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Abstract– The Horus and Ensemble efforts culminated a 
multi-year Cornell research program in process group 
communication used for fault-tolerance, security and 
adaptation.  Our intent was to understand the degree to which 
a single system could offer flexibility and yet maintain high 
performance, to explore the   integration of fault-tolerance 
with security and real-time mechanisms, and to increase 
trustworthiness of our solutions by applying formal methods.  
Here, we summarize the accomplishments of the effort and 
evaluate the successes and failures of the approach.  
 
Index Terms– Reliable multicast, fault tolerance, distributed 
systems security, distributed computing, automated 
verification, real-time cluster computing. 

I. A BRIEF HISTORY OF FAULT-TOLERANT 
PROCESS GROUP MECHANISMS FOR RELIABLE 

DISTRIBUTED COMPUTING 

We begin by reviewing the historical trends in distributed 
computing leading to the present research effort.  Brevity 
prevents us from including a comprehensive bibliography, 
hence we focus on aspects most directly tied to our work.  
Readers seeking additional background are referred to 
[Bir97, Bir99a, Kes97]. 

Prior to 1985, distributed computing was dominated by the 
Internet, and the Internet (in turn) was dominated by point-
to-point communication mechanisms providing best-effort 
reliability. Although certain services provided forms of 
replication (for example, the network news program, the 
DNS, "yellow pages" (later renamed NIS) and the Xerox 
Clearinghouse system), application-level support for 
replicated data was lacking, and even replicated services 
were typically hardwired to support predetermined sets of 
clients. Applications built over the Internet employed TCP, 
UDP and FTP, treating the implementations of these 
protocols and the mechanisms supporting Internet routing 
and DNS address resolution as opaque components of the 
network itself. 

During a period from 1983-1985, Cheriton and Zwaenapoel 
at Stanford extended the basic IP communication suite to 
support what they called distributed process groups [CZ85].  

They used these groups in support of application-initiated 
broadcast, and proposed a number of group-based services 
which used broadcast to provide some form of parallelism 
or accelerated response. Inspired by their work, our fault-
tolerant communications effort at Cornell proposed a 
distributed computing model based on process groups, but 
extended by the introduction of formal semantics for error 
handling [BJ87]. 
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The approach that we proposed (soon adopted by several 
other research groups) became known as reliable process 
group computing, or virtually synchronous process group 
computing.  In essence, a virtually synchronous process 
group provides automatically managed membership for 
application programs, which are permitted to join and leave 
groups and are informed of membership changes by 
upcalls. Also provided are multicast interfaces supporting 
ordered message delivery, and a means of initializing new 
members when they join the group - we call this the state 
transfer problem.  To ensure that the solution is powerful 
enough to permit replication of data, membership change is 
synchronized with respect to multicast sending and 
delivery, and state transfer is implemented to appear atomic 
with respect to membership change.  

Figure 1 illustrates this model graphically, where time 
advances from left to right.  We see a process group within 
which multicasts are being used to update the states of 
members.  When new members join, state transfer is shown 
by a thick arrow.  Notice that arrows in the figure are drawn 
to suggest that events occur synchronously - as if all 
members that experience the same event, experience it at 
the same moment in time. Virtual synchrony is "virtual" in 
the sense that without using a synchronized distributed real-
time clock, a running program will be unable to distinguish 
an actual execution from some closely synchronous one, 
such as the one in the figure.  In reality, however, the events 
in a virtually synchronous execution may be highly 
asynchronous.  The major benefit of this approach is that by 
relaxing synchronization in ways that participating 
processes can't detect, we are able to provide very high 
performance.  Yet the execution  model is intuitively simple 
and makes it easy for application developers to implement 
very complex, fault-tolerant, distributed services. 

The virtual synchrony model was rapidly adopted by 
research and industry groups world-wide [Bir99a].  Some 
successes associated with our work on the Isis Toolkit 
include the overhead display systems that show stock price 
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quotes and transactions on the floor of the New York Stock 
Exchange [Gla98], the entire communications architecture 
of the Swiss Exchange [PS97], the console clustering 
architecture used in a new generation of air traffic control 
technology recently rolled out in France [Bir99a], the 
control subsystem of several major VLSI fabrication plants 
(AMD, Seimens, Texas-Instruments), and a number of 
mobile telephony products.   

Military uses of the technology included an intelligence 
monitoring and reporting technology implemented by NSA, 
a prototype for the next generation of the AEGIS Naval 
radar and communications system (called HiperD, this was 
the basis of the SC-21 standard, which in turn is the basis 
for DD-21, an important military communications standard 
expected to have wide-ranging impact during the coming 
decades) and certain applications associated with Ballistic 
Missile Command and Control. 

These successes can be traced to the ability of the model to 
support replicated data, to provide high availability (in 
contrast to database replication methods, which guarantee 
recoverability but at the cost of sometimes needing to wait 
for a failed system to recover before the system can resume 
providing services - a source of potentially long outages), 
and to support load-balancing within small cluster-styled 
servers. Yet while these were important accomplishments, 
virtual synchrony also presented many drawbacks [Bir99a].   

Early implementations of the model were monolithic and 
relatively inflexible: A system like Isis was built from floor 
to ceiling with one form of communication in mind, and to 
the degree that one wished to turn features on or off, the 
technology tended to come with huge numbers of 
specialized interfaces that the programmer needed to learn 
and use selectively.  For example: 

• Isis supported several forms of message ordering.  
The more costly forms of ordering were also the 
easiest to use, but the performance hit was 
considerable.  Developers were often forced to 

tune the choice of message ordering to obtain good 
performance. 

• When an application supports multiple, 
overlapping process groups, there are many 
options for the way that events should occur within 
processes belonging to more than one group.  
Control over these options was required because 
no simple default emerged. 

• Some applications required that messages be 
encrypted but this was a significant cost in Isis, so 
the feature was only enabled as needed. 

