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Abstract. Multiprocessor systems are fast emerging as a powerful computing tool for real-time
applications. The reliability required of real-time systems leads to the need for fault-tolerance in
such systems. One way of achieving fault-tolerance is by Primary-Backup (PB) approach in which
two copies of a task are run on two different processors. In this paper, we compare and contrast
three basic PB approaches - (i) primary-backup exclusive, (ii) primary-backup concurrent, and
(iii) primary-backup overlapping - in the context of dynamic scheduling of object-based real-
time tasks. The objective of this paper is threefold: (a) to extend the PB-based fault-tolerant
approaches, hitherto applied only to conventional real-time tasks, to object-based real-time tasks,
(b) to compare these three approaches, in terms of schedulability and implementation complexity,
and (c) to propose a dynamic scheduling algorithm for object-based real-time tasks, which can
be used in conjunction with any of these PB-based fault-tolerant approaches. We have conducted
extensive simulation studies to evaluate the performance of these three approaches, for tasks with
resource and precedence constraints, for a variety of task and system parameters. Our simulation
studies reveal some interesting results about the relative performance of these approaches.

1. Introduction

Safety-critical real-time applications are required to be predictable and reliable. The
capability for high performance and reliability offered by multiprocessor systems
have made them emerge as a powerful computing tool for safety-critical real-time
applications like avionic control and nuclear plant control. In order to satisfy the
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predictability that a real-time system demands, scheduling assumes great impor-
tance in multiprocessor systems. The problem of scheduling real-time tasks on
multiprocessors has attracted considerable research in the past. The problem of
scheduling of real-time tasks in multiprocessor systems is to determine when and
on which processor a given task executes [15]. This can be done either statically
or dynamically. In static algorithms, the assignment of tasks to processors and the
time at which the tasks start execution are determined a priori. Static algorithms
are often used to schedule periodic tasks with hard deadlines. However, this ap-
proach is not applicable to aperiodic tasks whose characteristics are not known a
priori. Scheduling such tasks require a dynamic scheduling algorithm.

In dynamic scheduling, when a new set of tasks (which correspond to a plan) arrive
at the system, the scheduler dynamically determines the feasibility of scheduling
these new tasks without jeopardizing the guarantees that have been provided for
the previously scheduled tasks. A plan is typically a set of actions that has to
be either done fully or not at all. Each action could correspond to a task and
these tasks may have resource requirements, and possibly may have precedence
constraints. Thus, for predictable executions, schedulability analysis must be done
before a task’s execution is begun. For schedulability analysis, tasks’ worst case
computation times must be taken into account. A feasible schedule is generated if
the timing constraints, and resource and fault-tolerant requirements of all the tasks
in the new set can be satisfied, i.e., if the schedulability analysis is successful. If a
feasible schedule cannot be found, the new set of tasks (plan) is rejected and the
previous schedule remains intact. In case of a plan getting rejected, the application
might invoke an exception task, which must be run, depending on the nature of
the plan. This planning allows admission control and results in reservation-based
system. Tasks are dispatched according to this feasible schedule. Such a type of
scheduling approach is called dynamic planning based scheduling [15], and Spring
kernel [19] is an example for this. In this paper, we use dynamic planning based
scheduling approach for scheduling of tasks with hard deadlines.

The demand for more and more complex real-time applications, which require
high computational needs with timing constraints and fault-tolerant requirements,
have led to the choice of multiprocessor systems as a natural candidate for support-
ing such real-time applications, due to their potential for high performance and
reliability. Due to the critical nature of the tasks in a hard real-time system, it is
essential that every task admitted in the system completes its execution even in
the presence of failures. Therefore, fault-tolerance is an important issue in such
systems. In real-time multiprocessor systems, fault-tolerance can be provided by
scheduling multiple versions of tasks on different processors. Four different models
(techniques) have evolved for fault-tolerant scheduling of real-time tasks, namely,
(i) N-version programming [1], (ii) Primary Backup (PB) model [2, 12], (iii) Im-
precise Computational (IC) model [8], and (iv) (m,k)-firm deadline model®' [16].

In the N-version programming approach, N versions of a task are executed con-
currently and the results of these versions are voted on. If N is 2, single fault can



be detected; if it is 3, single fault can be located. In [9], real-time task scheduling
algorithms with fault detection and location capabilities have been proposed. In
the PB approach, two versions are executed on two different processors, and an
acceptance test is used to check the result. In the IC model, a task is divided into
mandatory and optional parts. The mandatory part must be completed before
the task’s deadline for acceptable quality of result. The optional part refines the
result. The characteristics of some real-time tasks can be better characterized by
(m, k)-firm deadlines in which m out of any k consecutive tasks must meet their
deadlines. The IC model and (m, k)-firm task model provide scheduling flexibility
by trading off result quality to meet task deadlines.

The different methods employed for error detection often make one technique
preferable to the other in certain applications [13]. The N-version programming
approach can be applied to any application, but its resource utilization and hence
the schedulability is very poor. The PB approach can be applied to most of the
applications where acceptance test exist for checking the correctness of the results.
IC and (m, k)-firm models are applicable in image processing and radar tracking
applications.

Applications such as automatic flight control and industrial process control require
dynamic scheduling with PB-based fault-tolerant requirements. In a flight control
system, controllers often activate tasks depending on what appears on their monitor.
If dynamic scheduling is employed in this system, when an airplane running on
autopilot experiences wind turbulence, and the additional task generated due to
disturbance cannot be executed while providing fault-tolerance, then the pilot has
the option of taking over manual control of some or all functions of the airplane’s
navigational system.

