
The Horus and Ensemble Projects
Accomplishments and Limitations

Ken Birman, Bob Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse,
Ohad Rodeh and Werner Vogels1

Abstract– The Horus and Ensemble efforts culminated a
multi-year Cornell research program in process group
communication used for fault-tolerance, security and
adaptation. Our intent was to understand the degree to which
a single system could offer flexibility and yet maintain high
performance, to explore the integration of fault-tolerance
with security and real-time mechanisms, and to increase
trustworthiness of our solutions by applying formal methods.
Here, we summarize the accomplishments of the effort and
evaluate the successes and failures of the approach.

Index Terms– Reliable multicast, fault tolerance, distributed
systems security, distributed computing, automated
verification, real-time cluster computing.

I. A BRIEF HISTORY OF FAULT-TOLERANT
PROCESS GROUP MECHANISMS FOR RELIABLE

DISTRIBUTED COMPUTING

We begin by reviewing the historical trends in distributed
computing leading to the present research effort. Brevity
prevents us from including a comprehensive bibliography,
hence we focus on aspects most directly tied to our work.
Readers seeking additional background are referred to
[Bir97, Bir99a, Kes97].

Prior to 1985, distributed computing was dominated by the
Internet, and the Internet (in turn) was dominated by point-
to-point communication mechanisms providing best-effort
reliability. Although certain services provided forms of
replication (for example, the network news program, the
DNS, "yellow pages" (later renamed NIS) and the Xerox
Clearinghouse system), application-level support for
replicated data was lacking, and even replicated services
were typically hardwired to support predetermined sets of
clients. Applications built over the Internet employed TCP,
UDP and FTP, treating the implementations of these
protocols and the mechanisms supporting Internet routing
and DNS address resolution as opaque components of the
network itself.

During a period from 1983-1985, Cheriton and Zwaenapoel
at Stanford extended the basic IP communication suite to
support what they called distributed process groups [CZ85].

They used these groups in support of application-initiated
broadcast, and proposed a number of group-based services
which used broadcast to provide some form of parallelism
or accelerated response. Inspired by their work, our fault-
tolerant communications effort at Cornell proposed a
distributed computing model based on process groups, but
extended by the introduction of formal semantics for error
handling [BJ87].

1 Dept. of Computer Science, Cornell University, Ithaca NY 14853.
ken@cs.cornell.edu. Hayden is at the Systems Research Center of
Compaq Corporation, Palo Alto CA. This work is supported in part by
ARPA/ONR grant N00014-92-J-1866, ARPA/RADC grants F30602-96-1-
0317 and F30602-98-2-0198, and NSF grant EIA 97-03470

The approach that we proposed (soon adopted by several
other research groups) became known as reliable process
group computing, or virtually synchronous process group
computing. In essence, a virtually synchronous process
group provides automatically managed membership for
application programs, which are permitted to join and leave
groups and are informed of membership changes by
upcalls. Also provided are multicast interfaces supporting
ordered message delivery, and a means of initializing new
members when they join the group - we call this the state
transfer problem. To ensure that the solution is powerful
enough to permit replication of data, membership change is
synchronized with respect to multicast sending and
delivery, and state transfer is implemented to appear atomic
with respect to membership change.

Figure 1 illustrates this model graphically, where time
advances from left to right. We see a process group within
which multicasts are being used to update the states of
members. When new members join, state transfer is shown
by a thick arrow. Notice that arrows in the figure are drawn
to suggest that events occur synchronously - as if all
members that experience the same event, experience it at
the same moment in time. Virtual synchrony is "virtual" in
the sense that without using a synchronized distributed real-
time clock, a running program will be unable to distinguish
an actual execution from some closely synchronous one,
such as the one in the figure. In reality, however, the events
in a virtually synchronous execution may be highly
asynchronous. The major benefit of this approach is that by
relaxing synchronization in ways that participating
processes can't detect, we are able to provide very high
performance. Yet the execution model is intuitively simple
and makes it easy for application developers to implement
very complex, fault-tolerant, distributed services.

The virtual synchrony model was rapidly adopted by
research and industry groups world-wide [Bir99a]. Some
successes associated with our work on the Isis Toolkit
include the overhead display systems that show stock price

mailto:ken@cs.cornell.edu

quotes and transactions on the floor of the New York Stock
Exchange [Gla98], the entire communications architecture
of the Swiss Exchange [PS97], the console clustering
architecture used in a new generation of air traffic control
technology recently rolled out in France [Bir99a], the
control subsystem of several major VLSI fabrication plants
(AMD, Seimens, Texas-Instruments), and a number of
mobile telephony products.

Military uses of the technology included an intelligence
monitoring and reporting technology implemented by NSA,
a prototype for the next generation of the AEGIS Naval
radar and communications system (called HiperD, this was
the basis of the SC-21 standard, which in turn is the basis
for DD-21, an important military communications standard
expected to have wide-ranging impact during the coming
decades) and certain applications associated with Ballistic
Missile Command and Control.

These successes can be traced to the ability of the model to
support replicated data, to provide high availability (in
contrast to database replication methods, which guarantee
recoverability but at the cost of sometimes needing to wait
for a failed system to recover before the system can resume
providing services - a source of potentially long outages),
and to support load-balancing within small cluster-styled
servers. Yet while these were important accomplishments,
virtual synchrony also presented many drawbacks [Bir99a].

Early implementations of the model were monolithic and
relatively inflexible: A system like Isis was built from floor
to ceiling with one form of communication in mind, and to
the degree that one wished to turn features on or off, the
technology tended to come with huge numbers of
specialized interfaces that the programmer needed to learn
and use selectively. For example:

• Isis supported several forms of message ordering.
The more costly forms of ordering were also the
easiest to use, but the performance hit was
considerable. Developers were often forced to

tune the choice of message ordering to obtain good
performance.

• When an application supports multiple,
overlapping process groups, there are many
options for the way that events should occur within
processes belonging to more than one group.
Control over these options was required because
no simple default emerged.

• Some applications required that messages be
encrypted but this was a significant cost in Isis, so
the feature was only enabled as needed.

Moreover, at the time Isis was developed, the state of the
art for object oriented design was very primitive. CORBA
and DCOM/OLE had yet to be introduced, and even RPC
had yet to be standardized. As a consequence, early
systems like Isis, which used object-oriented designs and
concurrent styles of programming were forced to introduce
their own solutions. For example, Isis had a widely used
threads implementation at the time that CMU first began
work on cthreads and pthreads, the threads library that
ultimately became standard in Linux. Over time,
developments in these areas made Isis less and less
compatible with commercial trends.

An additional side-effect of having large numbers of very
demanding users was that Isis became more and more
complex over time, and it became harder and harder to
convince ourselves that the technology itself was free of
bugs. Such developments created the concern that process
group communication merely invites users to place all their
eggs in one basket, and that the basket itself could break,
exposing the entire application to mishap. Isis was
relatively robust, but it took years to achieve continuous
availability with the technology, and when an Isis protocol
error surfaced, it could easily bring down an entire
distributed system.

