
GulfStream – a System for Dynamic Topology Management in Multi-domain
Server Farms

Sameh A. Fakhouri, Germ´an Goldszmidt,
Michael Kalantar, John A. Pershing
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY

�fakhouri,gsg,kalantar,pershng�@us.ibm.com

Indranil Gupta
Department of Computer Science

Cornell University
Ithaca, NY

gupta@cs.cornell.edu

Abstract

This paper describes GulfStream, a scalable distributed
software system designed to address the problem of manag-
ing the network topology in a multi-domain server farm. In
particular, it addresses the following core problems: topol-
ogy discovery and verification, and failure detection. Un-
like most topology discovery and failure detection systems
which focus on the nodes in a cluster, GulfStream logi-
cally organizes the network adapters of the server farm into
groups. Each group contains those adapters that can di-
rectly exchange messages. GulfStream dynamically estab-
lishes a hierarchy for reporting network topology and avail-
ability of network adapters. We describe a prototype imple-
mentation of GulfStream on a 55 node heterogeneous server
farm interconnected using switched fast Ethernet.

1. Introduction

We describe the design and a prototype implementation
of GulfStream, a distributed software system that addresses
the problem of managing the network topology of multi-
domain server farms. A multi-domain server farm is a col-
lection of servers and associated hardware resources that
is logically partitioned into a number of distinct network-
isolated domains. Each domain in the farm establishes a
unit of security, such that servers in one domain cannot ac-
cess resources in another. Domains are typically established
to execute a set of applications belonging to a single user or
organization. For example, a single domain might be used
to host a web site in a multi-domain server farm used for
web hosting.

GulfStream “discovers” the physical configuration of a
server farm and monitors this configuration on an ongoing
basis. The discovery process is the result of a distributed

algorithm, which is executed by the GulfStream daemons
on all nodes. GulfStream continues to monitor the avail-
ability of network adapters, and therefore of nodes and net-
work components, by carefully regulated heartbeating. Fur-
ther, GulfStream can validate an expected topology, typi-
cally provided by a configuration database, against the dis-
covered topology.

Traditional topology discovery and failure detection sys-
tems take one of two approaches. One approach focuses on
the nodes of a cluster. In this case, failures may be repored
when a it is unable to communicate over at least one of its
network adapters. The second approach focuses on com-
munication paths, concluding a node has failed only when
all of its network adapters have failed. GulfStream takes
the second approach. GulfStream organizes all thenetwork
adapters of a server farm into groups. Each group con-
tains those adapters that are attached to the same network
segment. GulfStream dynamically establishes a hierarchy
for reporting network topology and availability of network
adapters. Node status can be inferred by the status of the all
of its network adapters.

GulfStream is also designed to directly manage the log-
ical configuration; that is, to alter the IP addresses of net-
work adapters, the virtual LAN configuration, and firewall
settings to enforce the security and isolation requirements
of domains in a server farm. Currently, GulfStream only
manages virtual LAN settings, by reconfiguring the net-
work switches via SNMP, to move servers from domain to
domain. This paper does not address these control mecha-
nisms further; they are described in [7].

GulfStream is an underlying technology of Oc´eano [1],
a prototype of a scalable, manageable infrastructure for a
large server farm. This infrastructure enables multi-domain
hosting on a collection of hardware resources intercon-
nected by switched LANs. Oc´eano is motivated by large-
scale web hosting environments, which increasingly require



Figure 1. Topology of the Océano prototype
server farm.

support for peak loads that are orders of magnitude larger
than the normal steady state [14]. Oc´eano provides a host-
ing environment which can rapidly adjust the resources
(bandwidth, servers, and storage) assigned to each hosted
web-site (domain) to a dynamically fluctuating workload.

While the hosting infrastructure uses shared servers and
storage, at any point in time each resource is in use only by
a single customer. Oc´eano reallocates servers in short time
(minutes) in response to changing workloads or failures.
These changes require networking reconfiguration, which
must be accomplished with minimal service interruption.
GulfStream is the underlying technology of Oc´eano that
provides topology discovery, failure detection and topology
reconfiguration functions.