The fault-tolerant scheduling of object-based real-time tasks is a problem of grow-
ing interest and assumes significance due to the following reasons. Real-time sys-
tems software is inherently large and complex. The complexity in the development
of software for such systems can be managed by using object-based design and
methodology [21]. However, even though reusable software components contained
in the object-based implementation of an application have advantages such as in-
formation hiding and encapsulation, execution efficiency may have to be sacrificed
due to the large number of procedure calls and contention for accessing shared
software components. Further, making object-based applications reliable is a chal-
lenging problem as protocols have to be developed to maintain the consistency of
object data stores and method calls, in the presence of faults. The problem of fault-
tolerance in object-based real-time systems is currently a wide topic of research [7].

For conventional task models, three different PB-based fault-tolerant approaches
exist. The two most popular PB approaches are the Primary-Secondary Ezclusive
(PS-EXCL) and the CONCURrent approaches. PS-EXCL? is the most widely
used PB approach where the primary and backup copies of the tasks are excluded
in space (processor) and time [2, 12]. CONCUR proposes a concurrent execution
of the primary and backup copies of each task [6, 7]. This approach obviously



involves unnecessary use of resources if faults rarely occur. A third approach is
possible, namely, OVERLAP [7, 20]. This approach is a combination of PS-EXCL
and CONCUR and is flexible enough to exploit their advantages according to the
system parameters.

The objective of this paper is threefold: (i) to extend the PB-based fault-tolerant
approaches, hitherto applied only to conventional real-time tasks, to object-based
real-time tasks, (ii) to compare these three approaches, in terms of schedulability
and implementation complexity, and (iii) to propose a dynamic scheduling algo-
rithm for object-based real-time tasks, which can be used in conjunction with any
of these three approaches. This paper provides valuable inputs for the system
developers to choose an appropriate fault-tolerant approach depending on the ap-
plication requirements. To the best of our knowledge, there has been no prior work
which deals with dynamic scheduling and fault-tolerance for the object-based task
model.

The rest of the paper is organized as follows. Section 2 describes the object-based
task model and the application of the three PB-based fault-tolerant approaches
for this task model. In Section 3, we present the dynamic scheduling algorithm
to be used with any one of the fault-tolerant schemes. In Section 4, we discuss
the simulation results of these approaches. Finally, in Section 5, we make some
concluding remarks.

2. Object-based Task Model and PB-based Fault-tolerant Approaches

In this section, we show how to extend the three PB approaches to achieve fault-
tolerance for object-based real-time tasks. We use the object-based task model of
[21]. [7] discusses a fault-tolerant approach for a real-time object model called the
RTO.kE model, but does not focus on the scheduling aspect.

2.1.  Programming Model

The complexity in developing object-based real-time applications is conquered by
decomposing them into a set of programs. The programs are further divided into
classes, where each class corresponds to a reusable software component. The way in
which the application is divided into different programs and the way in which each
program is divided into classes, depends on the characteristics of the application.
It is assumed that the classes or reusable software components are implemented as
either abstract data types (ADTs) or abstract data objects (ADOs) [21, 22]. The
deterministic object-based task model is used, where the worst case execution time
of each method can be fixed at schedule time.

2.2.  The Object-based Task Model

The application is designed as a number of object-based tasks. These tasks may
arrive at different times at the scheduler. The structure of each task is shown
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Figure 1. Object-based task model

in Figure 1. Each task contains a set of objects which are instances of software
components spread over a set of programs. The software components are either
ADTs or ADOs. Different tasks may access the same method or methods of the
same object and hence contention to access the software components may occur.
Note that these access contentions may exist between tasks that have arrived at
different times also. One way to resolve such contention is to clone (replicate) the
software component on another processor so that more than one data item can be
processed at a time. However, stateful software components are those which have
a state associated with them making cloning a costly operation. It is assumed
that only stateless software components are cloned. Some software components
represent the resources of the system (like, say, access to a port) and are called
environment dependent software components. It is assumed that such software
components are also not cloned. As the number of stateful software components
and environment dependent software components increases, the schedulability of
the system decreases.

Each software component or object has a set of methods operating on data en-
capsulated in the object. At run-time, the objects communicate with each other
through method calls. If the caller and the callee methods are assigned to the
same processor, then the method call can be implemented by a local procedure call
(LPC). If they are on different processors, a remote procedure call is used. A remote
procedure call can be either an asynchronous remote procedure call (ARPC) or a
synchronous remote procedure call (SRPC). In an SRPC, the caller gets blocked
after making the call and remains blocked until the callee returns. In an ARPC,
the caller can continue execution after making an RPC until the point that it will
need the results from the callee.

The methods of the different software components may also require to use the
global resources. This is apart from those provided by the environment-dependent
software components. These are modeled as resource requirements of the methods.
These resource constraints may change during the execution of the method, but
only at known points. The points at which the external procedure calls are made
or return, or at which the resources required by the method change are known as



preemption points. We use the semi-preemption model wherein two consecutive
preemption points constitute a non-preemptible entity called the bead. Thus every
method is the combination of one or more such beads, each bead having some
resource requirements (or constraints). Each bead is composed of two parts: (i) a
computation code, followed by (ii) a set of output actions.