II. GOALS OF THE HORUS AND ENSEMBLE
PROJECTS

Cornell University Ensemble Project

G0={p,q} G1={p,q,r,s} G2={q,r,s} G3={q,r,s,t}

p

q

r

s

t

Starting in 1990, we began work on the Horus system
[RBM96] to try and overcome these first-generation
considerations; Ensemble was subsequently started as a
sibling of Horus in 1996. The basic idea underlying both
projects is to support group communication using a single
generic architectural framework within which the basic
group communication interfaces are treated separately from
their implementation. One can then plug in an
implementation matching the specific needs of the
application. To maximize flexibility, each group end-point
instantiates a stack of what we call micro-protocols. The
developer arranges for the stack used in support of a given
group to provide precisely the properties desired from the
group. Each micro-protocol layer handles some small
aspect of these guarantees. Figure 2 illustrates this idea.
Each process in a process group is supported by an
underlying protocol stack; the stacks for the various

crash

r, s request to join
r,s added; state xfer

t added, state xfer
t requests to join

p fails

Figure 1: Virtual synchrony model, showing executions of
five processes (time advances left to right)

members are identical, but the stacks used in different
groups might be very different from one-another.

For example, one layer might overcome message loss by
numbering each message and retransmitting lost messages
in response to Negative Acknowledgement messages
(NAKs). The layer would have an outgoing and an
incoming side. Outgoing messages would have a header
added to them containing a sequence number, and would be
stored pending garbage collection. Incoming messages
would be examined to make sure they are in sequence. If
not, a NAK message is sent back to the original sender of
the message soliciting a retransmission. A separate layer
detects when all copies have been delivered (a property
called stability) and triggers garbage collection for stable
messages.

A trivial example of the opportunity afforded by such an
architecture is that the NAK layer might not be needed in
some situations - namely, those in which the network
doesn't lose messages. At runtime, based on the
environment, the Horus system was capable of assisting the
user in configuring a stack to provide reliability, inserting a
NAK layer if necessary and omitting it if not.

Of course, useful protocol stacks often contain many layers
and the kinds of layers one might selectively omit tend to
be much more costly and less often needed than NAK. For
example, security is often enabled selectively in Horus, the
choice of protocol suite implementing virtual synchrony is
often of importance (different protocols can give very
different performance, and some are much better than
others on specific hardware platforms), and different ways
of doing multicast ordering are favored under different
conditions. Without belaboring the point, the approach
provides enough flexibility so that application designers
with very different goals can potentially agree on the
sharing of a common infrastructure, within which their
commonality is captured by layers that they share, and their
differences reflected by layers built specifically for their
special needs.

Moreover, Horus can potentially support execution models
very different from virtual synchrony. Our early hope was
that the protocol interfaces could be offered as a standard,
and that implementations of such protocols as SRM [Flo95]
and RMTP [Pau97], two widely popular scalable protocols
with weaker reliability models, might be developed to run
on the same platform. Unfortunately, in 1999 as this paper
was being written, discussion of possible standards along
these lines were still advancing very slowly within the IETF
and OMG, two organizations that have shown an interest in
developing such standards. (Readers interested in a more
detailed discussion of the SRM and RMTP reliability model
and a comparison with virtual synchrony are referred to
[Bir97, Bir99b].

The Horus effort did more than to simply support a layered
stackable architecture. We also wanted to demonstrate that
the performance of our architecture could be as good or
better than that of a conventional monolithic architecture.
We sought to provide real-time features, in response to a
requirement coming from the Naval AEGIS application,
where there was a need for cluster-style servers able to
guarantee real-time event response even under stress (the
application involved weapons targeting using radar tracks
and had very tight time constants associated with acceptable
responses). And whereas Isis was initially focused on
securing its own abstractions, Horus was designed to offer
security services on behalf of application developers who
needed security key infrastructures for purposes of their
own.

One can easily imagine that in responding to such varied
needs, Horus could become very complicated. Although
we managed to control complexity, we did find that the
types of transformations we wanted to do on layered
protocol stacks exceeded the capabilities of the available C
compiler, and hence that quite a bit of hand-coding was
needed to obtain high performance and to maximize
flexibility.

It was in response to these considerations that Ensemble
was developed, starting in the Spring of 1996. As a system,
Ensemble is rather similar to Horus, although rewritten
using high level programming languages and tools [Hay97].
Our insight was that much of the complexity of Horus came
from overcoming inefficiencies associated with stackable
protocol layers coded in the C programming language. In
contrast, Ensemble’s protocol suite is implemented using
the O'Caml variant of the ML programming language
[Ler97, Mac93]. This language is mathematical in
appearance and there are powerful theorem proving tools,
notably a system called NuPRL [Con86], available for
expressing transformations and other types of operations on
programs coded using O'Caml. In our case, we were
successful in using O'Caml to code a basic set of protocol
layers for Ensemble and then using NuPRL to produce
optimized and transformed versions that, in Horus, would
have required hand coding and hand optimization. The
NuPRL approach is automated and provably correct while
the manual Horus approach was a source of bugs.

Cornell University Ensemble Project

Layered Microprotocols in Ensemble
Interface to Ensemble is extremely flexibleInterface to Ensemble is extremely flexible

Ensemble manages group abstractionEnsemble manages group abstraction

group semantics (membership, actions,group semantics (membership, actions,
events) defined by stack of modulesevents) defined by stack of modules

encryptencrypt
vsyncvsync

filterfilter
signsign

ftolftolEnsemble stacksEnsemble stacks
plugplug--andand--playplay
modules to givemodules to give
design flexibilitydesign flexibility
to developerto developer

Figure 2: Ensemble and Horus used layered
architectures.

Moreover, we discovered that NuPRL can potentially do
quite a bit more for us.

The remainder of this paper focuses on the successes and
limitations of Horus and Ensemble. Both projects are
largely at an end now - Ensemble and Horus are both used
by modest communities and a number of technology
transition efforts should lead to their emergence in products
for the mass market within the next few years. Meanwhile,
our own effort at Cornell now focuses on what might be
seen as third-generation issues that work to move beyond
the limitations of the entire process group approach.

For example, we are increasingly convinced that virtual
synchrony has some basic scalability limitations that
emerge from the model itself, and our new Spinglass
project2 was born out of an insight into a new way to
develop a scalable reliability model to overcome these
limits. Virtual synchrony, we now believe, is simply better
suited to "close grained" cooperation on a scale of tens of
members (certainly, less than one hundred group members),
while the protocols we are using in Spinglass provide high
reliability and steady data delivery to potentially thousands
or millions of recipients. We imagine Spinglass as a
technology one might use side by side with Ensemble or
Horus, because it offers reliability guarantees that are
provably weaker than those of the virtual synchrony model,
and the virtual synchrony model remains necessary in many
situations. An illustration of this arises in our discussion of
the Ensemble security work, which combines Ensemble
groups with Spinglass protocols.

