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1 Abstract

Operators of the nationwide power grid use propri-
etary data networks to monitor and manage their power
distribution systems. These purpose-built, wide area
communication networks connect a complex array of
equipment ranging from PMUs and synchrophasers to
SCADA systems. Collectively, these equipment form
part of an intricate feedback system that ensures the
stability of the power grid. In support of this mis-
sion, the operational requirements of these networks
mandates high performance, reliability, and security.
We designed IronStack, a system to address these con-
cerns. By using cutting-edge software defined network-
ing technology, IronStack is able to use multiple net-
work paths to improve communications bandwidth and
latency, provide seamless failure recovery, and ensure
signals security. Additionally, IronStack is incremen-
tally deployable and backward-compatible with existing
switching infrastructure.

2 Introduction

Power grid operators have the unique challenge of op-
erating wide area data networks that both drive and
depend on power systems. While various systems have
been proposed to handle data buffering and process-
ing [1], prior to our effort very little attention has been
paid to the operational characteristics of the underlying
networks used for data transport. The vulnerability of
these data networks to attacks and disruptions – man-
made or otherwise – represents a valid concern that
needs to be thoroughly addressed.

Present power grid data networks are predominantly
run using microwave relays and signal multiplexing on
power cables. Although these have proven acceptable
over time, the growth of big data in this coming age
of smart grid systems means that existing capacity on
these data links could be rapidly saturated in the near
future. A new and better network technology is needed.

The technology of choice that runs data networks in
virtually every other industry is Ethernet. Indeed,
Ethernet has enjoyed ubiquity in datacenter and enter-
prise networking applications for its low cost and ease

of use, requiring very little configuration for ordinary
operation. Hosts need only plug themselves into Ether-
net switches; the switches are then self-organizing and
will automatically calculate routes from any source to
any destination.

Unfortunately, for the simplicity that Ethernet offers,
it also suffers from several severe restrictions, including
one that mandates a loop-free topology for correct op-
eration. The ramifications of this simple restriction are
that Ethernet networks do not typically feature link
redundancy, and where redundancy exists, they can-
not be taken advantage of without resorting to delicate
and complicated configuration. This is at odds with
the plug-and-play vision of Ethernet, where it would
intuitively have been expected that additional links in-
troduced between network switching elements should
have the effect of automatically and transparently in-
creasing redundancy and performance. In reality, with-
out arduous manual configuration, redundant links are
typically left unused until primary failures force them
into action. Worse, failure recovery and redundant link
activation typically take between several seconds to half
a minute. In the context of power grid data networks
that convey critical fault data from sensors, this fault
recovery time may result in unacceptable knowledge
gaps that can severely impede decision making.

Another consequence of the Ethernet design is that
it becomes possible for attackers to identify strategic
pathways or physical locations where data flow is likely
to transit. By infiltrating these locations, attackers can
gain access to raw data streams, reading or modifying
them at will. It is also conceivable that attackers can
masquerade as legitimate sensors and feed malformed
data to processing units, with the effect that power
management systems may be tricked into taking desta-
bilizing actions. Alternatively, attackers can launch
physical or cyber attacks on strategic bottlenecks to
cripple the network, severing critical data flow.

Our motivation with the IronStack system is to tease
apart these Ethernet problems and craft carefully engi-
neered solutions with software-defined networking tech-
niques. The core contributions of our work include:
(1) improvements to end-to-end network performance
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through packet processing and redundant routing, (2)
realization of high-assurance networking through zero-
downtime failure recovery and (3) techniques for se-
curity through blacklist avoidance, signals obfusca-
tion and transparent encryption, while (4) being fully
backward-compatible with existing network infrastruc-
ture and equipment.

3 Background

3.1 Deficiencies in the power grid

An increasingly large portion of the national power
grid is dependent on data networks for command, com-
munications and control (C3). These data networks
frequently carry critical information pertaining to the
health of the grid, often through sensor readings, that
are then used to make decisions for the next stable
operating state of the grid. However, a chicken-and-egg
cyclic dependency exists between the two: a data net-
work cannot survive without power; conversely, without
data, the grid cannot operate in a safe and stable man-
ner.