Figure 1 shows the logical view of an Oc´eano server
farm. Requests flowing into the farm go through request
dispatchers, for example [8], which distribute them to the
appropriate servers within each of the domains. All the do-
mains within the farm are able to communicate with the
dispatchers, but are isolated from each other using private
virtual LANs [5] on a switched fast Ethernet network. All
domains are similarly attached to an administrative domain,
where management functions reside. Management nodes
are eligible to host the GulfStream view of the whole server
farm.

One of the goals of Oc´eano is to scale up to thousands
of servers. The ability to scale depends on the scalability of
the underlying components, including GulfStream. While
no evidence of scalability is explicitly provided (there are
only 55 nodes in the testbed), Section 4.2 describes the ap-
proaches used and argues that they enhance scalability. It
addresses the key scaling concerns: how well groups scale
both in terms of membership maintenance and heartbeating,
How well the central component (the root of reporting hi-
erarchy) for configuration verification and reconfiguration

scales, and how well the use of a configuration database
scales.

The next sections focus on the dynamic discovery of net-
work topology (Section 2) and the failure detection mech-
anisms (Section 3). Section 4 describes the current status
of the prototype implementation, presents some preliminary
performance results, and discusses scalability. Finally, Sec-
tion 5 provides a comparison with related work.

2. Topology Discovery

This section discusses the dynamic topology discovery
protocol used by GulfStream. In a static environment,
where network connections are rarely changed, the network
topology could be stored in a central database, giving Gulf-
Stream all the network information it needs to start moni-
toring and managing the network. This approach has three
drawbacks. First, there is high overhead in terms of de-
lay and network utilization when a new node is added or a
failed node is restarted. In these cases, the entire configu-
ration must be read by the node. Second, all nodes need to
have access to the topology database. The environment in
which GulfStream was initially designed to operate requires
domain isolation; most nodes should not have access to the
configuration of all other nodes. Finally, in large environ-
ments, it is possible that the configuration database itself is
incorrect unless automatically updated.

A second approach is to distribute the topology infor-
mation to all the servers and have GulfStream read it lo-
cally at each node. While this approach solves the ear-
lier problem of network overhead, insuring GulfStream dae-
mons are working on the same version of the configuration
is not practical in a large server farm. Further, problems
arise when attempting to coordinate topology updates from
merging network partitions and when off-line servers are re-
turning to the farm. In particular, in Oc´eano problems arise
when a node is moved from one domain to another.

GulfStream’s approach, described below, is for each
node to locally discover the network topology. A small sub-
set of the nodes, with appropriate permission, may compare
the discovered topology to a central database if desired.

For discussion purposes, the configuration of a sample
domain is shown in Figure 2. This example shows a lay-
ered domain with two layers, front end servers and back end
servers. Other layers may be added if the domain function-
ality requires it. For example, a third layer may be added to
create the topology of multiple server farms. The servers
within the domain are shown to have multiple network
adapters. The front ends are connected together with the
load balancers (network dispatchers) through the adapters
shown as triangles. They are also connected together and to
the back end servers through the adapters shown as squares.
All servers are also connected together and to the adminis-



Figure 2. A single Domain in the Server Farm

trative domain through the adapters shown as circles. Note
that the triangle adapters can directly communicate among
themselves, but may not directly communicate with the
circle adapters. The GulfStream topology discovery al-
gorithm, described below, groups each set of connected
adapters into Adapter Membership Groups (AMGs).

Note that GulfStream assumes that there are no paths be-
tween domains except for the administrative network. Fur-
ther, nodes do not act as routers between the various net-
works to which they are connected. Access to any configu-
ration database and the switch consoles is only through the
administrative network. Lastly, GulfStream is designed for
broadcast networks and makes use of hardware multicast
when available.