Moreover, at the time Isis was developed, the state of the 
art for object oriented design was very primitive.  CORBA 
and DCOM/OLE had yet to be introduced, and even RPC 
had yet to be standardized.  As a consequence, early 
systems like Isis, which used object-oriented designs and 
concurrent styles of programming were forced to introduce 
their own solutions.  For example, Isis had a widely used 
threads implementation at the time that CMU first began 
work on cthreads and pthreads, the threads library that 
ultimately became standard in Linux.  Over time, 
developments in these areas made Isis less and less 
compatible with commercial trends. 

An additional side-effect of having large numbers of very 
demanding users was that Isis became more and more 
complex over time, and it became harder and harder to 
convince ourselves that the technology itself was free of 
bugs.   Such developments created the concern that process 
group communication merely invites users to place all their 
eggs in one basket, and that the basket itself could break, 
exposing the entire application to mishap.  Isis was 
relatively robust, but it took years to achieve continuous 
availability with the technology, and when an Isis protocol 
error surfaced, it could easily bring down an entire 
distributed system. 

II. GOALS OF THE HORUS AND ENSEMBLE 
PROJECTS 
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Starting in 1990, we began work on the Horus system 
[RBM96] to try and overcome these first-generation 
considerations; Ensemble was subsequently started as a 
sibling of Horus in 1996. The basic idea underlying both 
projects is to support group communication using a single 
generic architectural framework within which the basic 
group communication interfaces are treated separately from 
their implementation.  One can then plug in an 
implementation matching the specific needs of the 
application.   To maximize flexibility, each group end-point 
instantiates a stack of what we call micro-protocols.  The 
developer arranges for the stack used in support of a given 
group to provide precisely the properties desired from the 
group.  Each micro-protocol layer handles some small 
aspect of these guarantees.  Figure 2 illustrates this idea.  
Each process in a process group is supported by an 
underlying protocol stack; the stacks for the various 
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Figure 1: Virtual synchrony model, showing executions of 
five processes (time advances left to right)



members are identical, but the stacks used in different 
groups might be very different from one-another. 

For example, one layer might overcome message loss by 
numbering each message and retransmitting lost messages 
in response to Negative Acknowledgement messages 
(NAKs).  The layer would have an outgoing and an 
incoming side.  Outgoing messages would have a header 
added to them containing a sequence number, and would be 
stored pending garbage collection.  Incoming messages 
would be examined to make sure they are in sequence.  If 
not, a NAK message is sent back to the original sender of 
the message soliciting a retransmission.  A separate layer 
detects when all copies have been delivered (a property 
called stability) and triggers garbage collection for stable 
messages. 

A trivial example of the opportunity afforded by such an 
architecture is that the NAK layer might not be needed in 
some situations - namely, those in which the network 
doesn't lose messages.  At runtime, based on the 
environment, the Horus system was capable of assisting the 
user in configuring a stack to provide reliability, inserting a 
NAK layer if necessary and omitting it if not.   

Of course, useful protocol stacks often contain many layers 
and the kinds of layers one might selectively omit tend to 
be much more costly and less often needed than NAK.  For 
example, security is often enabled selectively in Horus, the 
choice of protocol suite implementing virtual synchrony is 
often of importance (different protocols can give very 
different performance, and some are much better than 
others on specific hardware platforms), and different ways 
of doing multicast ordering are favored under different 
conditions.  Without belaboring the point, the approach 
provides enough flexibility so that application designers 
with very different goals can potentially agree on the 
sharing of a common infrastructure, within which their 
commonality is captured by layers that they share, and their 
differences reflected by layers built specifically for their 
special needs.  

Moreover, Horus can potentially support execution models 
very different from virtual synchrony.  Our early hope was 
that the protocol interfaces could be offered as a standard, 
and that implementations of such protocols as SRM [Flo95] 
and RMTP [Pau97], two widely popular scalable protocols 
with weaker reliability models, might be developed to run 
on the same platform.  Unfortunately, in 1999 as this paper 
was being written, discussion of possible standards along 
these lines were still advancing very slowly within the IETF 
and OMG, two organizations that have shown an interest in 
developing such standards.   (Readers interested in a more 
detailed discussion of the SRM and RMTP reliability model 
and a comparison with virtual synchrony are referred to 
[Bir97, Bir99b].  

The Horus effort did more than to simply support a layered 
stackable architecture.  We also wanted to demonstrate that 
the performance of our architecture could be as good or 
better than that of a conventional monolithic architecture.  
We sought to provide real-time features, in response to a 
requirement coming from the Naval AEGIS application, 
where there was a need for cluster-style servers able to 
guarantee real-time event response even under stress (the 
application involved weapons targeting using radar tracks 
and had very tight time constants associated with acceptable 
responses).  And whereas Isis was initially focused on 
securing its own abstractions, Horus was designed to offer 
security services on behalf of application developers who 
needed security key infrastructures for purposes of their 
own. 

One can easily imagine that in responding to such varied 
needs, Horus could become very complicated.  Although 
we managed to control complexity, we did find that the 
types of transformations we wanted to do on layered 
protocol stacks exceeded the capabilities of the available C 
compiler, and hence that quite a bit of hand-coding was 
needed to obtain high performance and to maximize 
flexibility. 

It was in response to these considerations that Ensemble 
was developed, starting in the Spring of 1996.  As a system, 
Ensemble is rather similar to Horus, although rewritten 
using high level programming languages and tools [Hay97].  
Our insight was that much of the complexity of Horus came 
from overcoming inefficiencies associated with stackable 
protocol layers coded in the C programming language.  In 
contrast, Ensemble’s protocol suite is implemented using 
the O'Caml variant of the ML programming language 
[Ler97, Mac93].   This language is mathematical in 
appearance and there are powerful theorem proving tools, 
notably a system called NuPRL [Con86], available for 
expressing transformations and other types of operations on 
programs coded using O'Caml.  In our case, we were 
successful in using O'Caml to code a basic set of protocol 
layers for Ensemble and then using NuPRL to produce 
optimized and transformed versions that, in Horus, would 
have required hand coding and hand optimization.  The 
NuPRL approach is automated and provably correct while 
the manual Horus approach was a source of bugs.  
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Figure 2: Ensemble and Horus used layered 
architectures. 