Similarly, we are continuing to work with NuPRL as a
program verification and automated protocol transformation
tool of unique power and flexibility. Whereas our initial
work focused on using NuPRL to automate some of the
protocol stack transformations needed to achieve high
performance in stackable architectures, we are now
pursuing a more ambitious goal: proving the correctness of
the virtual synchrony implementation used in Ensemble,
and perhaps of the security key management architecture
running over this implementation. But this work, in turn,
has revealed yet a third possible goal: the automated
generation of provably-correct protocol stacks from
relatively high level descriptions of goals. It thus may be
possible to see Ensemble much as a compiler used to
bootstrap a compilation process - one builds a basic
compiler in a first language for a new language, but then
implements a second compiler directly in the new language
and discards the original one. Our work could yield, within
a few years, a completely new and self-supporting
infrastructure for building correct group-communication
protocols and for optimizing them to achieve extremely
high performance.

The remainder of this paper focuses on the
accomplishments and limitations of Horus and Ensemble

2 See http://www.cs.cornell.edu/Info/Projects/spinglass/ for
information and references to Spinglass publications.

and the major technical challenges we face in transitioning
the technology into major commercial product platforms,
such as CORBA and COM/OLE.

III. HORUS EFFORT

Our work on the Horus system can be understood in terms
of several distinct threads of activity, which were all
conducted within the same framework and to a large degree
interoperate: Layering and its consequences, real-time
issues, security mechanisms, and work on protocol
performance and scaling. We consider these in turn.

A. Layered Protocol Architectures in Horus,
Performance Issues

The initial focus of our work on Horus concerned its use of
layering to simplify the design of the virtual synchrony
protocols. When this work was begun, we looked closely at
the x-Kernel architecture [PHO89], developed at the
University of Arizona by Larry Peterson with similar goals.
We found, however, that the x-Kernel was designed with
point-to-point TCP-style protocols in mind. For our work
on group communications, a more flexible and more
standardized interface to each layer was needed.

Accordingly, we developed what we now call the Horus
Common Protocol Interface, or HCPI [vR95], as a standard
interface to and between protocol layers. The interface
provides "up", "down" and "control" API's, and operates
under a model in which messages and other events travel
from the user down the stack to the I/O interface, or from
the I/O interface up to the user. For example, an encryption
layer might receive outgoing messages from higher layers,
use a key to encrypt the body of those messages, and then
pass the message to the outgoing message interface of the
next layer below. Incoming messages would, similarly, be
decoded on arrival and discarded if corruption or tampering
was detected.

Over the 7 year period since this interface was first
proposed, other groups including the OMG fault-tolerance
standards group and the IETF reliable multicast research
task-force have proposed creating standard architectural
slots similar to the ones occupied by Horus protocol layers.
Our effort has offered an updated HCPI interface to these
organizations, but until the present, it seems that the
aggressive use of layering adopted in Horus remains more
advanced that what these organizations might consider.

Layering gives rise to several forms of overhead. A
message, traveling down the stack, may be examined by a
whole series of layers, most of which do nothing at all to
the message. When a layer does add a header to a message,
it may need to assume that it is the only layer in the stack,
hence to add even a single bit, a layer may need to create a
header large enough to hold an integer. By the time a
message reaches the wire, it may have many bytes of
largely empty headers on it, and may have skipped through
as many as 20 or 30 layers that basically took no action.

http://www.cs.cornell.edu/Info/Projects/spinglass/

During 1995, one of us tackled this issue, and developed a
methodology for optimizing layers to avoid both forms of
overhead [vR96]. Although this work was done separately
from Horus, we considered it to be part of the overall
technology base. In essence, the approach involves
compressing the headers by eliminating wasted space, and
also separating headers into different types of data. Header
information that remains constant after a stack is
established is only transmitted once, and a typical message
only carries headers that actually contain changing values -
potentially a very small amount of data. Messages are
aggregated (packed) to make optimal use of network
packets. And, through a decomposition of each layer into
data touching and non data-touching parts, it proves
possible to short-circuit the path a message takes through
the stack, reducing the critical path between the application
and the wire to just a few instructions even for a very
complex protocol stack.

With these optimizations in place, the Horus Protocol
Accelerator set a number of performance records. Running
over a zero-copy communications architecture called U-Net
[Von95] (similar to the Virtual Interface Architecture
promoted by the VIA consortium), this version of Horus
introduced only a few microseconds of overhead beyond
the overhead of the network adaptor and drivers.

B. Real-Time Cluster Computing

Unfortunately, the ability to demonstrate high performance
is not enough to achieve real-time responsiveness in some
critical applications. Earlier, we noted that our work on Isis
was adopted by the Navy for use in its AEGIS architecture.
This system includes a number of cluster-style computer
systems that are used to compute tracks for airborne objects
detected by the AEGIS radar, and serve as the basis of
weapons targeting applications. Since threats may be
moving at very high speed, real-time response is vital even
when failures occur within the cluster. A similar need
arises in telecommunications switching architectures, where
a co-processor may be asked how a call-establishment
request should be routed; the SS7 architecture used in such
settings requires 100ms response times even while a failure
is handled.

Working with our group, Roy Friedman explored the use of
Horus as a technology for cluster control in real-time
applications of this sort [FB96]. He considered two styles
of solution. In the first, Horus was used to implement small
process-groups of two or three processes each, using load-
balancing and fault-tolerant RPC mechanisms within these
to guarantee that each request would be handled even if one
or more failures occurred while the cluster was heavily
loaded. With this approach, Friedman was only able to
achieve a throughput of a few hundred requests per second,
and the Horus failure detection timer (six seconds) emerged
as a performance limit: a request might potentially be
delayed, if a failure occurred under heavy load, until the
detection timer was triggered. For the sorts of applications
just mentioned, such delays are totally unacceptable.

Friedman then developed a different solution in which
Horus operates as a side-band mechanism for cluster
control and data replication, but "offline" from the basic
request loop. In this approach, Friedman was able to
aggregate batches of requests and used hand-coded, highly
optimized protocols for the basic request dispatch and
handling communication paths. During the period before
Horus discovered a failure, data might pile up, but
Friedman used a number of compression schemes to
minimize the amount and avoid overloading available
buffering.

The approach was a dramatic success: for the SS7
telephone architecture, Friedman now achieved 20,000
requests per second on a 64-node cluster, demonstrated that
performance improvements were possible when the cluster
size was increased, and was able to sustain 100ms response
times even as nodes were taken offline, crashed, or restarted
while the switch was under load [FB96].

