TCP configurations in low-latency
networks, message loss can cause problems even in very small
trees: we demonstrate that multicast throughput collapses
with as few as 30− 100 nodes if switches become congested.

Our paper thus explains why overlay trees built from reli-
able point-to-point links (possibly, but not necessarily TCP
links) are quite likely to perform poorly, at least if imple-
mented näıvely. Note that we do not claim that data cen-
ter multicast must inherently be slow; indeed, approaches
to overcome the limitations shown by our analysis exist.
Rather, we refine the model for reasoning about such sys-



tems so as to capture phenomena that have a severe impact
on performance in practice, and were previously overlooked.
This approach may thus prove useful in future work for ana-
lyzing solutions that remedy the problems we highlight. Our
conclusions appear in Section 7.

2. MULTICAST MODEL
The multicast system consists of N nodes, interconnected

by a high throughput low latency network with maximal
bandwidth Tmax per link. We assume that each node has
one NIC, and hence can send at a combined rate of at most
Tmax on all links. We also studied the case of multiple NICs
and obtained similar results, which are omitted due to lack
of space. Consistent with previous work [2, 21, 15, 7], we
assume that the nodes are structured into a balanced k-ary
tree, and the root of the tree is the source of the multicast.

We use a standard model for multicast with reliable com-
munication channels each associated with an incoming (re-
ceive) buffer and an outgoing (send) buffer, and flow-control
[2, 21]. These can be, e.g., TCP links, though this is not nec-
essary. All incoming and outgoing buffers are of equal size,
denoted B0. The aggregate buffer size along the path from
the root to a leaf is denoted Bmax(N) = Θ(B0 · log N). The
application on the root node transmits packets, intermedi-
ate nodes forward them without any application-level buffer-
ing (which would otherwise be equivalent to having larger
low-level buffers), and the leaf nodes consume the packets.
Application threads at the root and at internal nodes stall
to prevent overflow of outgoing buffers. The flow-control
mechanism prevents overflow of incoming buffers.

3. ANALYTIC MODEL
In this section we model the system dynamics and illus-

trate oscillatory behavior. The key property captured in our
model involves disturbances that nodes may experience. Dis-
turbances prevent nodes from forwarding packets. This can
happen for various reasons, e.g., when the application thread
does not respond or when packets do not reach the node
because of a link problem. By modeling disturbances, we
capture dependencies among delays of messages that arrive
close together. This differs from traditional models, which
typically assume that message delays are independently sam-
pled from some distribution (often exponential).

In order to model disturbances, we define two possible
states of a node: Good and Bad (disturbed). The node states
are described in Figure 1(a). Every node in the multicast
tree alternates between these states. Nodes in the Good state
forward packets from upstream nodes to downstream nodes
(or consume them in case of leafs) as described in the multi-
cast model, whereas nodes in the Bad state do not consume
or forward packets. We assume that becoming disturbed is
a memoryless process, which we capture by modeling the
duration of time that a node remains in the Good state as
exponentially distributed with expectation λ. Because data
centers are typically homogeneous, we assume that the dis-
tributions at all nodes are identical and independent (iid).
The time in the Bad state may have an arbitrary distribu-
tion, provided that the distribution is iid for all nodes and
has a finite expectation, µ. We denote pBad and pGood the
probabilities that a node is in Bad and Good states, respec-
tively (pBad + pGood = 1). The process of node states tran-
sitions can be seen as regenerative process and in long term

system run the probabilities are: pGood = λ
λ+µ

, pBad = µ

λ+µ

The system throughput depends on the dynamics of all
node states. To capture these dynamics, we introduce global
system states. The global states transitions are described in
Figure 1(b). When we start observing the system, we as-
sume that there are Good nodes in the system and say that
the system state is Active. When some node u becomes
Bad , the system transitions to the Blocking state. When
node u becomes Good again, the system moves back to the
Active state. Note that at this point, other Bad nodes might
exist in the system. The system transitions to Blocking
state only when some new node changes its state from Good
to Bad during the Active system state. This definition of
system states allows us to divide the execution into time in-
tervals, each spanning from the beginning of an occurrence of
the Active state until the beginning of the successive Active
state. We call these intervals periods.