The output actions correspond to the method calls made at the end of the bead
or any other output actions (like writing to a log, freeing some global resources,
etc). Thus the bead becomes the smallest schedulable entity in the system. The
output actions which are part of a bead’s execution are actually global memory
writes done by the processor. In a distributed system, these output actions would
have been scheduled on the communication channel and would not be a part of the
bead execution time.

We observe that the object-based task model is analogous to the conventional
task model. The bead in the object-based model is analogous to the task of the
conventional task model. The precedence constraints among the beads are imposed
by the procedure calls and continuation of code of the same method, and the re-
source constraints determined by the contention for objects as well as the resource
requirements of individual beads. This means that any scheduling algorithm or
fault-tolerant approach which is applicable to the conventional task model must
be applicable to the object-based model also with a few changes. With this, we
are off to adapting the three fault-tolerant schemes - PS-EXCL, CONCUR, and
OVERLAP to the object-based task model.

2.3.  PB-based Fault-tolerance for Object-based Task Model

2.3.1.  Problem Statement Our fault-tolerant schemes for object-based tasks will
try to tolerate the following types of faults: (1) a fault in the software design itself,
leading to a fault in the execution of the bead, (2) a transient fault in a processor,
leading to a fault in the execution of the bead, (3) a run-time fault in the output
action of a bead, (4) a processor crash, and (5) object data store loss or method
crash caused by local memory crash in a processor.

The problem is to design a fault-tolerant scheme so that any application program
in the object-based task model that is scheduled on a multiprocessor system prone
to these faults will be able to run consistently, correctly, and timely (within the
deadline) under the assumption that not more than one fault occurs per bead.

2.3.2.  Adapting PB Approaches to Object-based Task Model The starting point
for our solution to this problem are the observations that the bead is the smallest
non-preemptible unit in this object-based task model, and that the consistency,
timeliness, and correctness of an object-based application depends on (i) all beads
being executed correctly according to the bead precedence graph, (ii) the correctness
of the output actions of these beads [7], and (iii) consistency of the object data store
at the beginning of every bead execution.



If these conditions are satisfied in the presence of the above listed faults, the cor-
rectness and hence fault tolerance of individual methods and object-based tasks will
be automatically guaranteed. To handle faults, we use the two-pronged approach
of fault detection and recovery from faults.

Fault Detection: The first three types of faults are the most difficult to detect.
They are detected in the following ways:

e Faults of types 1 and 2 are handled by including an acceptance test (AT) at the
end of the computation code and before the output actions of a bead.

e Faults of type 3 can be detected by the processor executing the output action.
If the write to the global memory (which is what the output action is) completes
successfully, the output action is correct, otherwise it is faulty.

e Faults of types 4 and 5 can be detected as a processor crash.

Fault Recovery: This is done by using the PB approach. Our fault-tolerant
strategy maintains 2 active versions of every fault-tolerant object (object data store
segment and code) or fault-tolerant method on the two different processors. These
two versions are called the primary and the secondary (or backup) versions. All
beads of a fault-tolerant method or object are replicated and scheduled on two
processors so that at run-time, if one of the beads fails, the other bead will complete
the operations and do the requisite output actions. The assumption made here for
this fault-tolerant scheme to be successful is that if the primary version of a fault-
tolerant bead fails, its secondary version completes successfully. Thus, the worst
case computation time of each fault-tolerant bead B now consists of

1. A global memory read of the finishing status of the earlier bead(s) in the prece-
dence graph : r(B)

2. A computation code : ¢(B)

3. AT, followed by a write of the AT’s result into a global variable AT Rrecvd(B),
present for every bead - the time for these two are included in ¢(B)

4. Set of output actions, followed by a write of the OSN’s result into a global
variable OSNrecvd(B), present for every bead : w(B)

The read (1) is needed due to the following reason. A version of a fault-tolerant
method or object can be inconsistent if the last executed bead belonging to that
version terminated prematurely because of a fault. So, at the beginning of every
bead, a read is done, from the global memory, of the results of the preceding bead(s)
in the precedence graph. Thus, if a fault occurs in a bead of one version of a fault-
tolerant object or method, when the nezt bead copy (either primary or backup)
of this inconsistent version (on this processor) starts executing, it will read off the
consistent state from the global memory and then move on to the computation code,
guaranteeing correct bead execution. So, the output actions of the primary copy
of any fault-tolerant bead also includes global memory writes giving information



of local method variables and object data store variables that have been modified
during the bead execution. These writes actually constitute a store checkpoint and
the read actually constitutes a compare checkpoint.

Here, we give an explanation of two global variables associated with every bead
and one global variable associated with every bead copy. The former two are re-
quired for the check-pointing and the latter for setting the version type of a bead
copy. For every bead B, we have two variables namely ATRrecvd(B) and OS-
Nrecvd(B), which are initialized to FALSE. These indicate the result (success/failure)
of the AT and the output actions respectively of the primary copy of B. Thus, if
the primary copy of B executes its AT successfully, it sets ATRrecvd(B) to TRUE.
The same holds for output actions and OSNrecvd(B). These are to intimate to the
backup copy of B the results of the AT and the output actions performed by bead
B’s primary copy. Thus a write to any of these global variables would be a store
checkpoint and a read from any of them is a compare checkpoint. In addition,
each copy of bead B has a variable ver flag which takes values PRIMARY and
BACKUP and stands for the version type of that particular copy. These are set by
the scheduler or the resource reclaiming algorithm depending on the fault-tolerant
technique. These variables are created and initialized by the scheduler and can be
destroyed when both the versions of a bead finish. wverflag is the global variable
that is used to 'mark’ the version type of a bead copy.