Friedman's work illustrates, for us, both the power of Horus
and a limitation. The benefit of this work was that for the
first time, a way to use a cluster of computers in a time-
critical fault-tolerance application was demonstrated. Yet
the work was technically complex and suggests that unless
these methods can be embedded into a very low level of the
operating system (for example, into the clustering
technology of the NT Clusters system), application
developers will have great difficulty exploiting the
approach. Horus, viewed from the perspective of this type
of real-time application, is a necessary tool, but not
sufficient. On the other hand, for high-value applications
such as the AEGIS tracking service, it does seem clear that
Friedman's work points to a methodology for achieving
very high degrees of scalability and real-time
responsiveness while tolerating faults.

C. Security in Group Communication Systems

The Horus system was also the setting for our initial foray
into security for groups of participants in large networks.
Working with Mike Reiter [RBvR94, RB94], we developed
a means of securing the virtual synchrony model itself, so
that only trusted processes would be allowed to join a
process group, and so that group members could obtain a
shared group key. This problem involves authentication at
the time of the group join, and rekeying when a member
joins or leaves (so that prior communication in the group, or
subsequent communication, would not be accessible to the
new member).

Our work on security can be seen as complementary to
work on group security arising directly from the Internet
community. Recall that the DNS and routing services of
the Internet replicate various forms of data. During the
early 1990's it became important to secure the protocols
used to update these, and the resulting key distribution and
management problem became a classical topic for the
security research community. Here, the notion of group
membership is much weaker than the one used in the virtual

synchrony community, and there is no formal semantics for
the execution model. Yet the superficial aspects of the
security problem are very similar: we have a group of
members, we wish to authenticate joining and leaving, and
we plan to use the security keys to encrypt communication
within the group.

The Horus security mechanisms have advantages and
disadvantages when compared to this more network-
oriented form of security. The strong semantics of virtual
synchrony groups certainly offers security benefits: within
this model, one actually can formalize the question of
which processes legitimately belong to a group and which
ones do not, and when a process does belong to a group,
there are strong guarantees about the state of the data it
manages. But there are also disadvantages to the model,
notably that it scales poorly beyond about 100 processes.
Most experience with Isis was limited to groups of five to
ten processes at a time [Bir99a] and it was only with great
care that Isis applications spanning more than about 250
processes were developed successfully. In the Internet,
10,000 members of a DNS service might not be at all
unreasonable and one can imagine services containing
millions of members. Yet scaling virtual synchrony to this
degree seems not to be practical. (Our new project,
Spinglass, might well provide this degree of scalability, but
it uses a somewhat different execution model).

IV. ENSEMBLE EFFORT

Earlier, we cited the "eggs in one basket" concern in regard
to distributed systems models such as virtual synchrony, or
process group security. While such approaches are
beneficial to the application designer, whose task is greatly
simplified by the strong guarantees of the system, if the
model itself is violated as a consequence of a coding error
or some unanticipated bug in the protocol itself, the
application's correctness or security might be compromised.
One can reduce such concerns by exhaustive testing,
simulation, or by writing papers in which the protocols
employed by the system are presented rigorously and a
formal proof of correctness is offered. Yet none of these
options yields more than a modest degree of confidence in
the ultimate correctness of the running code itself. Even
now, more than a decade after the development of Isis, Isis
applications that seek to provide continuous availability still
exist, and occasionally, one of them reports a bug never
before encountered. Such bugs can easily cause the entire
distributed application to crash.

As noted earlier, Horus was developed as a partial response
to this concern: the technology sought to simplify the
monolithic structure of systems like Isis by showing how
complex protocols could be broken into simple
microprotocols and stacked to match the needs of an
environment. Yet Horus offers little to increase the
confidence of a skeptic in the ultimate correctness of the
protocols and of their implementations.

Ensemble was developed primarily as a response to these
concerns. Our fundamental idea was to begin using a new
and extremely powerful generation of mathematically
rigorous programming and verification tools as a means of
moving beyond the hand-coded optimization schemes
employed when performing inter-layer optimizations in
Horus, and of actually proving the correctness of key
components of the system. The technology evolved in
several new directions, however, as time passed: we used
Ensemble as the basis of initial work on a new protocol
suite, and pursued a number of topics involving dynamic
adaptation using Ensemble as the base. We also developed
a new security architecture within Ensemble, moving well
beyond the initial Horus version. This section summarizes
each of these threads of research.

A. Formal Transformation of Protocol Stacks

Code transformation of the Horus system was impractical in
part because of the choice of programming language: by
coding Horus in C, we were able to achieve extremely high
performance, but this language has limited capabilities for
type checking and other types of correctness checking, and
such weak mathematical semantics that formally expressed
code transformations are largely impossible. Accordingly,
a primary reason for building a new system - Ensemble -
was to create a version of Horus coded in the O'Caml
programming language, a dialect of ML having strong
semantics and consequently suitable for analysis and
transformation using formal programming tools. This
decision was informed by previous success in using NuPRL
to reason about a large ML system [AL92] and to reason
about hardware [LLHA94]. We were also encouraged by
the work at CMU by Harper and Lee on the FOX project to
code protocols in SML [HL94].

Our decision to implement Ensemble in O'Caml compelled
us to confront an initial challenge of a different nature. The
ML family of languages is not traditionally known for high
performance, and while O'Caml is compiled, we were
concerned that it might not be possible to achieve
performance comparable to that of Horus. Yet the
verification of a system incapable of the desired level of
performance would have been much less satisfying, since
we hoped to demonstrate that production-quality distributed
software can actually be proved correct. Mark Hayden,
who coded the system, undertook a detailed study of this
issue, and ultimately developed a methodology for protocol
development in O'Caml that overcomes the most common
efficiency issues encountered by users of the language. His
accomplishment, which involved taking control of garbage
collection and using O'Caml's language features very
carefully, was reported in [KHH98].

Given an initial version of Ensemble, Hayden, Kreitz and
Hickey set out to use a formal mathematical tool called
NuPRL ("new pearl") to automate the sorts of optimizations
that Van Renesse did by hand in developing Horus [vR96].
They approached this by teaching NuPRL to read Ensemble
layers - in effect, NuPRL understands each layer as the

"proof" of some property, namely the protocol guarantee
implemented by that layer. NuPRL was then able to do
several kinds of protocol transformations. For example,
because a protocol stack appears as a nested function call to
NuPRL, it was possible to request that NuPRL perform an
inline function expansion of the code.

The basis for all formal code manipulation is a formal
semantics for a large subset of the O'Caml programming
language in the logical language of NuPRL. Not long ago,
the formalization of such a subset would have been cutting
edge research worthy of separate funding and a PhD thesis,
but in this case, we were able to build on advances in
understanding of formal semantics and on the richness of
the NuPRL type theory. Basically the core of O'Caml is a
subset of the NuPRL term language, and therefore type
theory almost immediately provides a semantics for O'Caml
[Kre97]. The method is now called a "shallow embedding".
This method has been used to provide a formal semantics
for significant extensions of ML in the direction of object
orientation, see the work of Crary for example [Cra98].