Moreover, we discovered that NuPRL can potentially do 
quite a bit more for us. 

The remainder of this paper focuses on the successes and 
limitations of Horus and Ensemble. Both projects are 
largely at an end now - Ensemble and Horus are both used 
by modest communities and a number of technology 
transition efforts should lead to their emergence in products 
for the mass market within the next few years.  Meanwhile, 
our own effort at Cornell now focuses on what might be 
seen as third-generation issues that work to move beyond 
the limitations of the entire process group approach.   

For example, we are increasingly convinced that virtual 
synchrony has some basic scalability limitations that 
emerge from the model itself, and our new Spinglass 
project2 was born out of an insight into a new way to 
develop a scalable reliability model to overcome these 
limits.  Virtual synchrony, we now believe, is simply better 
suited to "close grained" cooperation on a scale of tens of 
members (certainly, less than one hundred group members), 
while the protocols we are using in Spinglass provide high 
reliability and steady data delivery to potentially thousands 
or millions of recipients.  We imagine Spinglass as a 
technology one might use side by side with Ensemble or 
Horus, because it offers reliability guarantees that are 
provably weaker than those of the virtual synchrony model, 
and the virtual synchrony model remains necessary in many 
situations.  An illustration of this arises in our discussion of 
the Ensemble security work, which combines Ensemble 
groups with Spinglass protocols. 

Similarly, we are continuing to work with NuPRL as a 
program verification and automated protocol transformation 
tool of unique power and flexibility. Whereas our initial 
work focused on using NuPRL to automate some of the 
protocol stack transformations needed to achieve high 
performance in stackable architectures, we are now 
pursuing a more ambitious goal: proving the correctness of 
the virtual synchrony implementation used in Ensemble, 
and perhaps of the security key management architecture 
running over this implementation.  But this work, in turn, 
has revealed yet a third possible goal: the automated 
generation of provably-correct protocol stacks from 
relatively high level descriptions of goals.  It thus may be 
possible to see Ensemble much as a compiler used to 
bootstrap a compilation process - one builds a basic 
compiler in a first language for a new language, but then 
implements a second compiler directly in the new language 
and discards the original one.  Our work could yield, within 
a few years, a completely new and self-supporting 
infrastructure for building correct group-communication 
protocols and for optimizing them to achieve extremely 
high performance. 

The remainder of this paper focuses on the 
accomplishments and limitations of Horus and Ensemble 
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and the major technical challenges we face in transitioning 
the technology into major commercial product platforms, 
such as CORBA and COM/OLE. 

III. HORUS EFFORT 

Our work on the Horus system can be understood in terms 
of several distinct threads of activity, which were all 
conducted within the same framework and to a large degree 
interoperate:  Layering and its consequences, real-time 
issues, security mechanisms, and work on protocol 
performance and scaling. We consider these in turn. 

A. Layered Protocol Architectures in Horus, 
Performance Issues 

The initial focus of our work on Horus concerned its use of 
layering to simplify the design of the virtual synchrony 
protocols.  When this work was begun, we looked closely at 
the x-Kernel architecture [PHO89], developed at the 
University of Arizona by Larry Peterson with similar goals.  
We found, however, that the x-Kernel was designed with 
point-to-point TCP-style protocols in mind.  For our work 
on group communications, a more flexible and more 
standardized interface to each layer was needed.  

Accordingly, we developed what we now call the Horus 
Common Protocol Interface, or HCPI [vR95], as a standard 
interface to and between protocol layers. The interface 
provides "up", "down" and "control" API's, and operates 
under a model in which messages and other events travel 
from the user down the stack to the I/O interface, or from 
the I/O interface up to the user.  For example, an encryption 
layer might receive outgoing messages from higher layers, 
use a key to encrypt the body of those messages, and then 
pass the message to the outgoing message interface of the 
next layer below. Incoming messages would, similarly, be 
decoded on arrival and discarded if corruption or tampering 
was detected. 

Over the 7 year period since this interface was first 
proposed, other groups including the OMG fault-tolerance 
standards group and the IETF reliable multicast research 
task-force have proposed creating standard architectural 
slots similar to the ones occupied by Horus protocol layers.  
Our effort has offered an updated HCPI interface to these 
organizations, but until the present,  it seems that the 
aggressive use of layering adopted in Horus remains more 
advanced that what these organizations might consider. 

Layering gives rise to several forms of overhead.  A 
message, traveling down the stack, may be examined by a 
whole series of layers, most of which do nothing at all to 
the message.  When a layer does add a header to a message, 
it may need to assume that it is the only layer in the stack, 
hence to add even a single bit, a layer may need to create a 
header large enough to hold an integer.  By the time a 
message reaches the wire, it may have many bytes of 
largely empty headers on it, and may have skipped through 
as many as 20 or 30 layers that basically took no action.   
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During 1995, one of us tackled this issue, and developed a 
methodology for optimizing layers to avoid both forms of 
overhead [vR96].  Although this work was done separately 
from Horus, we considered it to be part of the overall 
technology base.  In essence, the approach involves 
compressing the headers by eliminating wasted space, and 
also separating headers into different types of data.  Header 
information that remains constant after a stack is 
established is only transmitted once, and a typical message 
only carries headers that actually contain changing values - 
potentially a very small amount of data.  Messages are 
aggregated (packed) to make optimal use of network 
packets.  And, through a decomposition of each layer into 
data touching and non data-touching parts, it proves 
possible to short-circuit the path a message takes through 
the stack, reducing the critical path between the application 
and the wire to just a few instructions even for a very 
complex protocol stack. 