Bad nodes cause throughput oscillations at the root. In
our model, oscillations arise as follows: Suppose we are in
the Active state without Bad nodes, and some internal node
u becomes Bad (the system transitions to the Blocking state
). As a result, u stops forwarding packets. For a while, the
root continues sending, so there are still incoming packets
from the upstream link, which fill u ’s buffers. When u ’s in-
coming buffer fills up, the underlying flow control mechanism
causes u ’s parent node to stop sending, which in turn causes
its buffers to fill up. If u ’s disturbance persists, then even-
tually all the buffers on the path from the root to u become
full, and the root’s sending throughput drops to zero1. Thus,
overall this state, the root can send at most the amount of
data that fills the path to u , i.e., Bmax, and must then
block. Only after the system returns to the Active state,
the root may resume sending packets. We make the best
case assumption that buffers become empty at this stage.

For each period k, let Ak (Bk) denote the number of bits
transmitted by the root during the period in the Active
(Blocking) state, respectively, and let tAk

(tBk
) denote the

respective state’s duration in seconds. The aggregate through-
put of the root during m successive periods is

Aggr(m) ,

∑m

k=1
(Ak + Bk)

∑m

k=1
(tAk

+ tBk
)
.

Our main result is a bound on aggregate throughput. For
each period k, we can bound Ak by Tmax

2
· tAk

. Note that
Tmax

2
is the maximal achievable throughput for a binary

overlay tree of nodes with a single NIC. On the other hand,
Bk is bounded by Bmax. To analyze the duration in each
state, recall that every node’s duration in the Good state is
drawn iid from exponential distribution with expectation λ,
and the duration of its Bad state is drawn iid from some
distribution with a finite expectation µ. We define tGood

to be the probability that a node is in the Good state at an
arbitrary time, and pBad to be 1−pGood. Intuitively, the time
the system will remain in the Active state depends on the
number of Good nodes, because it will become blocked when
the first of these becomes Bad . This number is a random
variable with expectation N ·pGood. We bound tAk

, we define
some threshold δ and consider separately (1) the case that
the number of Bad nodes in the Active state exceeds its

1This phenomenon of congestion moving upstream is known
in queueing networks [4], though the behavior is different in
our case, because all traffic through a node stops when some
upstream node is blocked.



(a) Life-cycle of a node in the multicast system. In Good state,
nodes follow the protocol. When some node experiences dis-
turbance it transits to Bad state. In Bad state, the node’s
application thread does not forward packets from incoming
to outgoing buffers.

(b) Life-cycle of the entire system. When we start observing
the system, we assume that all nodes are Good and the sys-
tem state is Active. When some node u becomes Bad, the
system transitions to the Blocking state. When u again be-
comes Good, the system transitions back to the Active state.
Note that when system returns to the Active state other Bad
nodes can still exist.

Figure 1: State diagrams

expectation by a factor of 1 + δ or more, and (2) the case
that it does not. We use this to bound Aggr(m). We define

Aggrnorm(N, δ) ,

min

1≤n≤N

λ
n−n·pBad·(1+δ)

+λ·e
−δ2

·n·pBad
2 +

2·B0+2·Bmax
Tmax

λ
n−n·pBad·(1+δ)

+λ·e
−δ2

·n·pBad
2 +µ

in the full paper [5] and we prove the following normalized
aggregate throughput bound for binary trees:

∀δ : 0 < δ <
pGood

pBad

,
limm→∞ Aggr(m)

Tmax/2
≤ Aggrnorm(N, δ). (1)

We note that this bound is not tight due to several best-case
assumptions, most notably the fact that buffers are empty
in the Active state.