2.1. Local Discovery

GulfStream runs on all nodes within the server farm as
a user level daemon. This daemon discovers and monitors
all adapters on a node. To correctly function, the daemon
requires an operating system with properly initialized com-
munication functions. Locally, the daemon obtains a list of
configured adapters on its node from the operating system.
The goal of the daemon is to have each of its local adapters
join an AMG consisting of itself and all other adapters at-
tached to the same network segment. To do so, each adapter
begins by multicasting BEACON messages on a well-known
address and port, identifying itself to all adapters that re-
ceive them. The initial beaconing phase, a configuration
parameter, lasts for a few seconds, during which each dae-
mon collects information about remote adapters (which are
also beaconing). At the end of the beaconing phase, each
daemon examines the collected information. If no BEACON

messages were received by a particular adapter, it forms
its own (singleton) AMG and declares itself the leader.
In the event that other BEACON messages were received,

an adapter defers AMG formation and leadership to the
adapter with the highest IP address. The daemon that has
the adapter with the highest IP address undertakes a two
phase commit process to form the new AMG.

After the formation of an AMG, only the leader con-
tinues to multicast and listen for BEACON messages from
other adapters or AMGs. This allows new adapters to join
an already existing group, and for two or more AMGs that
were independently formed (for example, on separate net-
work partitions) to merge into one group. Merging AMGs
are led by the AMG leader with the highest IP address. All
changes to AMG membership such as joins, merges, and
deaths are initiated by the AMG leader and are done using
a two-phase commit protocol.

Setting the duration of the initial beaconing phase is an
optimization that is dependent on the expected size of the
AMGs. Setting it to zero leads to the immediate formation
of a singleton AMG for each adapter. These groups then be-
gin a merging process that would eventually end up in one
AMG containing all the adapters. Forming and merging all
of these AMGs is more expensive than collecting beacon
messages for a few seconds. In general, group formation is
rare: it occurs when the system is started1 The cost repre-
sents a tiny fraction of the total execution time.

Once an AMG is formed and committed, the group
members monitor each other using heartbeating (discussed
further in Section 3). When an adapter is discovered to have
failed, the AMG leader first attempts to verify the reported
failure. If the reported failure proves to be correct, the AMG
leader removes the failed adapter and proceeds to recommit
a new group excluding the failed adapter. If the reported
failure proves to be false, it is ignored. In the event that
the AMG leader is the one that fails, notification is sent to
the second ranked adapter (the two phase commit used for
membership changes is also used to propogate membership
information so that this order is known by all members) in
the AMG to verify the death and become the leader of the
new AMG.

2.2. Central Verification

The node that is currently acting as the AMG leader of
the administrative adapters (shown as the circle adapters
in Figure 2) is known asGulfStream Central. GulfStream
Central plays a special role. It takes on three roles not
held by the leaders of other AMGs. First, if available, it
may access a configuration database. GulfStream Central
can compare the discovered topology to that stored in the
database. Inconsistencies can be flagged and the affected

1Currently, the full group discovery protocol may execute if group
members become confused about their membership. For example, this
may currently occur when multiple adapters simultaneouly fail. We expect
such situtations to be eliminated as the system is refined to handle more
specific failure scenarios.



Figure 3. Hierarchy imposed on adapters by
GulfStream

adapters disabled, for security reasons, until conflicts are re-
solved. Note that the problem caused by a central database
that was identified earlier no longer applies. Here only Gulf-
Stream Central attempts to access the data instead of all
GulfStream daemons. In a sense, the problem has been ad-
dressed by inverting it. Instead of reading the configuration
from a database and then finding inconsistencies through
discovery, GulfStream discovers the configuration and then
identifies inconsistencies via the database. Second, Gulf-
Stream Central coordinates the dissemination of failure no-
tifications to other interested administrative nodes. In this
role, GulfStream Central is the authority on the status of all
network components: the status of a component can be in-
ferred from the status of all its network adapters. Because
GulfStream Central has information about all adapters, it is
the only node that can make such inferences. Lastly, Gulf-
Stream Central is responsible for coordinating dynamic re-
configurations of the network. This role is not explored in
this paper although some of its implications are discussed
in Section 3.