With these optimizations in place, the Horus Protocol 
Accelerator set a number of performance records.  Running 
over a zero-copy communications architecture called U-Net 
[Von95] (similar to the Virtual Interface Architecture 
promoted by the VIA consortium), this version of Horus 
introduced only a few microseconds of overhead beyond 
the overhead of the network adaptor and drivers. 

B. Real-Time Cluster Computing 

Unfortunately, the ability to demonstrate high performance 
is not enough to achieve real-time responsiveness in some 
critical applications.  Earlier, we noted that our work on Isis 
was adopted by the Navy for use in its AEGIS architecture.  
This system includes a number of cluster-style computer 
systems that are used to compute tracks for airborne objects 
detected by the AEGIS radar, and serve as the basis of 
weapons targeting applications. Since threats may be 
moving at very high speed, real-time response is vital even 
when failures occur within the cluster.  A similar need 
arises in telecommunications switching architectures, where 
a co-processor may be asked how a call-establishment 
request should be routed; the SS7 architecture used in such 
settings requires 100ms response times even while a failure 
is handled. 

Working with our group, Roy Friedman explored the use of 
Horus as a technology for cluster control in real-time 
applications of this sort [FB96].  He considered two styles 
of solution.  In the first, Horus was used to implement small 
process-groups of two or three processes each, using load-
balancing and fault-tolerant RPC mechanisms within these 
to guarantee that each request would be handled even if one 
or more failures occurred while the cluster was heavily 
loaded.  With this approach, Friedman was only able to 
achieve a throughput of a few hundred requests per second, 
and the Horus failure detection timer (six seconds) emerged 
as a performance limit: a request might potentially be 
delayed, if a failure occurred under heavy load, until the 
detection timer was triggered.  For the sorts of applications 
just mentioned, such delays are totally unacceptable.  

Friedman then developed a different solution in which 
Horus operates as a side-band mechanism for cluster 
control and data replication, but "offline" from the basic 
request loop.  In this approach, Friedman was able to 
aggregate batches of requests and used hand-coded, highly 
optimized protocols for the basic request dispatch and 
handling communication paths. During the period before 
Horus discovered a failure, data might pile up, but 
Friedman used a number of compression schemes to 
minimize the amount and avoid overloading available 
buffering.   

The approach was a dramatic success: for the SS7 
telephone architecture, Friedman now achieved 20,000 
requests per second on a 64-node cluster, demonstrated that 
performance improvements were possible when the cluster 
size was increased, and was able to sustain 100ms response 
times even as nodes were taken offline, crashed, or restarted 
while the switch was under load [FB96]. 

Friedman's work illustrates, for us, both the power of Horus 
and a limitation.  The benefit of this work was that for the 
first time, a way to use a cluster of computers in a time-
critical fault-tolerance application was demonstrated.  Yet 
the work was technically complex and suggests that unless 
these methods can be embedded into a very low level of the 
operating system (for example, into the clustering 
technology of the NT Clusters system), application 
developers will have great difficulty exploiting the 
approach.  Horus, viewed from the perspective of this type 
of real-time application, is a necessary tool, but not 
sufficient.  On the other hand, for high-value applications 
such as the AEGIS tracking service, it does seem clear that 
Friedman's work points to a methodology for achieving 
very high degrees of scalability and real-time 
responsiveness while tolerating faults. 

C. Security in Group Communication Systems 

The Horus system was also the setting for our initial foray 
into security for groups of participants in large networks.  
Working with Mike Reiter [RBvR94, RB94], we developed 
a means of securing the virtual synchrony model itself, so 
that only trusted processes would be allowed to join a 
process group, and so that group members could obtain a 
shared group key.  This problem involves authentication at 
the time of the group join, and rekeying when a member 
joins or leaves (so that prior communication in the group, or 
subsequent communication, would not be accessible to the 
new member).   

Our work on security can be seen as complementary to 
work on group security arising directly from the Internet 
community.  Recall that the DNS and routing services of 
the Internet replicate various forms of data.  During the 
early 1990's it became important to secure the protocols 
used to update these, and the resulting key distribution and 
management problem became a classical topic for the 
security research community.  Here, the notion of group 
membership is much weaker than the one used in the virtual 



synchrony community, and there is no formal semantics for 
the execution model.  Yet the superficial aspects of the 
security problem are very similar: we have a group of 
members, we wish to authenticate joining and leaving, and 
we plan to use the security keys to encrypt communication 
within the group. 

The Horus security mechanisms have advantages and 
disadvantages when compared to this more network-
oriented form of security.  The strong semantics of virtual 
synchrony groups certainly offers security benefits: within 
this model, one actually can formalize the question of 
which processes legitimately belong to a group and which 
ones do not, and when a process does belong to a group, 
there are strong guarantees about the state of the data it 
manages.  But there are also disadvantages to the model, 
notably that it scales poorly beyond about 100 processes.  
Most experience with Isis was limited to groups of five to 
ten processes at a time [Bir99a] and it was only with great 
care that Isis applications spanning more than about 250 
processes were developed successfully.  In the Internet, 
10,000 members of a DNS service might not be at all 
unreasonable and one can imagine services containing 
millions of members.  Yet scaling virtual synchrony to this 
degree seems not to be practical.  (Our new project, 
Spinglass, might well provide this degree of scalability, but 
it uses a somewhat different execution model). 

IV. ENSEMBLE EFFORT 

Earlier, we cited the "eggs in one basket" concern in regard 
to distributed systems models such as virtual synchrony, or 
process group security.  While such approaches are 
beneficial to the application designer, whose task is greatly 
simplified by the strong guarantees of the system, if the 
model itself is violated as a consequence of a coding error 
or some unanticipated bug in the protocol itself, the 
application's correctness or security might be compromised.  
One can reduce such concerns by exhaustive testing, 
simulation, or by writing papers in which the protocols 
employed by the system are presented rigorously and a 
formal proof of correctness is offered.  Yet none of these 
options yields more than a modest degree of confidence in 
the ultimate correctness of the running code itself.  Even 
now, more than a decade after the development of Isis, Isis 
applications that seek to provide continuous availability still 
exist, and occasionally, one of them reports a bug never 
before encountered.  Such bugs can easily cause the entire 
distributed application to crash. 