NuPRL can perform partial evaluation of functions, and this
opened the door to a category of optimizations similar to
those used by Van Renesse. The approach begins by
recognizing that as messages traverse a stack, the code path
used may be a very small percentage of the code in the
stack as a whole. For example, the virtual synchrony stack
treats membership change events very differently from
multicasts. If a message is a multicast and no membership
change is occurring, the message may be nearly untouched
within the stack.

A protocol stack in Ensemble looks like a set of nested
function calls. Suppose that x is some form of outgoing
event, such as a message to send or a membership change
request. Then, Ensemble’s job is to evaluate f0(f1(…fn(x))),
where each of the fi is the code implementing some micro-
protocol within the stack (f0 is at the bottom and fn is at the
top). Similarly, for an incoming event, Ensemble can be
understood as evaluating the function fn(fn-1(…f0(x))). Now,
focus on the outgoing case, and suppose we call this entire
nested function f. Imagine that we place an if statement in
front of it, as follows: "if(is_a_msg(x)) f(x) else f(x)," where
the predicate is_a_msg is true for messages and false for
other types of events, such as group membership changes.
(Not shown is an additional, implicit argument: the “state”
of the protocol stack, which is updated when the stack
executes and hence is shared by both function invocations).

Viewing NuPRL as a form of optimizing compiler, the
system can be asked to partially evaluate the function under
the two cases: "is_a_msg(x)" is true, and "is_a_msg(x)" is
false. Consider the first case: the predicate is true. Under
the circumstances just described, very little code needs to
be executed for messages, hence the function will collapse
to just a few lines of code. “Dead” code branches (those
NuPRL can recognize as never being executed) are deleted
during the partial evaluation. In effect, we've produced an
extremely optimized code path for the common case where

we sent a multicast. Yet since the event either is or is not a
message, the behavior of the original stack is unchanged!

To generate the optimized code while guaranteeing its
correctness NuPRL uses two levels of formal optimizations.

• On the first, or static level, symbolic evaluation
and logical simplification techniques are applied
separately to the code of each micro-protocol.
They result in formally proven layer optimization
theorems, which show that the effect of passing an
event x through the respective protocol layer,
while assuming that a common case predicate
(CCP) like "is_a_msg(x)" (or some other property
of common events) holds, can be expressed by
two or three lines of code. These optimizations
are executed independently from the application
protocol stacks and need to be redone only when
the code of a micro-protocol is modified or when
new micro-protocols are added to the Ensemble
toolkit.

• The second, or dynamic level, depends on the
particular protocol stacks designed by the
application developers. Given the names of the
individual micro-protocols occurring in this stack,
it composes the corresponding layer optimization
theorems into a formal stack optimization theorem
that describes the effect of passing an event x
through the whole stack while assuming that all
individual CCPs hold. This is not trivial, because
Ensemble's composition mechanism allows that
events may bounce between layers before leaving
the stack instead of passing straight through it.
Therefore the technique is based on composition
theorems, which abstractly describe the effects of
composing common combinations of optimized
micro-protocols.

A stack optimization theorem not only describes a fast-path
through a protocol stack but also the headers that the stack
adds to a message. Since typical messages should only
carry headers that actually contain changing values, all
constant headers are eliminated before sending the message.
For this purpose, the protocol stack is wrapped with code
for compressing and expanding headers and then optimized
again.

In a final step the stack optimization theorems are
converted into O'Caml code, which uses the CCPs as
conditionals that select the bypass path in the common case
and otherwise the normal stack, as illustrated in Figure 3
(The Transport module below the stack provides
marshaling of messages). This program is proven to be
equivalent to the original protocol in all cases, but generally
more efficient in the common case.

Using this methodology [Kre99], Kreitz, Hayden, Hickey,
van Renesse and graduate student Xioaming Liu showed
that NuPRL can automatically achieve protocol speedups

comparable to the ones that Van Renesse achieved by hand
in Horus. Moreover, Liu and Van Renesse developed a
version of the method for use in adapting Ensemble to
match the protocol stack to the environment. With their
work, one can dynamically pick a protocol stack with just
the properties needed for a given setting, obtain an
optimized version of the stack from NuPRL, compile the
resulting O'Caml byte code into machine code, ship this
code to a version of Ensemble, and run it as the protocol
stack supporting some group. At present, we do the
optimization offline, but the methodology could be
extended to work on the fly. This work is reported in
[Liu99].

Figure 3: Optimization in the Ensemble Architecture

B. Verification of Ensemble stacks

Formal verification of a system such as Ensemble presents
a major challenge because its many micro-protocols
(currently over fifty) can be combined in literally thousands
of different ways to provide a great variety of services. To
verify Ensemble would mean to be able to treat the
reasonable combinations of stacks and their services.
Moreover, many of the individual protocols are quite
sophisticated.

Additionally it is a major challenge to verify the actual
system code -- indeed, most verification efforts operate by
verifying the correctness of abstracted descriptions of
protocol or system components. While verifying these
abstractions is an interesting first step, the goal that
appealed to us was to work directly with production-quality
protocol implementations, and ultimately to prove that the
code actually running in the system has the properties
required by the user. This goal was a natural extension of

our success in transforming the actual O'Caml code of
Ensemble stacks.

A key step in verification is the specification of properties.
This has been a lively topic in the Horus and Ensemble
research. Various temporal logics were tried, including
TLA [Kar97], and an axiomatic approach was considered
[CHTCB96]. In the end, the ground work for our approach
was laid by Hickey and Van Renesse in collaboration with
Nancy Lynch, whose research effort at MIT has developed
a mathematical programming language called I/O
Automata, or IOA [Lyn96]. Jointly with Lynch, they found
a way to express virtual synchrony as an IOA, adapted the
IOA language itself so that NuPRL could understand such a
specification, and extended IOA so that it could be used in
compositional settings, such as the Ensemble protocol
stacks [HLV99].

We have found a particularly elegant way to formalize IOA
using NuPRL class theory [BH98]. We can formalize both
services and their implementations in the same style.
Moreover the inheritance mechanisms of the formal class
theory make it possible to inherit proofs of safety properties
of a stack when new layers are added to it. This leads to a
methodology that will make it easier to prove properties of
stacks from proofs of components. The method seems to
scale to stacks composed from many layers from a large
base of micro-protocols.

When this work has been completed, we will be able to
produce highly optimized executable code from provably
correct protocol stacks, dynamically adapting the stack to
match the environment where the protocol will be used, and
providing guarantees of reliability and security formally
verified by a mathematical tool and characterized in a high
level notation suitable for use in reasoning about
applications built over the resulting process group.