4. SIMULATION MODEL
We use simulations to validate and complement our ana-

lytic results. Recall that Equation 1 only provides a coarse
upper bound on aggregate throughput. While the bounds
can predict a potential problem, they do not capture the full
severity of the problem. Our simulation model eliminates
some of the best-case assumptions made in the analysis.

We construct a complete binary tree where each node has
incoming and outgoing buffers according to the multicast
model of Section 2. The simulation runs in time slots with a
duration of packet size

Tmax
s.t. a node can send at most one packet

per slot. Links do not lose messages. Nodes alternate be-
tween Good and Bad states, as in the analytical model: the
number of time slots that a node remains in a given state is
generated as an iid random sample from an exponential dis-
tribution with an appropriate mean. These states are related
only to the application thread – they determine whether a
node can move packets from its incoming to outgoing buffers,
or consume packets in case of a leaf.

As a best case assumption, we implement perfect flow con-
trol and load balancing among outgoing links. Each node
transmits at most one packet per slot from its outgoing
buffer, choosing the target child in a round-robin manner
among those that have at least one free slot in their in-
coming buffer. A sent packet is inserted to the appropriate
incoming buffer after RTT

2
time and is removed from the

outgoing buffer RTT
2

time later.
By modeling perfect flow control and loss-free links, our

simulation still provides an upper bound on attainable through-
put. This is roughly equivalent to a scenario where TCP’s
slow start is disabled. Note however, that in contrast to
the analytic model, we do not assume that all buffers be-
come immediately empty upon return to an Active state,
and hence provide a finer upper bound.

5. RESULTS
Now we use our analytical model and simulations to in-

vestigate multicast in a data center environment.

5.1 System parameters
Data center applications may easily run on tens to hun-

dreds of nodes, so we investigate tree sizes between 10-100.
Given that data center infrastructures are rapidly scaling
out, we also experiment with 1K − 60K node trees. We
assume that nodes are connected by a high-throughput low-
latency network with Tmax = 1Gbit/sec. According to [22],
the default TCP buffer size of Bdef = 64 KB is good for
such low latency networks (RTT ≤ 1 msec). Unless explic-
itly mentioned, we use a scaling factor, ε, of 1, i.e., input and
output buffers of size B0 = ε ·Bdef = 64KB. For simplicity,
we assume that the multicast overlay is a complete binary
tree, and thus Bmax = 2 · (log2(N + 1) − 1) · B0.

5.2 The effect of disruptions
As we all experience in our daily interaction with comput-

ers, and as many empirical studies have shown [19, 12, 20],
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Figure 2: Coarse-grained disturbances. Theoretical and simulated normalized aggregate throughput bounds
for disturbances of µ = 1sec (2(a)) and µ = 0.25sec (2(b)) every λ = 1hour. The parameter ε is the scaling
factor, so the node buffer size of B0 = ε · 64KB. The parameter δ used in the analytical bound is 0.01/pBad.
Each simulation data point in the graphs represents an average over five experiments, each lasting 1 minute.
Repeated trials showed at most 3% error within the 95% confidence interval. The error bars are omitted for
clarity.
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Figure 3: Fine-grained disturbances. Theoretical and simulation normalized aggregate throughput bound
results for disturbances of µ = 0.2sec every λ = 1sec (3(a)) and λ = 5sec (3(b)) on average. The parameter ε
is the scaling factor, so the node buffer size of B0 = ε · 64KB. The parameter δ used in the analytical bound
is 0.3/pBad. Each data point in the graph represents an average over five experiments, each lasting 1 minute.
Repeated trials showed at most 3% error within the 95% confidence interval. The error bars are omitted for
clarity.

computers are subject to disturbances that cause response
delays once in a while. First, we consider coarse-grained
events lasting 250−1000ms (µ in the analytical model) and
occurring only once per hour per machine on average (λ in
the analytical model). Figure 2 shows analytical and sim-
ulation results of our aggregate throughput bound for this
case. Figure 2(a) considers one-second-long disturbances,
and shows drastic throughput degradation – up to 90% for
60K trees. Figure 2(b) shows that disturbance duration is

critical – hourly disruptions of 0.25sec (instead of 1sec) de-
grade throughput by 70%.