Have we satisfied the three conditions set down at the beginning of this section
for the timeliness and correctness (consistency) of the object-based task model ?
The read at the beginning of every bead satisfies the third condition. In the fol-
lowing three sections, we describe the application of the three PB approaches to
object-based tasks to satisfy the first two conditions. The fault-tolerant techniques
replicate beads in a similar way to the tasks’ replication. The two copies (pri-
mary and backup) of every bead ensure that every bead executes correctly and
the intended output actions of the beads are successful and hence help to maintain
fault-tolerance for the execution of the entire object-based tasks.

Note that because of faults of the types 1 and 3 which arise from the software de-
sign stage, all the method invocations need not be fault-tolerant. Only some methods
or objects, namely those that are likely to fail can be made fault-tolerant. We will
refer to such objects or methods as fault-tolerant objects or methods, respectively,
and their beads as fault-tolerant beads. Thus this scheme has sufficient flexibility.

2.3.8. PS-EXCL Fault-tolerant Scheme to Object-based Tasks In this approach,
for each fault-tolerant bead B, its backup copy is scheduled to start execution only
after its primary copy finishes execution. This time exclusion is maintained during
run-time also. Figure 2 shows the primary and backup copies as they are scheduled
onto the dispatch queues. Their execution at run-time is described below.

The primary copy of B works as follows. It does the computation, the AT and
writes the result of the AT into ATRrecvd(B). If the AT fails, the primary terminates
execution. If the AT is correct, the primary tries to do the output actions, writes



the correctness of the output actions into OSNrecvd(B) and terminates. Note that
OSNrecvd(B) indicates the completion of the computation and output actions of
bead B. So if the primary copy fails OSNrecvd(B) will remain false when the
secondary copy starts execution.

When the secondary copy of B starts execution, it first checks if the primary
has finished correctly by checking OSNrecvd(B). If OSNrecvd(B) is true, it exits
as the primary has finished successfully, otherwise it executes its version of the
computation code, does the AT and the output actions.

Thus this fault-tolerant scheme ensures that the computation code of every bead
is executed correctly and output actions of every bead are correct.

While the store checkpoint of the primary copy has been made into the ATR
and OSN writes (for computation and communication respectively), the compare
checkpoint at the backup copy’s beginning has been made a part of the read.

Figure 2 shows how the two versions of bead B will look like when they are
scheduled. Note that the total (worst case) execution time of each version (copy)
of a bead B under PS-EXCL is (r(B) + ¢(B) + w(B)).

ATR OSN
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P Y ATR OSN
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P1 CODE
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P2 CODE
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READ AT ‘
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TIME

Figure 2. PS-EXCL: Primary and secondary versions of a bead (as scheduled)

2.3.4. CONCURrent Fault-Tolerant Scheme to Object-based Tasks In this ap-
proach, the two versions of any given fault-tolerant bead B are scheduled (and run)
concurrently or simultaneously. Figure 3 shows the primary and backup copies as
they are scheduled onto the dispatch queues. Their execution at run-time is de-
scribed below. The two versions are marked as primary and secondary arbitrarily
at run-time by the resource reclaiming algorithm. The primary copy of B works
as follows. It does the computation and the AT, writes the result of the AT into
ATRrecvd(B). If the AT fails, the primary terminates execution. If the AT is cor-
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Figure 3. CONCUR: Primary and secondary versions of a bead (as scheduled)
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Figure 4. OVERLAP: Primary and secondary versions of a bead (as scheduled)

rect, the primary tries to do the output actions. It writes the correctness of the
output actions into OSNrecvd(B) and terminates.

The secondary copy of B works as follows. On starting execution, it first checks
if the primary copy of B has finished correctly. If yes, it exits, otherwise it executes
its version of the computation code, does the AT and then checks if the primary
has executed completely and correctly. If yes, it exits, otherwise it checks if the
primary has failed. If the primary has failed, it does the output actions else it waits
for a time-out period equal to the worst case output time. Note that at the end
of this time-out, as the secondary does not start before the primary, the primary
would certainly have finished its execution (both computation and output), either
successfully or after a fault. Then the secondary checks if the OSNrecvd(B) is still
FALSE (meaning a fault has occurred in the primary). If no, it exits otherwise, it
completes the output actions. Note that the total (worst case) execution time of



each version (copy) of a fault-tolerant bead B under CONCUR is (r(B) + ¢(B) +
2xw(B)). The worst case execution time of a bead includes twice the output time
as a fault can occur during the output actions. This did not arise in PS-EXCL
as the two copies are time excluded. The total (worst case) execution time for a
non-fault-tolerant bead B remains (r(B) + ¢(B) + w(B)).

Thus this fault-tolerant scheme also ensures that the computation code of every
bead is executed correctly and output actions of every bead are correct. The store
checkpoint of the primary copy and the compare checkpoint of the backup have
been made into the ATR and OSN writes and reads (for computation and commu-
nication) respectively. Figure 3 shows how the two versions of a bead will look like
when they are scheduled.