To support GulfStream Central’s unique roles, all mem-
bership changes of the AMGs are reported, by the AMG
leaders, to GulfStream Central. This is shown in Figure 3,
where each AMG leader reports the group membership in-
formation through its local administrative adapter to Gulf-
Stream Central. Note that membership information is sent
to GulfStream Central only when it changes. In the steady
state, no network resources are used for group membership
information. Further, group leaders typically need only re-
port changes in group membership, not the entire member-
ship. As currently implemented, GulfStream Central is cen-
tralized. It is resilient to failure in the sense that its failure
results in a new leader election among the administrative
adapters. This, in turn, results in a new instance of Gulf-
Stream Central. Issues of scale, as they relate to GulfStream

Central are discussed in Section 4. Note also that the net-
work assumptions, imply that network partitions will result
in at most a single GulfStream Central with access to the
database and the switch console(s). If nodes without such
access assume the role of GulfStream central in partitions,
they will be able to report failure information for that parti-
tion, but will not be able to change the network configura-
tion.

For the leader of the administrative AMG to assume its
role as GulfStream Central a node must know which of
its adapters is its administrative adapter; that is through
the adapter connected to the administrative VLAN. In the
prototype we have developed, this is done by convention
(adapter 0). However, we expect that only some nodes
will be permitted to host GulfStream Central because only
nodes with appropriate permissions will have access to the
database and to the switches. Such nodes may contain a
small configuration file granting permission to be among
the nodes that may be elected leader of the administrative
AMG and detailing the role of each adapter. BEACON mes-
sages sent over the administrative adapter by such nodes
can be augmented with a flag indicating its role. Recipi-
ents of BEACON messages will then know that the receiving
adapter must also be an administrative adapter.

3. Failure Detection

The goal of failure detection in GulfStream is to pro-
vide comprehensive monitoring of all of the communica-
tion components of the server farm, and to report when a
failure is detected. Ideally, failures should be detected as
soon as they occur, and the monitoring should impose neg-
ligible additional load on the servers and network segments.
Unfortunately, these two ideals tend to be in conflict with
each other: monitoring is generally done by sending explicit
messages (heartbeats) between servers, and fast detection of
failures requires that these messages be sent frequently.

This section will discuss the tradeoffs made by Gulf-
Stream to attain near-comprehensive monitoring and rea-
sonable detection times, while minimizing the impact on
the network segments. Additionally, a simple event correla-
tion function is described, through which GulfStream infers
the failure of servers, routers, and switch components.

Our basic approach to monitoring is to ensure that every
network adapter on every node is capable of both sending
and receiving messages. A simple approach is for the group
leader of each AMG to arbitrarily arrange the adapters of
the group into a logical ring, so that each adapter has a
“neighbor” on its “left” and a “neighbor” on its “right”. This
arrangement is broadcast to the members of the AMG, and
each adapter proceeds to send regular heartbeat messages
to the adapter on its (logical) right and monitor heartbeats
arriving from the adapter on its (logical) left. If� consecu-



Figure 4. Heartbeating within a domain

tive heartbeats fail to arrive, a message is sent to the group
leader indicating that the adapter on its left is suspected to
have failed. The frequency of heartbeats (� ) and the sensi-
tivity of the failure detector (the value of�) are adjusted to
trade off between network load, timeliness of detection, and
the probability of a false failure report.

This scheme has two main flaws, both leading to false re-
ports of failures. First, if a network adapter on a node fails
in such a way that it ceases to receive messages from the
network, this will be incorrectly “blamed” on the neighbor
to the left failing to send us heartbeats. This can be ame-
liorated to a certain extent by first performing a loopback
test on its own adapter before reporting the left neighbor
as having failed. Second, this scheme is overly sensitive to
heartbeats lost due to network congestion, due to its “one
strike and you’re out” behavior.

An improvement utilized by GulfStream is to have each
adapter send heartbeats to multiple other adapters, and re-
quire a consensus of these adapters before declaring the sub-
ject adapter as having failed. This reduces the incidence of
false failure reports, at the expense of additional heartbeats
flowing on the network segment. A straightforward exten-
sion of the above scheme is to run the heartbeats in both “di-
rections” around the logical ring of network adapters: each
adapter sends heartbeats to both of its immediate neighbors,
and monitors heartbeats arriving from each of these neigh-
bors (see Figure 4). Both neighbors of an adapter would
have to report it as “possibly failed” before it would be de-
clared by the group leader as dead. (To handle multiple
failures of “adjacent” adapters, there are instances where
the group leader must investigate suspected failures on its
own.)