Our analytic bound is not tight due to a number best-
case assumptions. In particular, when buffers are large, our
equation does not provide a meaningful bound. Simulations
show that the systems continues to perform poorly even with
large buffers. We believe the reason to be that, disturbances
cause buffers to fill up and they often remain full in later
periods. Our model makes the optimistic assumption that



all buffers are empty at moment the Blocking state begins,
though in reality, this is often not the case. Note that if
the buffers are very big, it may take a while for them to
fill up and cause instability. Second, we consider fine-
grained disruption events that last 200ms, occurring once
in a few seconds. The catalyst of such disturbances might
be heavy load on nodes, causing scheduling delays of appli-
cation threads (e.g., due to Java garbage collection pauses2).
Such disturbances may also stem from heavy load on net-
work switches. The latter has also been observed to cause
the well-known Incast problem [9, 8, 17, 14] in data centers.
According to [11], under high utilization, an average node
in the data center has about ten concurrent flows more than
50% of the time, and at least 5% of the time it has more
than 80 concurrent flows. Therefore, packet drops at the
node’s switch port once every few seconds are realistic. The
resulting TCP time-out prevents packets flow through the
node, which is equivalent to a disturbance lasting 200ms in
our analytical model. Figure 4 shows that such disruptions
can cause throughput degradation of up to 80% even for
trees of 60 nodes. The simulations show that, in practice,
the situation is even worse and, again, increasing the buffer
sizes does not help as expected. Reducing the frequency of
disruption events (Figure 3(a) vs. Figure 3(b)) can improve
the system performance.

6. RELATED WORK
While the earliest reliable multicast protocols (notably

RMTP [16]) ran directly on UDP, at present it is more
common to employ TCP for link-level reliability and flow
control [21, 2, 15, 13]. Previous work [21] has shown that a
back-pressure-based model like ours and [2] is more practi-
cal and achieves better performance than end-to-end conges-
tion control, where NACKs are sent directly from all nodes
to the sender, as in [7]. Performance is typically evaluated
by running the real system (in modest configurations under
controlled stress), and then simulating it (to explore larger
ones). Such testing can easily miss the problems our work
highlights. For example, although the authors of [2] used the
same multicast model we employ here, their tests (in config-
urations with 30-60 nodes) did not evaluate the conditions
that trigger throughput collapse in Section 5.2.

Simulations, on other hand typically model link delays and
message losses as iid samples from some probabilities [21, 2,
7]. But they rarely account for the possibility of scheduling
disturbances in nodes. For example in [2], whose multicast
model is similar to ours, when there is no message loss in a
system of size 126 the throughput is very close to the (high)
throughput of a single link. In contrast we find that even
without message loss, if the nodes in a 100-node overlay tree
experience disruptions, throughput plunges by 80% relative
to the peak. Moreover, our finding confirms the reports of
cloud infrastructure owners, who have struggled to deploy
trees of this sort [6].

7. CONCLUSION
Our work responds to a widely observed (but poorly ex-

plained) problem: data centers replicate information using
overlay trees constructed from reliable links, but sometimes

2http://java.sun.com/developer/technicalArticles/
Programming/turbo/

perform poorly even when everything seems to be operat-
ing smoothly. We show that this is to be expected: a reli-
able multicast constructed in this manner is overwhelmingly
likely to experience throughput collapse and the problem
grows worse as a system scales up.

We should emphasize that our work only applies to this
particular style of multicast. One can also replicate data us-
ing hardware multicast, gossip, or other mechanisms. Thus,
our findings are negative for today’s most common repli-
cation solutions, but do not in preclude the emergence of
better solutions tomorrow. Indeed, we see our work as a
contribution in two respects: First, it explains a serious and
widely noted problem. Second, it suggests a style of analysis
that might be valuable in the future, as other solutions are
proposed.
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