2.8.5. OVERLAP Fault-tolerant Scheme to Object-based Tasks In this approach,
the two versions of any given fault-tolerant bead B are scheduled (and run) in an
overlapping manner. Figure 4 shows the primary and backup copies as they are
scheduled onto the dispatch queues. Their execution at run-time is described below.
The scheduling of the two versions of a fault-tolerant bead is done run-time, the
bead copy starting execution first becomes the primary and the other copy the
secondary.

The compare checkpoint of the secondary is a part of the read at the beginning of
the bead copy. The ATR and OSN arrows shown become outputs for the primary
(store checkpoints) and reads for the backup copy (compare checkpoint). verflag
is set by the resource reclaiming algorithm. In this way, this fault-tolerant scheme
ensures that the computation code of every bead is executed correctly and output
actions of every bead are correct.

Figure 4 shows how the two versions of a bead will look like when they are
scheduled. Note that the total (worst case) execution time of each version (copy)
of a fault-tolerant bead B under OVERLAP is (r(B) + ¢(B) + 2% w(B)). The total
(worst case) execution time for a non-fault-tolerant bead B is (r(B) +¢(B)+w(B)).

2.4. Criteria for Comparison of the PB Approaches

A fault-tolerant algorithm is most viable when it ensures that for a task set with
resource and/or precedence constraints among the tasks, all of the above types of
faults are tolerated at run-time while the number of tasks accepted by the system
is increased. This can be primarily obtained by:

e Reducing the pre-run schedule length for a task set.

o Reducing the post-run schedule length for a task set: this can be obtained by
avoiding unnecessary execution of task copies in the absence of failures, and
also exploiting the early completion of tasks. This is called the issue of resource
reclaiming [10, 18].

These criteria ensure that more tasks will be scheduled even if they have tight
deadlines. Also, newly arriving tasks will be more likely to be accepted if already



scheduled tasks finish quickly. Therefore these are the two criteria in our comparison
of the PB approaches. The advantages and disadvantages, we present, for the PB
approaches will be based on these criteria. These criteria clearly reflect in the
results of the simulation study in Section 4.

3. Dynamic Scheduling Algorithm for Object-based Real-time Tasks

In this section, we first describe a dynamic scheduling algorithm for the object-
based task model. This can be used in conjunction with any of the three PB
approaches to fault-tolerance. This is followed by an example of the application of
this scheduling algorithm along with the PB approaches.

3.1.  System Model

We assume a multiprocessor system with m processors and a shared global memory.
Each processor has a local memory (for storing the codes and other local variables
associated with the execution of the tasks) and a set of associated resources, which
can be accessed only by itself. The shared global memory has a set of (logical)
resources which are accessible by all the processors in either exclusive or shared
mode.

The access time of the shared memory for any processor needs to be bounded to
guarantee predictability in the system. This is assumed to be provided say, through
an interleaved access scheme to the global memory for each processor, similar to
the TDMA scheme used to guarantee bounded message delivery time in distributed
systems. Hence, the global memory access clashes among the processors are taken
into account in scheduling by just including the maximum access time for each
shared memory read/write into the worst case computation time of the tasks.

Dynamic scheduling algorithms can be either centralized or distributed. In our
simulation, we assume a centralized scheduling scheme. In a centralized scheme,
all tasks arrive at a central processor called the scheduler, from where they are
distributed to the other processors of the system. The communication between the
scheduler and the processors is through dispatch queues. Each processor has its own
dispatch queue. This organization, shown in Figure 5, ensures that the processors
will always find some tasks in the dispatch queues when they finish execution of
their current tasks. The scheduler runs in parallel with the processors, scheduling
the newly arriving tasks and updating the dispatch queues.The scheduler has to
ensure that the dispatch queues are always filled to their minimum capacity (if
there are tasks left with it) for the parallel operation. This minimum capacity
depends on the worst case time required by the scheduler to reschedule its tasks
upon the arrival of a new task. If a permanent processor failure is detected, the
scheduler excludes the failed processor from the scheduling algorithm i.e., no further
tasks are scheduled on that processor. The scheduler is susceptible to becoming
a bottleneck or even single-point failure. This can be prevented by making the
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Figure 5. System model

scheduler consist of more than one processor and having the scheduling algorithm
run across these processors to achieve both faster execution and fault-tolerance.

Resource reclaiming [10, 18] is the strategy used to reclaim resources when: (i) a
task completes earlier than its worst-case computation time or (ii) the backup copy
of a task does not get executed as the primary has already completed execution
successfully. The resource reclaiming algorithm, invoked at the completion of every
task on a processor, seeks to schedule the next task in the dispatch queue (DQ)
ahead of its scheduled start time. We use the RV algorithm [10] for resource re-
claiming. Here, the scheduler builds a restriction vector (RV) for each task T that
it schedules. The RV is an m-component vector (m being the number of proces-
sors), where each entry RV;(T) is the last task scheduled prior to T on processor P;
which has a resource conflict or precedence relation with 7. When a task finishes
execution, it runs the RV algorithm. It checks the first task in the DQ’s of all idle
processors and starts that task immediately if all the tasks in its RV have finished
execution.