C. Synthesis of layers

Once we know how to prove the correspondence of code
fragments to IOA statements, we can also understand this as
a means for compiling from IOA into protocols (which we
can optimize using our trace driven optimization
methodology). So the potential exists to avoid using hand-
coded Ensemble protocol stacks in favor of these more
automated protocol stacks produced using NuPRL as a
compiler.

The basis of this synthesis capability is the fact that global
services, abstract protocol specifications and code layers are
treated as modules in a common formal language. We can
use our formal framework not only for verification purposes
but also for the synthesis of protocols from specifications.
Because the generated code is correct by construction, our
framework supports the development of new
communication protocols, which is a notoriously difficult
task.

A synthesis of protocol layers that implement a global
service will be supported by a small collection of generic
methods for transforming specifications of distributed
systems. This methodology is not entirely new.
Synthesizing algorithms from specifications by applying
specification transformations is a well-known principle in
program synthesis, and synthesis from proofs has been
explored for many years as well [Wal69, BC85,Kre98].The
novelty of our approach lies in providing methods for the
synthesis of distributed systems, which is by far more
difficult than synthesizing serial algorithms.

We describe four of the most common generic methods.

1) Replication of Global Values

Applying this method will allow us to represent values
locally. It creates a local copy of each value, ensures
consistency by making each process broadcast these values,
and introduces a unique token. Virtual synchrony (as
specified in IOA, Extended Virtual Synchrony, or EVS) is a
prerequisite for this step; lacking this property, consistency
has to be ensured by more complex means.

2) Adding Fault Tolerance

This method, which requires local values as prerequisite,
makes the local values fault tolerant. It forbids access to
values during a view change and implements merging of
multiple copies after a view change.

3) Conversion to Message Passing

This method assumes fault tolerance and generates the
typical event-handler interface of Ensemble by converting
each operation to a message.

4) Code Generation

This method runs as the last step of a synthesis. It takes a
specification that provides the event-handler interface and
converts the abstract specification into executable code.
Because of the close relation between abstract
specifications and the representation of Ensemble's code in
NuPRL this step is straightforward.

As an example, we describe the synthesis of a total order
layer from the specification of the total order service. The
total order service has a simple specification. In addition to
the properties of EVS, it ensures that all processes in a view
receive messages in the same order, and is called ETO.

The total order specification represents this requirement
with a global queue that orders all the messages sent in the
view. A message can be received only if it is the next
message in the global queue.

The ETO specification is not directly implementable
because its global queue contains global information, so the
first step is to replicate the global value so that each
process contains a local copy of the queue. The Replicate

generic method introduces a token to ensure atomic access
and consistency of the local copies, but the copies are not
robust to failures. The next step is to apply the Fault
Tolerance generic method, which prohibits access to the
queue during a view change, and creates a fresh queue once
the view change is completed. At this step, we have
partitioned the service into local protocol layers, and in the
final step we apply the Convert to Message Passing generic
method to convert the layer actions (which refer to semantic
events like view changes) to explicit message passing style.
This final step can be completely automated.

D. Scalable Security Architectures in Ensemble

Ensemble has also been used as a base for an expanded
effort to provide security for process group applications and
systems [RBD99, RBH98]. As noted earlier, our work on
the Horus system resulted in an initial mechanism for
securing process group communication and the group
abstraction.

In our work on Ensemble, we have focused on expanding
the capabilities of this basic idea and using group security
keys in innovative ways. With respect to the basic security
architecture, Ensemble implements a scheme (developed
primarily by Ohad Rodeh, a research in Dolev's Transis
group at the Hebrew University in Jerusalem) whereby
asymmetric public keys can be "traded" for symmetric
point-to-point keys and group keys. These symmetric keys
provide a high speed path for signing messages and
encrypting their contents, and can also be used by secured
applications for application-specific security purposes.

Rodeh's solutions are innovative in two ways. First, he
employs a hierarchy of protocols for key management and
key refresh, and has a particularly fast solution to the key
refresh problem when processes join or leave a group. His
algorithm rekeys within milliseconds, permitting a group to
(potentially) change keys so rapidly that even if a key were
broken, the adversary would gain access to just one or two
multicasts before a new key was substituted for the
compromised one [RBH98]. Additionally, Rodeh
developed a fault-tolerant extension of the well-known
Wong-Gouda-Lam tree-based key management architecture
[Won98], a protocol that in its original form was centralized
and not fault-tolerant. Rodeh's version scales easily within
Ensemble's process groups, although these remain limited
to perhaps one hundred or two hundred members [RBD99].

The scalability limits of Ensemble prevent Rodeh from
using this technique to secure extremely large groups,
which might have tens of thousands of members. For this
purpose, however, Rodeh is exploring a very simple
combination of Ensemble with our new Spinglass system.
As mentioned earlier, Spinglass introduces a new and
extremely scalable data point in the reliable group
communications spectrum, offering a suite of probabilistic
protocols that can be used to communicate reliably with
huge numbers of processes even in networks subject to the
most extreme forms of disruption. Rodeh is linking the

secured Ensemble group mechanisms to the Spinglass
mechanisms so that Ensemble can control a core group and
this, in turn, can manage security keys on behalf of a very
large group of leaf nodes. Inspired by the DNS architecture
for the Internet, this approach allows typical users to talk to
a local representative of the security hierarchy and low cost,
while drawing on the strong properties of Rodeh’s
Ensemble solution to guarantee rapid key refresh and other
aspects of a strong security model.

E. Dynamic Adaptation

The third major research topic that has been explored
primarily within the context of our work on Ensemble is
concerned with dynamic adaptation. As described
previously, the adaptation problem arises when an
application expresses requirements for a process group that
can be satisfied in more than one way, depending upon the
environment within which the group runs [Liu99].

Two examples will illustrate this idea. The first is
concerned with multicast ordering protocols. Over the past
two decades, a great number of ordered, reliable multicast
protocols have been developed. Abstractly, it is common to
view such protocols as representing optimizations of total
ordering. For example, in a process group where we
happen to know that only one member will initiate
multicasts, a protocol providing fifo ordering would
actually be "strong enough" to satisfy a total ordering
requirement.

Even in a group where there are multiple senders, one faces
such a choice. If the senders are willing to use a token
passing or locking scheme, the most appropriate total
ordering protocol would be one that exploits the mutual
exclusion property - these include causal ordering protocols
and token-based total ordering protocols. Lacking a
locking scheme, one might still use a token based protocol,
but other protocols such as time-stamped ordering protocols
now have potential advantages. Broadly, the best choice
depends upon the nature of the application, and the nature
of the environment within which we run it.

Similarly, the most appropriate security mechanism
depends on the setting. Behind a firewall, one may face
only a very benign security requirement, and limit
"security" to some form of join authentication. Yet when
the same application includes a group member running
outside the firewall, it may be important to encrypt all
group communication, and to authenticate even the
messages used within the join protocol itself.