The failures of servers, routers, and network switch com-
ponents are inferred from the detected failures of the indi-
vidual network adapters. This is a straightforward correla-
tion function: if all of the adapters connected to a server
are reported as failed, then we infer that the server itself

has failed; likewise, if all of the adapters that are wired into
a router, hub, or network switch are reported as failed, we
infer that the network equipment has failed. As soon as
one of these adapters recovers, we infer that the correlated
node/router/switch has recovered. At present, GulfStream
Central relies on a configuration database to identify how
nodes are connected to routers and switches. In the future,
GulfStream will independently identify these connections
by querying the routers and switches directly using SNMP.

3.1. Impact of Dynamic Domain Reconfigurations

Océano creates domains by isolating groups of nodes us-
ing virtual LANs (VLANs). VLANs have the property, en-
forced by the switches, that adapters configured in the same
VLAN can freely communicate with each other as if on the
same physical network. However, adapters on one VLAN
can not directly communicate with those in another VLAN
(a router is needed; none is provided). Oc´eano, to meet
its quality of service guarantees, dynamically changes the
membership of the domains by adding and removing nodes.
It does so by reconfiguring the switches to redefine VLAN
membership. In addition to changing the VLAN member-
ship, such nodes need to change their “personality”; they
may need a new operating system, applications and data.
Other components of Oc´eano [1] are responsible for these
changes.

When a node is logially moved from one domain to an-
other, the VLANs to which its adapters are connected may
change. Consider one such adapter. It is not aware that
the VLAN to which it belongs has changed. It still tries
to heartbeat with the adapters in its original AMG. How-
ever, as a result of the move, it can no longer send and
receive heartbeats with its original heartbeat partners. It
concludes that its heartbeating partners have failed and at-
tempts to inform the (original) group leader. However, it
can no longer reach the group leader. Finally, it concludes
that it should become the group leader and begins sending
BEACON messages. The group leader of the adapter’s new
AMG responds to these messages, resulting in the forma-
tion of a new group. Further, the old heartbeating partners
of the moved adapter are, likewise, no longer able to send
messages to it and they no longer receive messages from it.
They report the adapter as having failed. Their group leader
recommits the group without the moved member.

Neither the leader of the old AMG nor the leader of the
new AMG know that a node has moved. The old one sees
the failure of a member, the new one sees a new member.
The conclusion that a node has moved from one domain
to another can be inferred by a third party that has access
to both pieces of information: GulfStream Central. If the
change is expected (in its role of reconfiguring the domains,
GulfStream Central may have made the change), external



failure notifications are suppressed. If the move is not ex-
pected, it is treated as when mismatches are found between
the discovered configuration and the contents of a configu-
ration database.

4. Current Status and Future Work

A prototype of GulfStream has been implemented in
Java. It is assumed that the GulfStream daemon is started
on each machine when it boots, for example, via initab on
UNIX machines. When it starts, the GulfStream daemon
identifies all network adapters (this step is platform spe-
cific) and discovers their adapter membership groups. The
adapters then participate in a heartbeating ring defined by
the AMG leader. Group membership and failures are re-
ported through the group leaders to a central component,
GulfStream Central. GulfStream Central uses adapter fail-
ure notifications to infer the status of nodes. Failure notifi-
cations are published to interested parties. GulfStream Cen-
tral also implements requested network reconfigurations.
We have not yet implemented a complete comparison of the
discovered configuration with that stored in a configuration
database. This is being actively pursued. We are currently
testing GulfStream on a 55 node test bed consisting of a
combination of Linux (x86) and AIX (PowerPC) machines.