As noted earlier, Horus was developed as a partial response 
to this concern: the technology sought to simplify the 
monolithic structure of systems like Isis by showing how 
complex protocols could be broken into simple 
microprotocols and stacked to match the needs of an 
environment.  Yet Horus offers little to increase the 
confidence of a skeptic in the ultimate correctness of the 
protocols and of their implementations. 

Ensemble was developed primarily as a response to these 
concerns.  Our fundamental idea was to begin using a new 
and extremely powerful generation of mathematically 
rigorous programming and verification tools as a means of 
moving beyond the hand-coded optimization schemes 
employed when performing inter-layer optimizations in 
Horus, and of actually proving the correctness of key 
components of the system.  The technology evolved in 
several new directions, however, as time passed: we used 
Ensemble as the basis of initial work on a new protocol 
suite, and pursued a number of topics involving dynamic 
adaptation using Ensemble as the base.  We also developed 
a new security architecture within Ensemble, moving well 
beyond the initial Horus version. This section summarizes 
each of these threads of research. 

A. Formal Transformation of Protocol Stacks 

Code transformation of the Horus system was impractical in 
part because of the choice of programming language: by 
coding Horus in C, we were able to achieve extremely high 
performance, but this language has limited capabilities for 
type checking and other types of correctness checking, and 
such weak mathematical semantics that formally expressed 
code transformations are largely impossible.  Accordingly, 
a primary reason for building a new system -  Ensemble -
was to create a version of Horus coded in the O'Caml 
programming language, a dialect of ML having strong 
semantics and consequently suitable for analysis and 
transformation using formal programming tools. This 
decision was informed by previous success in using NuPRL 
to reason about a large ML system [AL92] and to reason 
about hardware [LLHA94]. We were also encouraged by 
the work at CMU by Harper and Lee on the FOX project to 
code protocols in SML [HL94]. 

Our decision to implement Ensemble in O'Caml compelled 
us to confront an initial challenge of a different nature.  The 
ML family of languages is not traditionally known for high 
performance, and while O'Caml is compiled, we were 
concerned that it might not be possible to achieve 
performance comparable to that of Horus.  Yet the 
verification of a system incapable of the desired level of 
performance would have been much less satisfying, since 
we hoped to demonstrate that production-quality distributed 
software can actually be proved correct.  Mark Hayden, 
who coded the system, undertook a detailed study of this 
issue, and ultimately developed a methodology for protocol 
development in O'Caml that overcomes the most common 
efficiency issues encountered by users of the language.  His 
accomplishment, which involved taking control of garbage 
collection and using O'Caml's language features very 
carefully, was reported in [KHH98]. 

Given an initial version of Ensemble, Hayden, Kreitz and 
Hickey set out to use a formal mathematical tool called 
NuPRL ("new pearl") to automate the sorts of optimizations 
that Van Renesse did by hand in developing Horus [vR96].  
They approached this by teaching NuPRL to read Ensemble 
layers - in effect, NuPRL understands each layer as the 



"proof" of some property, namely the protocol guarantee 
implemented by that layer.  NuPRL was then able to do 
several kinds of protocol transformations.  For example, 
because a protocol stack appears as a nested function call to 
NuPRL, it was possible to request that NuPRL perform an 
inline function expansion of the code.   

The basis for all formal code manipulation is a formal 
semantics for a large subset of the O'Caml programming 
language in the logical language of NuPRL. Not long ago, 
the formalization of such a subset would have been cutting 
edge research worthy of separate funding and a PhD thesis, 
but in this case, we were able to build on advances in 
understanding of formal semantics and on the richness of 
the NuPRL type theory. Basically the core of O'Caml is a 
subset of the NuPRL term language, and therefore type 
theory almost immediately provides a semantics for O'Caml 
[Kre97]. The method is now called a "shallow embedding". 
This method has been used to provide a formal semantics 
for significant extensions of ML in the direction of object 
orientation, see the work of Crary for example [Cra98]. 

NuPRL can perform partial evaluation of functions, and this 
opened the door to a category of optimizations similar to 
those used by Van Renesse.  The approach begins by 
recognizing that as messages traverse a stack, the code path 
used may be a very small percentage of the code in the 
stack as a whole.  For example, the virtual synchrony stack 
treats membership change events very differently from 
multicasts.  If a message is a multicast and no membership 
change is occurring, the message may be nearly untouched 
within the stack. 

A protocol stack in Ensemble looks like a set of nested 
function calls.  Suppose that x is some form of outgoing 
event, such as a message to send or a membership change 
request.  Then, Ensemble’s job is to evaluate  f0(f1(…fn(x))), 
where each of the fi is the code implementing some micro-
protocol within the stack (f0  is at the bottom and fn is at the 
top).  Similarly, for an incoming event, Ensemble can be 
understood as evaluating the function fn(fn-1(…f0(x))).  Now, 
focus on the outgoing case, and suppose we call this entire 
nested function f.  Imagine that we place an if statement in 
front of it, as follows: "if(is_a_msg(x)) f(x) else f(x)," where 
the predicate is_a_msg is true for messages and false for 
other types of events, such as group membership changes.  
(Not shown is an additional, implicit argument: the “state” 
of the protocol stack, which is updated when the stack 
executes and hence is shared by both function invocations). 

Viewing NuPRL as a form of optimizing compiler, the 
system can be asked to partially evaluate the function under 
the two cases: "is_a_msg(x)" is true, and "is_a_msg(x)" is 
false.  Consider the first case: the predicate is true.  Under 
the circumstances just described, very little code needs to 
be executed for messages, hence the function will collapse 
to just a few lines of code.  “Dead” code branches (those 
NuPRL can recognize as never being executed) are deleted 
during the partial evaluation.  In effect, we've produced an 
extremely optimized code path for the common case where 

we sent a multicast.  Yet since the event either is or is not a 
message, the behavior of the original stack is unchanged! 