Virtual synchrony offers an appealing way to think about
adaptation. Each time the membership of a group changes,
the virtual synchrony model announces this through a new
process group view, synchronized with respect to ongoing
communication among group members. Normally, the view
is just a list of group members, ranked in some canonical
manner. Our work on adaptation extends the same idea:

each time the view changes the new view also includes a
new protocol stack for each of the members.

Within Ensemble, we've used this mechanism to change
protocol stacks on the fly, with roughly the same (very
small) overhead incurred when group membership changes
because a process joins, leaves or crashes. What we do is to
associate with each stack a small software module
responsible for monitoring the environment, watching for
conditions under which some other stack would be more
desirable than the one currently in use. When conditions
change, this module triggers the new-view algorithm,
arranging that the new stack be installed at all members in a
virtually synchronous manner.

For example, if we are using a total ordering protocol that is
appropriate only with a single sender within a group,
adaptation might be triggered when a second process first
attempts to send: the attempt would cause the group to
switch to a new total ordering protocol, at which point the
interrupted send request would be allowed to complete. If
we are using a security mechanism appropriate only within
a firewall, adaptation might occur when a member from
outside the firewall joins the group, and so forth.

V. TECHNICAL CHALLENGES ASSOCIATED WITH
TRANSITION

One of the most difficult problems we've encountered in
our research has been the challenge of technology
transition. Broadly, it has been our belief that unless these
technologies make the transition from academic
demonstrations into broad commercial availability, they
will not have the degree of impact that we seek and that
DARPA hopes for in projects such as this. Yet in the area
of networking and distributed computing, there is
tremendous resistance to doing anything other than what the
basic Internet supports.

As noted earlier, our first project, the Isis Toolkit, achieved
some degree of commercial uptake and had some notable
successes. Through this process, Isis became a viable
option for military and government projects and had an
important influence on technology planning within the
services, reflected in the DD-21 architecture.

However, starting a company to commercialize Horus and
Ensemble was unappealing to us. Our effort has made both
systems available to "all comers" with very few restrictions
of any kind, and at no fee. Cornell and the original
Ensemble developers - Hayden and Vaysburd - provide
some support, also for free. This has resulted in some
uptake of the technology, and we have a small user
community that includes some large companies (notably,
Nortel and BBN) and many small ones. An exciting
recent opportunity involves technology transfer into the
restructured electric power grid. We are pursuing this topic
jointly with a consortium organized by the Electric Power
Research Institute, EPRI.

To see a broad-based transition occur, companies of the size
of Microsoft and Sun need to become interested in this
technology area. There is some good news on this front:
the industry as a whole is looking at group communication
tools closely, and several standards organizations have been
exploring possible standards for reliable multicast and
object replication. As these trends advance, one can
anticipate a first-class role for reliable multicast in standard
operating systems, such as Solaris, Linux and NT, and with
that development, technologies such as ours would find a
natural home.

Overall, we are encouraged by these developments, but we
also see an argument for winding down the effort on Horus
and Ensemble in favor of new directions. Accordingly,
while continuing work on the NuPRL verification
methodology, our overall project has shifted attention to a
new technology based on a suite of highly scalable “gossip-
based” protocols with probabilistic properties [Bir99b].
The protocols and their behavior take us into a domain
rather different from virtual synchrony, while we wait and
watch to see what the ultimate impact of our work over the
past few years will be.

VI. CONCLUSIONS

Cornell research has placed process group computing,
especially with virtual synchrony, or a firm footing. Over
the course the three projects we've conducted in this area,
we've contributed techniques for achieving high
performance, security, real-time guarantees and provable
correctness. Although we were not able to scale virtual
synchrony to very large settings, the gossip-based protocols
developed in our work on Ensemble have taken on a life of
their own, and form the basis of a new project (Spinglass)
that promises to contribute a new and extremely scalable
data point for the spectrum of reliable multicast protocols
and applications.

Over the years, the Cornell effort has helped enable some
very high profile applications, and we've played an
instrumental role in showing that these solutions really
work. Down the road we expect that the technologies we
pioneered will have a good likelihood of becoming standard
in products from major vendors, that IETF standards will
emerge for the area, and that CORBA will provide solutions
- all traceable to our work and that of related projects.

Our vision of the future is one in which reliable process
group computing will reside side-by-side with scalable
probabilistic technologies, of the sort now under
development in our Spinglass system. Through this
approach, we believe that reliable, secure distributed
computing can become a commonplace reality on a wide
range of systems spanning both large-scale WAN
applications based on conventional workstations down to
massive networks of very small devices such as might arise
in future miniaturized control settings or future sensor
networks.

VII. REFERENCES

[AL92] Aagaard, Mark and Miriam Leeser. Verifying a
Logic Synthesis Tool in NuPRL. In Proceedings of
Workshop on Computer-Aided Verification., 72-83,
Springer-Verlag, (1992)

[BC85] Bates, J. L. and Constable, Robert L. Proofs as
Programs. In ACM Transactions on Programming
Languages and Systems 7(1), 53-71 (1985)

[BH98] Bickford, Mark and Hickey, Jason. An Object-
Oriented Approach to Verifying Group Communication
Systems (submitted to CAV), (1998)

[Bir97] Birman, Kenneth P. Building Secure and Reliable
Network Applications. Manning Publishing Company and
Prentice Hall, (1997)

[Bir99a] Birman, Kenneth P. A Review of Experiences
with Reliable Multicast. Software Practice and Experience
29(9), 741-774 (1999)

[Bir99b] Birman, Kenneth P., Hayden, Mark, Ozkasap,
Oznur, Xiao, Zhen, Budiu, Mihai, Minsky, Yaron. Bimodal
Multicast. ACM TOCS 17:2 (May 1999), 41-88.

[BJ87] Birman, Kenneth P. and Joseph, Thomas A.
Exploiting Virtual Synchrony in Distributed Systems. 11th
ACM Symp. on Operating SystemsPrinciples, (1987)

[CHTCB96] Chandra, Tushar D; Hadzilacod, Vassos;
Toueg, Sam and Charron-Bost, Bernadette. On the
impossibility of group membership. In 15th ACM
Symposium on Principles of Distributed computing, 322-
330, (1996)

[Con86] Robert Constable et. al. Implementing
Mathematics in the NuPRL Proof Development System.
Prentice-Hall, 1986.

[Cra98] Crary, Karl. Type-theoretic Methodology for
Practical Programming Languages. PhD thesis, Cornell
University. Department of Computer Science, (1998)

[CZ85] Cheriton, D. and Zwaenepoel, W. Distributed
Process Groups in the V Kernel. ACM TOCS 3(2), 77-107
(1985)

[Flo95] Sally Floyd, Van Jacobson, Steve McCanne, Ching-
Gung Liu and Lixia Zhang. A reliable multicast framework
for lightweight sessions and application-level framing.
Proc. ACM SIGCOMM, 1995.