4.1. Performance

In principle, when networks are not heavily loaded, the
time for GulfStream Central to form a stable view of the full
network topology is:

�� � ������� � ��	


����
� � �
��

����
� �� (1)

where������� is the duration of the beaconing phase of
discovery,��	


����
�
is the amount of time a AMG leader

waits before declaring its membership stable,� 
��

����
�
is the

amount of time GSC waits before declaring its initial dis-
covery to be stable, and� is a factor that takes into account
scheduling delays on each processor. Of these parameters,
�������, ��	


����
�
, and�
��

����
�
are configurable. The graph

in Figure 5 shows the time for all groups (three; each node
in the testbed has three network adapters) to become sta-
ble. The graph shows the results of three experiments in
which������� was set to 5, 10, and 20 seconds. In all cases
��	


����
�
, and�
��

����
�
were 5, and 15 seconds, respectively.

We expect that� � �. Thus, for the experiments we expect
�� � ��� �� and�� seconds. The experiments showed that
for all group sizes, the time for all groups to become sta-
ble is constant as expected. However, they also show that
� is between 5 and 6 seconds. Investigation showed that
there were two main causes for this. First, nodes do not
begin to beacon on all adapters before beginning the pro-
cessing of other events such as received messages (these

0 10 20 30

number of adapters

0

5

10

15

20

25

30

35

40

45

50

55

60

tim
e 

to
 b

ec
om

e 
st

ab
le

 (
s)

5 s beacon time
10 s beacon time
20 s beacon time

Figure 5. Time for all groups to become sta-
ble; for ������� = 5, 10 and 20 seconds.

activities are implemented as separate threads). Because of
this processesing, the beaconing timer is not set for between
1 and 2 seconds after beaconing begins on the first adapter.
This delay can be eliminated by ensuring that the beacon-
ing phase is initiated on all adapters before other processing.
The second element contributing to� is the cost of the two
phase commits used to confirm group membership. This is
presently implemented using point to point messages. The
two phase commit can be partly optimized using multicast.
These changes have not been completed and their impact
not yet studied.

In some of the executions studied, not all of� was ac-
counted for by these two elements. We suspect that the re-
maining time was spent in thread switching. GulfStream
is in implemented in Java using multiple threads. Threads
are temporarily created to handle specific logical tasks. No
special effort was made to give GulfStream priority in ex-
ecution. Hence,� includes time spent swapped out (other
processes are executing) and in switching between threads.
It is necessary to verify this and consider its implications
when nodes are heavily loaded.

When the networks are heavily loaded, there is a pos-
sibility that a node will miss all of the BEACON messages
issued during a beacon phase. Assuming independent loses,
if �� is the probability of losing a message in the net-
work, then the probability of losing� BEACON messages is
	��


�. In this case, an initial topology will still be formed
in �� time; however, some nodes will be missing. We have



not yet further studied the distribution of missing nodes in
the initial topology as a function of network load.

4.2. Scalability

While the analysis and data presented above indicates
that discovery requires a constant time for different numbers
of nodes, it fails to support a claim of scalability beyond 55
nodes. Scalability is important because it translates into (1)
a larger customer base for the server farm, (2) a potentially
large number of servers for any particular customer to use
whenever load demands it, and (3) a lower percentage of
administrative machines in the farm as compared to servers
doing useful work. In the next few paragraphs, we describe
both the design approaches taken in GulfStream to enhance
the likelihood of its being scalable and we discuss several
alternative designs that could be used if necessary.

There are three scaling concerns with GulfStream.
First, how well AMGs scale both in terms of member-
ship maintenance and heartbeating. Second, how well
the central component for configuration verification and
reconfiguration scales. Lastly, how well the configuration
database scales. We address each in turn.

Adapter Membership Groups. Past experience [4, 10]
suggests that the key element limiting scalability of topol-
ogy discovery algorithms is the sizes of the messages ex-
changed and the key limiting factor for failure detection
scalability is the frequency of heartbeating messages.