Apart from physical infrastructure attacks, one of the
weakest links in this delicate balancing act is the data
network and the software that depends on it. There
is emerging consensus that the power grid has nu-
merous vulnerabilities and is susceptible to large scale
remote cyberattacks that can result in real, crippling
infrastructural damages. As an example, Stuxnet is a
well-known malware that quickly spread through data
networks and was directly responsible for the destruc-
tion of about 1000 nuclear enrichment centrifuges in
Iran. It is conceivable that a similar attack could be
launched against power grid hardware in the US, with
devastating physical and economic effects.

Another problem in the concurrent use of data net-
works to support grid operations is the inherent risk
of critical data flow disruptions during network equip-
ment outages. Such failures can occur for many rea-
sons, including wear-and-tear, accidents and uncorre-
lated power losses. Without access to current data, grid
operators are at risk for a cascading chain of failures.

3.2 Convergence of big energy and big
data

With the emergence of the next generation smart grid,
the amount of data that is expected to flow and be pro-
cessed at control stations will sharply increase. Cisco’s
surveys [9] have shown that nearly one in four IT man-
agers expect network load to triple over the next two
years; the power grid is no exception. In fact, the vi-

sion of a smart grid learning, adapting, and controlling
the power grid will require big increases in real time
data transmission and network load. However, current
power grid communications infrastructure uses anti-
quated technology that will need to be overhauled in
order to support such an increase.

Part of the need to support a higher network load comes
from the emerging use of synchrophasers. Since 2004,
the usage of synchrophasers in the power grid has been
increasing. In the grid, synchrophasers use phasor mea-
surement units also known as PMUs to measure real
time current, voltage and frequency at distributed lo-
cations across the grid. Each of the phasor measure-
ment units timestamps the data that it receives before
sending them off to a local SCADA system. Time-
stamping these measurements allows administrators to
have a global view and understanding of the activities
on in the grid. Each such device generates 10kb/s or
more data, with stringent latency requirements on the
links that forward these data to the control centers. As
the number of synchrophaser units in the power grid
increases, so will real time data and the need for strong
and consistent reliability in the network which is diffi-
cult to support in current infrastructure.

3.3 Software-defined networking

Software-defined networking (SDN) is a modern ab-
straction that allows access to a network switch’s rout-
ing fabric. In SDN models, the switch’s control plane
is made accessible to a special external software entity
(known as a controller), to whom all data switching
decisions are delegated. This control plane has com-
plete command of the data forwarding plane, the latter
of which is where units of network data (known as
packets) are transferred between physical ports on the
switch itself. There is also some limited capability to
transfer packets between the data forwarding plane and
the control plane, a useful feature that we exploit in
our system to implement some key functionality.

The most widely deployed SDN standard today is
known as OpenFlow. OpenFlow is managed by the
Open Networking Foundation and has seen significant
evolution through multiple versions. The most recent
version of OpenFlow is 1.3, although many switches
that are marketed as OpenFlow-capable today support
only OpenFlow 1.0. Part of the difficulty lies in the
fact that the successive versions of the standard have
increased complexity and are not backward-compatible,
necessitating support for multiple firmware versions.
Our system takes into account the industry momen-
tum at present, and strives to operate on the greatest
number of devices by using only features that currently
enjoy widespread support.
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On the software end, there are multiple efforts to de-
velop operational OpenFlow controllers, each with vary-
ing degrees of programmability, complexity and running
speed. Some of the more popular and open-source con-
trollers include POX [10] (a generic Python-based sys-
tem), Floodlight [11] (Java-based) and ovs-controller
[12] (a C-based reference controller written by Open
vSwitch). For the kinds of network-level services we
aimed to provide, we could not find a controller that
allowed us fine-grained access to functionality necessary
to implement the features presented in this section. For
this reason, we wrote our own controller, IronStack, en-
tirely from ground-up in C++ with no support from
third-party software libraries.

4 Design

In our effort to modernize power grid data networks
with IronStack, we identified three primary objectives:
high performance, high assurance and high security.
Also important, but not critical, are the pragmatic
economic considerations that our solution should be in-
crementally deployable and preferably fully backward-
compatible with existing hardware and software.