[FB96] Roy Friedman and Ken Birman. Using Group
Communication Technology to Implement a Reliable and
Scalable Distributed IN Coprocessor. Proceedings
Telecommunications Information Network Architecture 96,
Heidelberg. VDE-Verlag , 25-42, (1996)

[GL99] Goft, G. and Lotem, Y. E. The AS/400 Cluster
Engine: A case study. International Workshop on Group
Communication (IWGC'99), (1999)

[Gla98] Glade, Bradford. A Scalable Architecture for
Publish-Subscribe Communication in Distributed Systems.
Ph.D. dissertation, Cornell University Dept. of Computer
Science, (1998)

 [Hay97] Mark G. Hayden. The Ensemble System. Ph.D.
dissertation, Cornell University Dept. of Computer Science.
(1997)

[Hayden-JFP] Hayden, Mark. Distributed Programming in
ML. To appear: Journal of Functional Programming, 1999.

[HL94] Harper, Robert and Lee, Peter. Advanced languages
for system software: The Fox project in 1994. School of
Computer Science Technical Report, CMU-CS-94-104,
Carnegie Mellon University, (1994)

[HLv99] Hickey, Jason; Lynch , Nancy and Van Renesse,
Robbert. Specifications and Proofs for Ensemble Layers. In
5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. LNCS 1579,
119-133, Springer (1999)

[Kar97] Karr, David, A. Specification, Composition, and
Automated Verification of Layered Communications and
Protocols. PhD thesis, Cornell University. Department of
computer Science, (1997)

[Kes97] Srinivasan Keshav. An Engineering Approach to
Computer Networking. Addison Wesley, 1997.

[KHH98] Kreitz, Christoph; Hayden, Mark and Hickey,
Jason. A Proof Environment for the Development of Group
Communications Systems. In 15th International Conference
on Automated Deduction LNAI 1421, 317-322 Springer,
(1998)

[Kre97] Kreitz, Christoph. Formal Reasoning about
Communication Systems I: Embedding ML into Type
Theory. Technical Report TR 97 - 1637 Department of
Computer Science, Cornell University, (1997)

 [Kre98] Kreitz,Christoph. Program Synthesis. Chapter
III.2.5 in Automated Deduction - A Basis for Applications.
105-134. Kluwer, (1998)

[Kre99] Kreitz, Christoph. Automated Fast-Track
Reconfiguration of Group Communication Systems. In 5th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. LNCS 1579, 104-
118. Springer, (1999)

[Ler97] Xavier Leroy. The Objective Caml System Release
1.05. INRIA, France, May 1997.

[Liu99] Liu, Xiaoming; Kreitz, Christoph; Van Renesse,
Robbert; Hickey, Jason; Hayden, Mark; Birman, Kenneth

and Constable, Robert, L. Building reliable, high-
performance communication systems from components. In
17th ACM Symposium on Operating Systems Principles,
(1999)

[LLHA94] O'Leary, John; Leeser, Miriam; Hickey, Jason
and Aagaard, Mark. Non-Restoring Integer Square Root: A
Case Study in Design by Principled Optimization. In
International Conference on Theorem Proving & Circuit
Design. (1994)

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, San Francisco, 1996.

[Mac93] David MacQueen. Reflections on Standared ML.
In Peter E. Lauer, Ed. Functional Programming,
Concurrency, Simulation and Automated Reasoning.
Volume 693, pages 32-46, Springer Verlag Lecture Notes
in Computer Science, 1993.

[Pau97] Sanjoy Paul, K. K. Sabnani, J. C. Lin, S.
Bhattacharyya "Reliable Multicast Transport Protocol
(RMTP)", IEEE Journal on Selected Areas in Commun-
ications, April 97, Vol 15, No. 3

[PHO89] Peterson, L., Hutchinson, N., O’Malley, S. and
Abbott, M. RPC in the x-Kernel: Evaluating New Design
Techniques. Proc. 12th ACM Symposium on Operating
Systems Principles, (1989)

[PS97] Piantoni, R. and Stancescu, C. Implementing the
Swiss Exchange Trading System. FTCS 27, Seattle,
Washington, 309-313, (1997)

[RB94] Reiter, M. and Birman, K. How to Securely
Replicate Services. ACM Trans. on Programming
Languages and Systems 16(3), 986-1009, (1994)

[RBD99] Rodeh, O., Birman, K.P. and Dolev, D.
Optimized Group Rekey for Group Communication
Systems. To appear: 2000 Network and Distributed
Systems Security, San Diego (2000)

[RBH98] Rodeh, O., Birman, K.P., Hayden, M., Xiao,. Z.,
Dolev, D. Ensemble Security. Department of Computer
Science Technical Report 98-1703, (1998)

[RBM96] Robbert van Renesse, Kenneth P. Birman,
Silvano Maffeis. Horus: A Flexible Group Communication
System. Communications of the ACM 39(4), 76-83 (1996)

[RBvR94] Reiter, M., Birman, K. and van Renesse, R. A
Security Architecture for Fault-Tolerant Systems. ACM
Trans. on Computer Systems 12(4), 340-371 (1994)

[SWLP94] Stickel, Mark; Waldinger, Richard; Lowry,
Michael; Pressburger, Thomas and Underwood, Ian.
Deductive Composition of Astronomical Software from
Subroutine Libraries. In 12th International Conference on
Automated Deduction, LNAI 814, 341-355, Springer,
(1994)

[Vog98] Werner Vogels et. al. The Design and Architecture
of the Microsoft Cluster Service - A Practical Approach to
High Availability and Scalability. Proc 28th FTCS,
Heidelberg, (1998)

[Von95] Von Eicken, Thorsten, Basu, Anindya,. Buch V.
and Vogels, Werner. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. Proc.
15th SOSP, Copper Mountain, CO. Dec. 1995, 40-53.

[vR95] Van Renesse, Robbert, The Horus Common
Protocol Interface (HCPI). Cornell University Dept. of
Computer Science, 1995.

 [vR96] Van Renesse, Robbert. Masking the Overhead of
Protocol Layering. Proceeding of the 1996 ACM
SIGCOMM Conference, Stanford, (1996)

[Wal69] Waldinger, Richard, J. Constructing Programs
Automatically Using Theorem Proving. PhD thesis,
Computer Science Department. Carnegie-Mellon
University, (1969)

[Won98] C.K. Wong, M. Gouda and S. Lam. Secure
Group Communication Using Key Graphs. Proc. ACM
SIGCOMM, Sept. 1998.

	Layered Protocol Architectures in Horus, Performance Issues
	Real-Time Cluster Computing
	Security in Group Communication Systems
	Formal Transformation of Protocol Stacks
	Verification of Ensemble stacks
	Synthesis of layers
	Replication of Global Values
	Adding Fault Tolerance
	Conversion to Message Passing
	Code Generation

	Scalable Security Architectures in Ensemble
	Dynamic Adaptation