The topology of a multi-domain server farm is such that
a whole farm is divided into a number of (network) iso-
lated domains. GulfStream takes advantage of this hierar-
chy by allowing each adapter to locally discover its neigh-
bors. Only one is selected to interact with a higher level. In
the current prototype, there are only two levels. However,
this hierarchy could be extended. Further, both the num-
ber of messages and content of messages is limited. Only
AMG leaders send messages about membership. They for-
ward only membership changes to GulfStream Central. Fi-
nally, the discovery phase is not open ended; there are fixed
time limits on it. Later, disjoint groups can be merged into
a larger group.

Currently, GulfStream identifies adapter failures by hav-
ing each adapter heartbeat its (logical) neighbors. While
such a scheme works well for a small number of adapters
in the ring, the rate of failures among even a few hundred
adapters in the ring may impose undue instability and
overhead on the group leader in maintaining the ring itself,
resulting in a degradation in performance. One interesting
alternative is to divide each (large) AMG into several small
subgroups, with all members within one subgroup tightly
heartbeating only each other. This effectively decreases the
size of AMGs. In this case, the group leader (of the whole

group) needs to poll the status of each subgroup, at a very
low frequency, to detect the rare event of a catastrophic
failure of all members in a subgroup. Such a scheme would
ensure that the performance of GulfStream is not degraded
in the event of more than one failure at a time in the system.
Moreover, the subgroups could be formed based on the
physical network topology, reducing the heartbeat load
on the network. A radically different approach to failure
detection is to eliminate heartbeating altogether and use
a randomized distributed pinging algorithm among group
members. While such a protocol sounds too simple and
trivial to result in better performance, initial calculations
show otherwise: protocols in this category impose a much
lower load on the network compared to heartbeating pro-
tocols that guarantee the similar detection time for failures
and probability of mistaken detection of a failure [9].

GulfStream Central. To ensure scalability of GulfStream
Central, its function can be distributed. While this would
ameliorate the problem of heavy infrastructure manage-
ment traffic directed to and from a single node, and the
resulting degradation in performance, it would make the
programming of GulfStream Central that much more
difficult. Moreover, it is currently not clear how much data
sharing a distributed version of GulfStream Central would
need. A lot of data sharing makes distribution less attractive
because of the cost of the data sharing. At present a wait
and see attitude is being pursued; a decentralized approach
will be used if the experimental overhead suggests that it is
necessary to achieve desired scaling.

Configuration Database.Scaling concerns for the config-
uration database can be addressed by two, not necessarily
disjoint, possibilities: 1) use a distributed database, and 2)
use a storage area network (SAN). Distributed databases
have the advantage of high availability, while using a SAN
to access the same provides high-speed connection to the
database. Besides the configuration data, a SAN compo-
nent could be used to store other data as well. As mentioned
in Section 2, access to the configuration database has been
limited to GulfStream Central. To a great extent this per-
mits a larger farm before the database becomes a scaling
bottleneck.

5. Related Work

Most of the work on managing large-scale distributed
networked systems couple message delivery semantics with
failure detection and recovery semantics. The most promi-
nent abstraction in this realm is the concept ofVirtual Syn-
chrony, as pioneered by the Isis project [2]. Here, all the
processes that belong to a particular group are guaranteed to
see all group multicast messages and membership changes



(due to the joining and leaving/failure of members) in the
same order, regardless of the unreliability of the underly-
ing network. This has been proved to be unachievable in
an asynchronous fault-prone network [3]. Most implemen-
tations of Virtual Synchrony (eg., [2, 6, 10]) get around
this impossibility by partitioning out the group into smaller
groups until Virtual Synchrony can be guaranteed within
each of these. Thus, in the worst case, after a string of fail-
ures, each of the original group members ends up in a group
of its own.

However, we wish to emphasize here that GulfStream
is aimed at solving a problem that is weaker than Virtual
Synchrony. More specifically, GulfStream does not need
to guarantee Virtual synchrony among the adapter groups:
these groups exist solely for the purpose of detecting fail-
ures and reporting them to central authority (GulfStream
Central).

Our ring protocol to detect failures is similar to that of
the unidirectional ring protocols used in the Totem sys-
tem [13] to guarantee consensus and reliable ordering of
messages at the LAN and WAN level, as well as the bi-
directional ring protocols for failure detection used in the
High Availability services in the IBM RS/6000 SP [12, 4].
In fact, the guarantees provided by the GulfStream system
are comparable to the “strong” guarantees described in [12],
without the overhead of reporting membership changes to
all participating processors (since only GulfStream Central
needs access to this information).