To generate the optimized code while guaranteeing its 
correctness NuPRL uses two levels of formal optimizations. 

• On the first, or static level, symbolic evaluation 
and logical simplification techniques are applied 
separately to the code of each micro-protocol. 
They result in formally proven layer optimization 
theorems, which show that the effect of passing an 
event x through the  respective protocol layer, 
while assuming that a  common case predicate 
(CCP) like "is_a_msg(x)" (or some other property 
of common events) holds,  can be expressed by 
two or three lines of code. These optimizations  
are executed independently from the application 
protocol stacks and   need to be redone only when 
the code of a micro-protocol is modified or when 
new micro-protocols are added to the Ensemble 
toolkit.  

• The second, or dynamic level, depends on the 
particular protocol stacks designed by the 
application developers. Given the names of the 
individual micro-protocols occurring in this stack, 
it composes the corresponding layer optimization 
theorems into a formal stack optimization theorem 
that describes the effect of passing an event x 
through the whole stack while assuming that all 
individual CCPs hold. This is not trivial, because 
Ensemble's composition mechanism allows that 
events may bounce between layers before leaving 
the stack instead of passing straight through it. 
Therefore the technique is based on composition 
theorems, which abstractly describe the effects of 
composing common combinations of optimized 
micro-protocols.  

A stack optimization theorem not only describes a fast-path 
through a protocol stack but also the headers that the stack 
adds to a message. Since typical messages should only 
carry headers that actually contain changing values, all 
constant headers are eliminated before sending the message. 
For this purpose, the protocol stack is wrapped with code 
for compressing and expanding headers and then optimized 
again.  

In a final step the stack optimization theorems are 
converted into O'Caml code, which uses the CCPs as 
conditionals that select the bypass path in the common case 
and otherwise the normal stack, as illustrated in Figure 3 
(The Transport module below the stack provides 
marshaling of messages). This program is proven to be 
equivalent to the original protocol in all cases, but generally 
more efficient in the common case.  

Using this methodology [Kre99], Kreitz, Hayden, Hickey, 
van Renesse and graduate student Xioaming Liu showed 
that NuPRL can automatically achieve protocol speedups 



comparable to the ones that Van Renesse achieved by hand 
in Horus.  Moreover, Liu and Van Renesse developed a 
version of the method for use in adapting Ensemble to 
match the protocol stack to the environment.  With their 
work, one can dynamically pick a protocol stack with just 
the properties needed for a given setting, obtain an 
optimized version of the stack from NuPRL, compile the 
resulting O'Caml byte code into machine code, ship this 
code to a version of Ensemble, and run it as the protocol 
stack supporting some group.  At present, we do the 
optimization offline, but the methodology could be 
extended to work on the fly.  This work is reported in 
[Liu99]. 

 

Figure 3: Optimization in the Ensemble Architecture 

 

B. Verification of Ensemble stacks 

Formal verification of a system such as Ensemble presents 
a major challenge because its many micro-protocols 
(currently over fifty) can be combined in literally thousands 
of different ways to provide a great variety of services. To 
verify Ensemble would mean to be able to treat the 
reasonable combinations of stacks and their services. 
Moreover, many of the individual protocols are quite 
sophisticated.  

Additionally it is a major challenge to verify the actual 
system code -- indeed, most verification efforts operate by 
verifying the correctness of abstracted descriptions of 
protocol or system components. While verifying these 
abstractions is an interesting first step, the goal that 
appealed to us was to work directly with production-quality 
protocol implementations, and ultimately to prove that the 
code actually running in the system has the properties 
required by the user. This goal was a natural extension of 

our success in transforming the actual O'Caml code of 
Ensemble stacks. 

A key step in verification is the specification of properties. 
This has been a lively topic in the Horus and Ensemble 
research. Various temporal logics were tried, including 
TLA [Kar97], and an axiomatic approach was considered 
[CHTCB96]. In the end, the ground work for our approach 
was laid by Hickey and Van Renesse in collaboration with 
Nancy Lynch, whose research effort at MIT has developed 
a mathematical programming language called I/O 
Automata, or IOA [Lyn96].  Jointly with Lynch, they found 
a way to express virtual synchrony as an IOA, adapted the 
IOA language itself so that NuPRL could understand such a 
specification, and extended IOA so that it could be used in 
compositional settings, such as the Ensemble protocol 
stacks [HLV99]. 

We have found a particularly elegant way to formalize IOA 
using NuPRL class theory [BH98]. We can formalize both 
services and their implementations in the same style. 
Moreover the inheritance mechanisms of the formal class 
theory make it possible to inherit proofs of safety properties 
of a stack when new layers are added to it. This leads to a 
methodology that will make it easier to prove properties of 
stacks from proofs of components. The method seems to 
scale to stacks composed from many layers from a large 
base of micro-protocols. 

When this work has been completed, we will be able to 
produce highly optimized executable code from provably 
correct protocol stacks, dynamically adapting the stack to 
match the environment where the protocol will be used, and 
providing guarantees of reliability and security formally 
verified by a mathematical tool and characterized in a high 
level notation suitable for use in reasoning about 
applications built over the resulting process group.  

C. Synthesis of layers 

Once we know how to prove the correspondence of code 
fragments to IOA statements, we can also understand this as 
a means for compiling from IOA into protocols (which we 
can optimize using our trace driven optimization 
methodology).  So the potential exists to avoid using hand-
coded Ensemble protocol stacks in favor of these more 
automated protocol stacks produced using NuPRL as a 
compiler. 