4.1 Performance and assurance

IronStack borrows some ideas from RAID [2], a set of
redundancy schemes commonly used to protect data
by utilizing multiple hard drives. Analogously, the re-
dundancy in data networks are provided by multiple
disjoint paths from a source to a destination. However,
current networks do not usually feature multiple dis-
joint paths because they are tedious to design, require a
fair degree of manual configuration, and are difficult to
maintain in a safe configuration over extended periods
of time [4]. Also, software that takes advantage of mul-
tiple paths is rare in practice [3]. IronStack solves these
problems by automatically generating a safe configura-
tion for any given network topology, while allowing mul-
tiple paths to be used simultaneously without the need
for any laborious configuration or forethought. Iron-
Stack is self-configuring, self-adapting and self-healing,
so repeated changes to the network topology do not
affect the operation of dependent network software.
Thus, IronStack automatically manages the network
efficiently in a way that is transparent to users.

The way IronStack uses multiple paths in the net-
work can be seen as a continuum of tradeoffs between
latency/reliability and bandwidth efficiency. At one ex-
treme end of the spectrum, each packet in a flow can be
replicated onto multiple disjoint paths. The receiving

end delivers the first arriving packet to the application
and discards the duplicates. Such a scheme minimizes
latency and improves the stability of the flow, while
also tolerating up to n − 1 link or switch failures, at a
cost of n times the bandwidth.

On the other extreme end of the spectrum, each disjoint
path can be seen as a separate channel through which
flows can be sent through, so each successive packet in
a flow can be sent down whichever path is first avail-
able (thus avoiding the problem of sending too many
packets down congested paths). In a lightly loaded net-
work, approximately 1/n of the packets in a flow can
be sent down each path. This scheme maximizes band-
width efficiency but clearly sacrifices on flow stability
and latency, since the entire flow is now dependent on
the slowest link. It also does not tolerate link failures
although such tolerance may not be necessary if the
software protocol can handle it (eg. TCP with selective
acknowledgements).

In between these two ends, a k out of n scheme may
be used to reap some benefits from both the abovemen-
tioned ideas. In this hybridized scheme, individual data
bits at the source are striped across n multiple packets,
each of which then travels down a different path to-
wards its destination. At the receiving end, only k out
of these n striped packets are required for complete as-
sembly of the original data. Hence, this scheme has a
latency equivalent to the n − k + 1th slowest link at
any instant, while having a bandwidth efficiency ratio
of 1

dn/ke . This is essentially a form of forward error
correction.

4.2 Security

IronStack adopts a defensive perspective on threat mod-
eling. In the IronStack threat model, we assume that an
adversary operates on the network and is interested in
gaining access to the raw data in a network flow. Where
such raw data is protected by encryption, we assume
that the adversary is interested in signals intelligence.
The adversary can perform a variety of attacks, perhaps
by acting as a man-in-the-middle, snooping on sensitive
data, modifying data in transit or by passively identi-
fying patterns in communications. We identify three
possible security measures for IronStack users. These
security mechanisms are orthogonal to the performance
and assurance components of IronStack, and can in fact
be used simultaneously.

4.3 Localized adversary

When the operating location of the adversary is known,
IronStack can blacklist the affected parts of the network
and instead construct paths that do not take protected
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flows through compromised network elements. Since
data never transits the adversary’s location, it is not
possible for the adversary to perform any kind of mean-
ingful attack. Consequently, it is also impossible for the
attacker to deduce any signals intelligence from the pro-
tected flow.

4.4 Non-localized adversary

If the adversary’s location is not known, or if the pres-
ence of an adversary is uncertain, blacklisting will not
help. However, IronStack can still reduce the problem
by randomly distributing data over multiple disjoint
paths. This has the effect of obfuscating the signal pro-
file of a flow, making it difficult for an adversary to
deduce patterns and ascertain the nature of the flow.
Furthermore, any information that the attacker gains
is only partial, since the distribution of the data over
multiple paths ensures that no single path contains all
packets to a flow.

4.5 Transparent end-to-end encryption

Where raw data is streamed unprotected from end-
hosts, it is possible for IronStack to intercept these
packets and apply encryption to them, such that the
resultant flow is resistant to snooping and modifica-
tion while in transit. The encryption is automatically
stripped at the IronStack-controlled switch immediately
connected to the end-host, which then expects and sees
the data in its raw form. Encryption can be applied in
parallel with the abovementioned techniques for avoid-
ing adversaries.