The primary difference between GulfStream and the
SP’s HATS service [4] is that the former manages the topol-
ogy of a cluster built from off-the-shelf components, while
the latter is restricted to a homogeneous environment con-
nected with a special purpose high speed interconnection
network.

HACMP[11] uses a form of heartbeating which scales
poorly. Further, HACMP, like GulfStream, integrates fea-
tures for network reconfiguration into the infrastructure.
Unlike GulfStream, this reconfiguration is largely manual.

Another service that seeks to manage clusters of work-
stations is the Microsoft Cluster Service [15]. The Mi-
crosoft Cluster Project, however, is set in a workstation-
type environment (as against the server farm-type of envi-
ronment we are dealing with), and does not scale beyond a
few tens of workstations [15].

6. Acknowledgements

Jun Fong, Tim Jones and Terry Steilan provided us with
an understanding of VLANs and their implementation on
the Cisco 6509 switch. The whole Oc´eano team provided
feedback and the context in which to build GulfStream. Je-
han Sanmugaraja, Jim Norris and Michael Frissora spent
many hours supporting the hardware and network in our test

farm.

References

[1] K. Appleby, S. Fakhouri, L. Fong, M. K. G. Goldszmidt,
S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochwerger.
Océano — sla based management of a computing utility. In
Proc. of the �

�� IFIP/IEEE Intl. Symp. on Integrated Net-
work Management (IM 2001), pages 855–868, may 2001.

[2] K. P. Birman. The process group approach to reliable dis-
tributed computing.Commun. ACM, 36(12):37–53,103, De-
cember 1993.

[3] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost.
On the impossibility of group membership. InProc. of the
��

�� Annual ACM Symp. on Principles of Distributed Com-
puting, pages 322–330, May 1996.

[4] Chiakpo and et al.RS/6000 SP High availability infrastruc-
ture. IBM, November 1996. Red Book.

[5] CISCO. CISCO 6509 Switch Documentation.
[6] D. Dolev and D. Malki. The transis approach to high avail-

ability cluster communication.Commun. ACM, 39(4):64–
70, April 1996.

[7] J. Fong and M. Kalantar. Isolated dynamic clusters for web
hosting. In preparation, 2001.

[8] G. Goldszmidt and G. Hunt. Scaling internet services by
dynamic allocation of connections. InProc. of the �

��

IFIP/IEEE Intl. Symp. on Integrated Network Management
(IM 1999), pages 171–184, 1999.

[9] I. Gupta, T. Chandra, and G. Goldszmidt. On scalable and
efficient failure detectors. InProc. of the ��

�� Annual ACM
Symp. on Principles of Distributed Computing, 2001.

[10] IBM. Group Services Programming Guide and Reference.
Order Number SA22-7355.

[11] IBM. HACMP for AIX 4.4 Concepts and Facilities. Order
Number SC23-4276-02.

[12] F. Jahanian, S. Fakhouri, and R. Rajkumar. Processor group
membership protocols: specification, design and implemen-
tation. InProc. 12th Symp. on Reliable Distributed Systems,
pages 2–11, October 1993.

[13] L. E. Moser, D. Agarwal, R. K. Budhia, and C. Lingley-
Papadopoulis. Totem: a fault-tolerant multicast group com-
munication system. Commun. ACM, 39(4):54–63, April
1996.

[14] M. Squillante, D. Yao, and L. Zhang. Web traffic modeling
and web server performance analysis. InProc. of the ��

��

IEEE Conf. on Decision and Control, December 1999.
[15] W. Vogels, D. Dimitriu, A. Agarwal, T. Chia, and K. Guo.

The design and architecture of the microsoft cluster ser-
vice — a practical approach to high-availability and scala-
bility. In Proc. of Symp. on Fault-tolerant Computing Sys-
tems (FTCS’98), June 1998.