The basis of this synthesis capability is the fact that global 
services, abstract protocol specifications and code layers are 
treated as modules in a common formal language. We can 
use our formal framework not only for verification purposes 
but also for the synthesis of protocols from specifications.  
Because the generated code is correct by construction, our 
framework supports the development of new 
communication protocols, which is a notoriously difficult 
task. 



A synthesis of protocol layers that implement a global 
service will be supported by a small collection of generic 
methods for transforming specifications of distributed 
systems. This methodology is not entirely new.  
Synthesizing algorithms from specifications by applying 
specification transformations is a well-known principle in 
program synthesis, and synthesis from proofs has been 
explored for many years as well [Wal69, BC85,Kre98].The 
novelty of our approach lies in providing methods for the 
synthesis of distributed systems, which is by far more 
difficult than synthesizing serial algorithms. 

 

 

We describe four of the most common generic methods. 

1) Replication of Global Values 

Applying this method will allow us to represent values 
locally.  It creates a local copy of each value, ensures 
consistency by making each process broadcast these values, 
and introduces a unique token.  Virtual synchrony (as 
specified in IOA, Extended Virtual Synchrony, or EVS) is a 
prerequisite for this step; lacking this property, consistency 
has to be ensured by more complex means. 

2) Adding Fault Tolerance 

This method, which requires local values as prerequisite, 
makes the local values fault tolerant.  It forbids access to 
values during a view change and implements merging of 
multiple copies after a view change. 

3) Conversion to Message Passing 

This method assumes fault tolerance and generates the 
typical event-handler interface of Ensemble by converting 
each operation to a message. 

4) Code Generation 

This method runs as the last step of a synthesis.  It takes a 
specification that provides the event-handler interface and 
converts the abstract specification into executable code.  
Because of the close relation between abstract 
specifications and the representation of Ensemble's code in 
NuPRL this step is straightforward. 

As an example, we describe the synthesis of a total order 
layer from the specification of the total order service.  The 
total order service has a simple specification.  In addition to 
the properties of EVS, it ensures that all processes in a view 
receive messages in the same order, and is called ETO. 

The total order specification represents this requirement 
with a global queue that orders all the messages sent in the 
view.  A message can be received only if it is the next 
message in the global queue. 

The ETO specification is not directly implementable 
because its global queue contains global information, so the 
first step is to replicate the global value so that each 
process contains a local copy of the queue.  The Replicate 

generic method introduces a token to ensure atomic access 
and consistency of the local copies, but the copies are not 
robust to failures.  The next step is to apply the Fault 
Tolerance generic method, which prohibits access to the 
queue during a view change, and creates a fresh queue once 
the view change is completed.  At this step, we have 
partitioned the service into local protocol layers, and in the 
final step we apply the Convert to Message Passing generic 
method to convert the layer actions (which refer to semantic 
events like view changes) to explicit message passing style.  
This final step can be completely automated. 

D.  Scalable Security Architectures in Ensemble 

Ensemble has also been used as a base for an expanded 
effort to provide security for process group applications and 
systems [RBD99, RBH98].  As noted earlier, our work on 
the Horus system resulted in an initial mechanism for 
securing process group communication and the group 
abstraction.   

In our work on Ensemble, we have focused on expanding 
the capabilities of this basic idea and using group security 
keys in innovative ways.  With respect to the basic security 
architecture, Ensemble implements a scheme (developed 
primarily by Ohad Rodeh, a research in Dolev's Transis 
group at the Hebrew University in Jerusalem) whereby 
asymmetric public keys can be "traded" for symmetric 
point-to-point keys and group keys.  These symmetric keys 
provide a high speed path for signing messages and 
encrypting their contents, and can also be used by secured 
applications for application-specific security purposes. 

Rodeh's solutions are innovative in two ways.  First, he 
employs a hierarchy of protocols for key management and 
key refresh, and has a particularly fast solution to the key 
refresh problem when processes join or leave a group. His 
algorithm rekeys within milliseconds, permitting a group to 
(potentially) change keys so rapidly that even if a key were 
broken, the adversary would gain access to just one or two 
multicasts before a new key was substituted for the 
compromised one [RBH98].  Additionally, Rodeh 
developed a fault-tolerant extension of the well-known 
Wong-Gouda-Lam tree-based key management architecture 
[Won98], a protocol that in its original form was centralized 
and not fault-tolerant.  Rodeh's version scales easily within 
Ensemble's process groups, although these remain limited 
to perhaps one hundred or two hundred members [RBD99].  

The scalability limits of Ensemble prevent Rodeh from 
using this technique to secure extremely large groups, 
which might have tens of thousands of members.  For this 
purpose, however, Rodeh is exploring a very simple 
combination of Ensemble with our new Spinglass system.  
As mentioned earlier, Spinglass introduces a new and 
extremely scalable data point in the reliable group 
communications spectrum, offering a suite of probabilistic 
protocols that can be used to communicate reliably with 
huge numbers of processes even in networks subject to the 
most extreme forms of disruption.  Rodeh is linking the 



secured Ensemble group mechanisms to the Spinglass 
mechanisms so that Ensemble can control a core group and 
this, in turn, can manage security keys on behalf of a very 
large group of leaf nodes.  Inspired by the DNS architecture 
for the Internet, this approach allows typical users to talk to 
a local representative of the security hierarchy and low cost, 
while drawing on the strong properties of Rodeh’s 
Ensemble solution to guarantee rapid key refresh and other 
aspects of a strong security model. 

E. Dynamic Adaptation 

The third major research topic that has been explored 
primarily within the context of our work on Ensemble is 
concerned with dynamic adaptation. As described 
previously, the adaptation problem arises when an 
application expresses requirements for a process group that 
can be satisfied in more than one way, depending upon the 
environment within which the group runs [Liu99]. 

Two examples will illustrate this idea.  The first is 
concerned with multicast ordering protocols.  Over the past 
two decades, a great number of ordered, reliable multicast 
protocols have been developed.  Abstractly, it is common to 
view such protocols as representing optimizations of total 
ordering.  For example, in a process group where we 
happen to know that only one member will initiate 
multicasts, a protocol providing fifo ordering would 
actually be "strong enough" to satisfy a total ordering 
requirement.   