3.2.  Dynamnic Scheduling Algorithm

A fault-tolerant mechanism for object-based tasks will not be complete without the
development of an effective dynamic scheduling algorithm for object-based tasks
which can be used in conjunction with the fault tolerant mechanism. Most al-
gorithms in the real-time scheduling area of literature today [14] solve the dy-



namic/static scheduling problem for the conventional task model. On the other
hand, object-based tasks involve a number of methods belonging to different ob-
jects and method calls between methods. This leads to a different (object-based)
task model. As such, an immediate need to bridge this gap arises: a need to develop
algorithms for scheduling object-based tasks on multiprocessor systems.

Most of the existing literature in object-based scheduling tries to overcome the
difficulties in using reusable software components like execution overhead due to
large number of procedure calls and contention for shared software components
[15, 21-24] except [26], where software components are assigned and scheduled on
the processors based on inter-task parallelism and processor utilization computed
using heuristic techniques. An algorithm to assign reusable software components
which exploits parallelism with minimum number of processors by the introduction
of ARPCs is described in [25]. A model for pre-run-time scheduling of object-based
distributed real-time systems that are composed of ADTs and ADOs is proposed
in [21, 23]. In addition, they present an incremental scheduling approach which
constructs an initial schedule and modifies it by enhancing concurrency through
ARPC and cloning, till a feasible schedule is obtained. The work in [24] presents
compiler techniques for identifying concurrency among software components via
ARPCs and cloning in the context of an incremental scheduling algorithm. [22]
considers static scheduling of periodic tasks having precedence constraints among
them, compared to the multiple independent tasks considered in [24].

In this section of the paper, we propose an algorithm for the dynamic scheduling
of object-based real-time tasks on multiprocessors. In our algorithm, we use ARPC
and cloning to achieve better schedulability. The algorithm is based on Spring
scheduling algorithm and is shown in Figure 6. The complexity of steps 2 to 6 is
O(n) each where n is the total number of bead copies to be scheduled. Step 7 is
O(Kn). As K is usually a small number [14], this is O(n). Step 8 is also O(n).
Thus the entire scheduling algorithm has a complexity of O(n).

The scheduling algorithm has four steps: (i) setting the precedence constraints
among beads, (ii) clustering the beads into entities, (iii) allocation step, and (iv)
scheduling step.

3.2.1.  Precedence Constraints among the Beads while Scheduling Initially, we
are given the original set of precedence constraints among the beads (without con-
sidering their fault-tolerant versions) as a set P’. P’ corresponds to the precedence
constraints among the beads as per the method calls and the method bead orders
in each method. It consists of pairs of the form (A > B), where A and B are beads
belonging to the tasks and >’ means ’should be executed before’. We shall call
the precedence relation graph among the beads defined by P’ as the Comprehen-
sive Entity Invocation Graph or the Initial Bead Precedence Graph. We construct a
precedence relation set P from P’ by taking into account the precedence and fault-
tolerance constraints among the beads. This is done as follows (A and A’ refer to
the two fault-tolerant copies of bead A; A is the primary and A’ the backup).



P=¢
For each (A > B) in P/,
P=PU{(A>B)}
if(A is fault-tolerant and B is not fault-tolerant)
P=PU{(4A" > B)}
else if(A is not fault-tolerant and B is fault-tolerant)
P=PU{(A>B)}
else if(A and B are both fault-tolerant)
P=PU{(A>B"),(A">B),(A" > B")}

If( PS-EXCL scheme is being used )
For each fault-tolerant bead B in P’
P=PU{(B > B')}

We shall call the graph among the beads defined by P as the Bead Precedence
Graph. Our scheduling algorithm uses this graph.

3.2.2.  Allocation Step - Clustering the Beads into Entities Here we cluster the
beads into entities. An entity is a bunch of beads all of which have to be allocated
to one processor only. Without cloning of methods, the entities will just be the
software components themselves. However, with cloning, we create an entity for
each

1. Fault-tolerant copy of each stateful or environment dependent ADT (as it can-
not be cloned),

2. Each fault-tolerant copy of each method invocation exported by each stateless
ADT.

For example, consider an ADT O; having two methods M;; (invoked once) and
Mo (invoked twice). Let us first consider the case where neither the ADT nor any
of its methods is fault-tolerant. If O; is a stateful or environment dependent ADT,
there will be only one entity for all the beads of O;, that is, all invocations of M;
and M;s-thus all beads of all invocations of these methods will be scheduled on
the processor to which this entity is allocated. However, if O; is not stateful or
environment-dependent, three entities will be created - two for each invocation of
M;> and one for the invocation of M;;. Now, if any of these methods or the ADT is
fault-tolerant, there will be similar duplicate entities for the fault-tolerant versions.
For example, in the second case, if M;s is fault-tolerant, we will have to create two
pairs of entities, each pair corresponding to a fault-tolerant invocation of M;s.

3.2.3.  Declustering Heuristic and Allocation Step Let M;; and M, be two com-
municating methods. M;; denotes the j* method of entity E; and M, denotes
the ¢*" method of entity E,. Let M;; call M,,, NMC(M;;, Mp,) times. The net
advantage of declustering the two methods M;;, My, is:

NADVj pg = Ellzijc(M“’M”)[ptk + E(Mp,) — Max(ptg,cry + csi, + E(Mpy,)]

(1)



where pty = ), Byj is the sum of the execution times of the beads of M;; that can
be executed in parallel with the &** call to Myq. cs and cry denote the amount
of data communicated from M;; to k'* call of M,, and back during the returning
of the method call (each of ¢sy and cry stands for the sum of the worst case read
+ write times for the communication(s) in question). The first term in NADV
(equation 2) denotes the time needed to execute M;; and M, if they are assigned

to the same processor. The second term denotes the time they may take if they
are executed on different processors. The difference of the two gives the gain/loss
in declustering the two methods. For two communicating entities E; and E,, the

net gain/loss in declustering them is

CNADV(E;, Ep) = CNADV (E,, E;) = Z Z[NADVUM x NM(M;i;)] +Y (2)
J q

where Y = Eq Zj [NADVyy, ij X NM(Mpnr)]

The higher the value of CNADV (E;, E,), the better it is to decluster the two
entities £; and E,. Note that the values of CNADYV for all pairs of entities can
be found in time O(number of beads in the bead precedence graph) by making a
depth/breadth-first search of the graph.