5 Backward compatibility and
retrofitting

A practical consideration in the wide-scale deployment
of IronStack is the potential cost involved in such an
endeavor. While some IronStack functionalities can be
supported natively on existing end hosts, others require
substantial data packet processing that must be done
with special software. During our engineering design
process, we examined several options that could enable
the use of all IronStack capabilities: retrofitting existing
systems with new software, augmenting the IronStack
controller with mechanisms to perform packet process-
ing on behalf of the client, and constructing support
middleboxes that can handle packet processing on be-
half of the client. Table 5.1 summaries the various
IronStack designs and their tradeoffs:

original retrofit controller middlebox

minimal la-
tency

no yes maybe yes

maximal
bandwidth

no yes maybe yes

hybrid
scheme

no yes maybe yes

blacklisting no yes yes yes

random
paths

no yes yes yes

transparent
encryption

no yes yes yes

deployment
ease

NA hard easy medium

scalable NA yes no yes

cost NA high low medium

Table 5.1: IronStack engineering design tradeoffs.

5.1 Systems retrofitting

A systems retrofit will involve updating the operating
systems kernel of each affected host to recognize Iron-
Stack packets and process them correctly before deliv-
ering data onto their target applications. This is the
cleanest and most scalable method of supporting Iron-
Stack functionality, since it does not involve the use
of computational resources beyond the communicating
endpoints. However, such support is contingent on the
feasibility and acceptability of modifying such operating
systems kernels. For many types of embedded systems
– particularly those that run modern grid sensors – or
for systems running proprietary operating systems, it is
difficult to modify existing kernel code to handle Iron-
Stack packet processing. Even where such modification
is possible, it may not be acceptable to system admin-
istrators, who must now be liable for a larger software
attack surface to support IronStack.

5.2 Using the IronStack controller

The IronStack controller is capable of limited data
transfers between a switch’s control plane and its data
plane. It is thus possible for IronStack to entirely han-
dle packet processing on behalf of the end hosts. The
advantage of such an approach is that it enables all Iron-
Stack capabilities to the end hosts without necessitating
any kind of hardware or software change, with the effect
that end hosts are completely unaware of an underly-
ing change to the network. In light of the difficulties in
modifying individual network equipment operating sys-
tem kernels as mentioned in the preceding section, such
transparency is valuable since changes are localized to
the switching equipment and its controller. However,
this approach is not scalable because the bandwidth for
transfers between the data plane and the control plane
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is limited. Consequently, it is not possible to service too
many concurrent IronStack function requests simulta-
neously.

5.3 Middleboxes for packet processing

A more scalable approach for IronStack would be to al-
low the controller to perform some limited functions,
but to delegate packet processing duties to an exter-
nal dedicated entity. This dedicated entity could be a
single consumer-grade computer, a cluster of servers on
the same network rack, or an array of NetFPGA boards,
scaling according to equipment availability the expected
processing load generated by network users. This ap-
proach maximizes IronStack controller responsiveness
and scales very well to high flow counts, however it re-
quires more dedicated equipment and power to operate
in aggregate.

6 Implementation status

As at this time of writing, we have completed implemen-
tation on a basic prototype of the IronStack controller.
This prototype system was recently demonstrated at
the MIT Energy Conference and the ARPA-E Energy
Summit that were held in February 2014. In our exper-
imental and demonstration setups, the controller ran
on a Dell Optiplex 990 with 8 cores and 16Gb of RAM.
Our controller handled all required functions and packet
processing in their entirety, and interfaced with a Dell
S4810 high capacity OpenFlow switch. This switch was
selected for its ability to partition into eight virtual
switches, from which various network topologies could
be explored. Two TCP sensor streams were sent over
this network, one with multipath protection transpar-
ently provided by IronStack and one without. We were
able to show that the protected data flow was immune
to network disruptions, while the unprotected flow suf-
fered from stops and starts as the network underwent
fault remediation.

7 Related Work

Some work has been accomplished that have relevance
to the IronStack system. RAID [2] is the classic work
that explores various techniques of storing data on
independent disks for the purpose of improving redun-
dancy and performance. Data storage using RAID
is largely organized into standardized schemes, with
RAID0 corresponding to no redundancy (thus allowing
the full utilization of all independent disks), RAID1
corresponding to direct mirroring (simple replication
of data across multiple disks) and higher RAID levels
corresponding to more complex data striping meth-
ods. These ideas have direct counterparts in IronStack

where the data is written to disjoint network paths as
opposed to independent disks.