Even in a group where there are multiple senders, one faces 
such a choice. If the senders are willing to use a token 
passing or locking scheme, the most appropriate total 
ordering protocol would be one that exploits the mutual 
exclusion property - these include causal ordering protocols 
and token-based total ordering protocols.  Lacking a 
locking scheme, one might still use a token based protocol, 
but other protocols such as time-stamped ordering protocols 
now have potential advantages.  Broadly, the best choice 
depends upon the nature of the application, and the nature 
of the environment within which we run it. 

Similarly, the most appropriate security mechanism 
depends on the setting. Behind a firewall, one may face 
only a very benign security requirement, and limit 
"security" to some form of join authentication. Yet when 
the same application includes a group member running 
outside the firewall, it may be important to encrypt all 
group communication, and to authenticate even the 
messages used within the join protocol itself. 

Virtual synchrony offers an appealing way to think about 
adaptation.  Each time the membership of a group changes, 
the virtual synchrony model announces this through a new 
process group view, synchronized with respect to ongoing 
communication among group members. Normally, the view 
is just a list of group members, ranked in some canonical 
manner.   Our work on adaptation extends the same idea: 

each time the view changes the new view also includes a 
new protocol stack for each of the members. 

Within Ensemble, we've used this mechanism to change 
protocol stacks on the fly, with roughly the same (very 
small) overhead incurred when group membership changes 
because a process joins, leaves or crashes.  What we do is to 
associate with each stack a small software module 
responsible for monitoring the environment, watching for 
conditions under which some other stack would be more 
desirable than the one currently in use.  When conditions 
change, this module triggers the new-view algorithm, 
arranging that the new stack be installed at all members in a 
virtually synchronous manner. 

For example, if we are using a total ordering protocol that is 
appropriate only with a single sender within a group, 
adaptation might be triggered when a second process first 
attempts to send: the attempt would cause the group to 
switch to a new total ordering protocol, at which point the 
interrupted send request would be allowed to complete.  If 
we are using a security mechanism appropriate only within 
a firewall, adaptation might occur when a member from 
outside the firewall joins the group, and so forth. 

V. TECHNICAL CHALLENGES ASSOCIATED WITH 
TRANSITION 

One of the most difficult problems we've encountered in 
our research has been the challenge of technology 
transition.  Broadly, it has been our belief that unless these 
technologies make the transition from academic 
demonstrations into broad commercial availability, they 
will not have the degree of impact that we seek and that 
DARPA hopes for in projects such as this.  Yet in the area 
of networking and distributed computing, there is 
tremendous resistance to doing anything other than what the 
basic Internet supports.   

As noted earlier, our first project, the Isis Toolkit, achieved 
some degree of commercial uptake and had some notable 
successes.  Through this process, Isis became a viable 
option for military and government projects and had an 
important influence on technology planning within the 
services, reflected in the DD-21 architecture. 

However, starting a company to commercialize Horus and 
Ensemble was unappealing to us.  Our effort has made both 
systems available to "all comers" with very few restrictions 
of any kind, and at no fee.  Cornell and the original 
Ensemble developers - Hayden and Vaysburd - provide 
some support, also for free. This has resulted in some 
uptake of the technology, and we have a small user 
community that includes some large companies (notably, 
Nortel and BBN) and many small ones.    An exciting 
recent opportunity involves technology transfer into the 
restructured electric power grid.  We are pursuing this topic 
jointly with a consortium organized by the Electric Power 
Research Institute, EPRI. 



To see a broad-based transition occur, companies of the size 
of Microsoft and Sun need to become interested in this 
technology area.  There is some good news on this front: 
the industry as a whole is looking at group communication 
tools closely, and several standards organizations have been 
exploring possible standards for reliable multicast and 
object replication. As these trends advance, one can 
anticipate a first-class role for reliable multicast in standard 
operating systems, such as Solaris, Linux and NT, and with 
that development, technologies such as ours would find a 
natural home. 

Overall, we are encouraged by these developments, but we 
also see an argument for winding down the effort on Horus 
and Ensemble in favor of new directions.  Accordingly, 
while continuing work on the NuPRL verification 
methodology, our overall project has shifted attention to a 
new technology based on a suite of highly scalable “gossip-
based” protocols with probabilistic properties [Bir99b].  
The protocols and their behavior take us into a domain 
rather different from virtual synchrony, while we wait and 
watch to see what the ultimate impact of our work over the 
past few years will be.  

VI. CONCLUSIONS 

Cornell research has placed process group computing, 
especially with virtual synchrony, or a firm footing.  Over 
the course the three projects we've conducted in this area, 
we've contributed techniques for achieving high 
performance, security, real-time guarantees and provable 
correctness. Although we were not able to scale virtual 
synchrony to very large settings, the gossip-based protocols 
developed in our work on Ensemble have taken on a life of 
their own, and form the basis of a new project (Spinglass) 
that promises to contribute a new and extremely scalable 
data point for the spectrum of reliable multicast protocols 
and applications. 

Over the years, the Cornell effort has helped enable  some 
very high profile applications, and we've played an 
instrumental role in showing that these solutions really 
work.  Down the road we expect that the technologies we 
pioneered will have a good likelihood of becoming standard 
in products from major vendors, that IETF standards will 
emerge for the area, and that CORBA will provide solutions 
- all traceable to our work and that of related projects. 

Our vision of the future is one in which reliable process 
group computing will reside side-by-side with scalable 
probabilistic technologies, of the sort now under 
development in our Spinglass system. Through this 
approach, we believe that reliable, secure distributed 
computing can become a commonplace reality on a wide 
range of systems spanning both large-scale WAN 
applications based on conventional workstations down to 
massive networks of very small devices such as might arise 
in future miniaturized control settings or future sensor 
networks.   
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