When the first bead belonging to an entity E; comes up for scheduling, the follow-
ing heuristic p[p] is calculated for the entity with respect to all processors p = 1..m
(m being the total number of processors).

G ProcLoad|[p]

plp] = H maz i (ProcLoad[q])

(3)

where G = EAII entities E; on proc. p CNADV(E;, Ej) and

H = mazx™

q=l(EAll entities Ej on proc. q with which it E; has communication CNADV(E;, Ej))

The second term in the above heuristic takes care of equal load distribution on
all processors and the first term seeks to minimize communication among beads
executing on different processors. This heuristic is used as follows. The entity E;
is allocated to processor p with the minimum value of p[p]. Thereafter all beads
belonging to that entity are scheduled on that processor only.

3.2.4. Scheduling Step The Spring scheduling strategy is used. At every invo-
cation of the scheduling algorithm, all the beads to be scheduled are ordered in
non-decreasing order of their deadlines in a Bead Queue (BQ)) At every step of the
scheduling algorithm, the myopic algorithm heuristic H is applied to schedule the
beads based on their precedence and resource constraints. However, the calculation
of EST of a bead B will involve an additional term apart from the bead resource
and precedence constraints. If B is the first bead of a method invocation, EST (B)
will also involve the earliest time that the entity to which that bead belongs will
become free. This is modelled in a similar way as the resource constraints. Once a
bead has been chosen from the BQ according to the H heuristic, it is first checked
whether the entity to which the bead belongs has been allocated to any processor.



If not, that entity is allocated to a processor using the heuristic p as explained in
the earlier section. Then the bead is scheduled as early as possible on the processor
to which this entity has been allocated. RV’s are also constructed for each of the
scheduled beads. Note that the amortized cost of calculating p[p] for all beads is
O(Number of beads in bead precedence graph,).

4. Simulation Studies

To evaluate the performance of the three algorithms for object-based tasks we con-
ducted extensive simulation studies. The performance metric used is the guarantee
ratio defined as the ratio of number of tasks found schedulable by an algorithm
to the number of tasks considered for scheduling. The parameters used in the
simulation are given in Table 1. Each point in the performance curves (Figure 7)
is the average of several simulation runs each with 100 object-based tasks with a
95% confidence level. The values indicated for the parameters are used in all the
following graphs unless otherwise stated.

The object-based tasks were generated as follows from the above parameters.
Each object-based task generated consists of a method which calls other meth-
ods belonging to other objects and so on. MToMRatio is used to determine the
sharing of methods. The actual number of methods in the system is chosen as
MToM Ratiox Total number of method invocations in the task graph of task sets
arriving ot a time. SofRatio is used to determine the sharing of software compo-
nents by chosing the number of software components to be Sof Ratiox Total number
of method invocations in the task graph of MaxTask task sets arriving at a time. For
a given number of methods in the object-based task graph, the more the value of
Sof Ratio the more is the number of software components (objects) and the lesser
is the contention among the methods for accessing the objects.

Each bead is chosen to have a computation time uniformly distributed between
MinBeadComp Time and MaxBeadCompTime. The read time of a bead is the prod-
uct of CCRatio, RdRatio and a number chosen uniformly between MinBeadComp-
Time and MaxBeadComp Time, The write time of a bead is the product of a uniform
number between MinBeadCompTime and MaxBeadComp Time, CCRatio and Wr-
Ratio. In addition, the cost due to reclaiming is added as (RecCost x NumProcs)
to the total bead computation time. The resource requirements of a bead are
determined by UseP and ShareP. The probability of a bead failing at run-time
is determined by FaultProb. The actual execution times (both computation and
output) of a bead at run-time are determined using a multiplicative factor chosen
uniformly between min_aw_ratio and maz_aw_ratio.

EnwvProb is the probability of an object being environment dependent or stateful
and hence not clonable. The deadlines of the tasks are chosen using a laxity lying
uniformly between min_lazity and maz_lazity. An average of MazTask tasks arrive