SPAIN [4] is an Ethernet-based solution that imple-
ments redundancy by mapping strategically computed
paths to separate VLANs. Functionally, the objectives
of SPAIN and IronStack are similar on the perfor-
mance and assurance end: they both provide increased
bisection bandwidth and resistance to network failures.
However, SPAINs implementation relies on static, pre-
installed paths, and cannot adapt to substantial net-
work topology changes. Consequently, while robust to
individual failures, SPAIN is of limited use in a power
grid data network where topology changes due to power
or equipment outages are likely. Furthermore, SPAIN
does not perform data packet processing and thus can-
not feature the continuum of latency/bandwidth trade-
offs that is attainable in IronStack. SPAIN is also a
not a security technology by design and does not im-
plement blacklisting, signals-intelligence obfuscation,
or transparent end-to-end encryption.

Multipath TCP [5], like IronStack, explores the use of
multiple paths to improve overall connection perfor-
mance. Conceptually, MPTCP takes a stream of data
and distributes it across multiple network interfaces,
where each network interface would ideally lead to a
different connecting path to the destination. It is criti-
cal to note that MPTCP works on the L3 network layer
and is agnostic to the underlying physical communica-
tion paths, so in fact the multiple paths as idealized by
the standard could really be tunneling over the same
L2 physical layer links. While MPTCP enjoys the cost
convenience of not needing any modifications on the
existing network, it does require multihoming on de-
vices that wish to take advantage of it. Multihoming
may not be possible on many devices that cannot be
outfitted with a second network interface card. Fur-
thermore, support for MPTCP is sparse [3] at best,
and only caters to the TCP protocol. MPTCP also
does not have mechanisms to implement blacklisting.
IronStack solves all of these problems; it does not have
any of MPTCP’s drawbacks since it operates on the L2
layer, and can physically ensure that path diversity or
path constraints are satisfied.

SDN-based solutions for robust networking have also
been examined. FatTire [6] is a programming language
that allows users to specify network redundancy levels,
as well as the specific paths that their data packets
should transit in a network. The program is then ef-
ficiently compiled down to OpenFlow rules that get
installed on network switches. This approach naturally
facilitates blacklisting and implementing seamless net-
work link failovers. However, it requires substantial
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domain-specific knowledge to operate and write in the
language. Also, while FatTire allows for failover redun-
dancy, it can neither boost aggregational bandwidth
nor perform actions to improve data security.

Hedera [8] is an example of a dynamic flow scheduler
that actively schedules multi-stage switching fabrics in
order to improve bisectional bandwidth. It works by
collecting flow information from all constituent network
switches and maintaining a global view of the network
in order to intelligently re-route traffic around bottle-
necks. Again, as with most preceding work, Hedera
does not process packets and is thus unable to imple-
ment any of the packet striping schemes. It also does
not have mechanisms to blacklist network switches or
obfuscate signals intelligence of network flows.

8 Future work

In the future, we would like to make IronStack still
easier to use by completely removing the need to spec-
ify redundancy and bandwidth parameters. The sys-
tem will instead use machine learning techniques to au-
tomatically tune the existing flows subject to restric-
tions imposed by security policies. It is anticipated
that this change can attain much higher operating effi-
ciencies than manual tuning. We also plan to augment
IronStack with TCP-R [7], a capability orthogonal to
our network-level assurance that provides software-level
fault tolerance. This vastly increases the robustness of
applications, since they would be protected from both
hardware and software failures. On the scalability fron-
tier, we would like to build custom hardware accelera-
tors that will function as plug-and-play cards to replace
software packet processing in the IronStack controller.
This will greatly improve the service capacity of our
system. Finally, we also plan to write software modules
that will provide applications a considerable degree of
automatic network-level protection against malformed
or dangerous data.

9 Conclusion

In this paper we presented IronStack, a novel OpenFlow
switch controller that provides high performance, high
assurance and high security guarantees for power grid
data networks. IronStack is incrementally deployable,
necessitating minimal upgrade investment costs beyond
the gradual transition to OpenFlow-capable hardware.
It is also backward-compatible with existing hardware
and software, requiring little configuration and mainte-
nance. Finally, IronStack is also scalable and can thus

be used in diverse networking scenarios. Our proto-
type system featuring a controller-only implementation
was recently demonstrated at the MIT Energy Con-
ference and the ARPA-E Energy Summit, and showed
that our techniques were sound and practical. We be-
lieve that IronStack represents a fundamental engineer-
ing advancement in data networks for the power grid,
and can be an important tool in the grand scheme of
modernizing the power industry.
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