1 On receiving a new set of tasks, compute the
cutof fline = currenttime + schedulingtime.
2 Include the beads which start after the cutof fline among the
beads to be scheduled.
3 Make a depth-first search of the Initial Bead Precedence Graph, turning
it into the Bead Precedence Graph by making modifications to it as
described in section 3.2.1). Also, for each bead,
calculate its worst case execution time by calculating the worst case
communication times according to
(a) the amount of output required at the beginning and the end of every bead,
(b) whether they are fault-tolerant or not and depending on the fault-
tolerant algorithm being used,
and adding it to the bead’s worst case computation time.
4 Make a depth-first search of the Bead Precedence Graph. For each bead,
(a) Create a new entity corresponding to that bead ( if not already created )
(b) If the bead has a communication with one or more beads (read/write),
update CNADYV (i, j), where E; is the entity this bead belongs to
and Ej is the entity the bead which communicates with this bead
belongs to.
5 Make a bottom-up pass through the Bead Precedence Graph to obtain the
individual bead deadlines. This step can also be combined with the next step.
6 Order the beads to be scheduled in the Bead Queue(BQ) in
non-decreasing order of their deadlines.
7 Repeat until all beads are scheduled or no schedule is possible
(a) Calculate the H heuristic for the first K beads in the BQ.
(b) Select the bead with the least H-value.
(c) If the entity to which that bead belongs has not been allocated
to a processor
Find the allocation heuristic p of the bead’s entity for each processor
and allocate the entity to the processor with which it has the
least heuristic value.
(d) Schedule the bead as early as possible on the processor to which
its entity has been allocated.
8 If (all beads have been scheduled before their deadlines) then
at the cutoff time, put the newly scheduled beads onto the dispatch
queues of the processors. Construct the RV’s for all scheduled beads
else
At the cutoff time, put back the old scheduled beads into the
dispatch queues.

Figure 6. Dynamic scheduling algorithm for object-based real-time tasks



at the scheduler at an average frequency of TaskFreq with exponential distribution.

NumProcs is the number of processors. K is the window lookahead in the myopic
scheduling algorithm. distance is the distance used in the PS-EXCL algorithm.
ReplProb is the probability of a method (or object) being chosen to be replicated.
This might be offset by the EnvProb.

4.1. Effect of Number of Processors

Figure 7a shows the effect of varying NumProcs in the system from 2 to 16. All
the three algorithms show an increasing guarantee ratio, which saturates and then
begins to decline slowly. Two interseting aspects are worth noting in this graph.
First, at low NumProcs, PS-EXCL performs better than CONCUR, in fact, as well
as OVERLAP. This is because the chances of (near) simulataneous scheduling of
both the copies is very less. Second, at high NumProcs, CONCUR and OVERLAP
show the same performance as a lot of processor space is available and hence most
of the time in OVERLAP scheme, both copies of a given bead get scheduled and
run simulataneosuly. In short, OVERLAP reduces to CONCUR.

4.2.  Effect of Fault Probability

Figure 7b shows the effect of varying FaultProb in the system from 0.0 to 1.0. CON-
CUR’s guarantee ratio does not vary with FaultProb as always both the copies of
every bead are executed. PS-EXCL’s guaranatee ratio falls with increasing Fault-
Prob as lesser procesor time can be reclaimed and most of the backup copies execute
as the primary copies fail.

4.3.  Effect of Communication to Computation Ratio

Figure 7c shows the effect of varying CCRatio in the system from 0.2 to 1.0. As the
CCRuatio rises, the amount of communication (output) load in the system rises and
all the three algorithms show a decreasing guarantee ratio. At high CCRatio values,
the load in PS-EXCL becomes lesser compared to OVERLAP and CONCUR as
the worst case execution time of a fault tolerant bead copy is (r(B) + ¢(B) + w(B))
in PS-EXCL and (r(B) + ¢(B) + 2 x w(B)) in CONCUR and OVERLAP. Hence,
PS-EXCL begins to overtake CONCUR in performance at a C'C Ratio = 0.8.

4.4. Effect of Environment/Stateful Probability

Figure 7d shows the effect of varying EnvProb in the system from 0.0 to 1.0. The
readings shown are for values ReplProb = 0.0 and TaskFreq = 300. The aim
is to see the performance of the dynamic scheduling algorithm as more software
components become stateful or environment dependent. As all the three algorithms
reduce to just the dynamic scheduling algorithm (without any fault-tolerance) and



show the same performance, only one graph is shown. As expected, guarantee ratio
falls with increasing statefulness and dependence of software components on the
environment because cloning becomes lesser. This graph thus shows that cloning
leads to better schedulability.

Table 1. Simulation parameters

Parameter Explanation Values
used
MaxCompTime Bead’s maximum worst case computation time 50
MinCompTime Bead’s minimum worst case computation time 30
CCRatio Communication to computation ratio 0.2
WrRatio Write ratio 1.0
RdRatio Read ratio 1.0
UseP Probability of a bead using a given resource 0.5
ShareP Probability of a bead using a given resource in SHARED mode 0.5
RecCost Cost of RV algorithm per processor 1.0
min_laxity Minimum laxity 1.3
maxlaxity Maximum laxity 1.5
FaultProb Probability of a bead encountering a fault at run-time 0.3
min_aw_ratio Minimum aw_ratio 0.6
max_aw_ratio Maximum aw_ratio 0.65
EnvProb Prob. of an object being environment dependent or stateful 0.5
MToMRatio Determines the sharing of methods 0.7
SofRatio Determines the sharing software components 0.5
ArpcProb Probability of a method call being an ARPC 0.5
NumProcs Number of processors 6
MaxTask Average number of tasks arriving at the scheduler at one time 2
TaskFreq Average period of a task arrival at scheduler 225
K Window size in the myopic algorithm 4
distance Distance factor used in PS-EXCL 4
ReplProb Prob. of an entity chosen to be replicated (fault-tolerant) 0.5
NumResources Number of global resources in the system 5
NumResQty Number of instances of each resource 3

4.5.  Effect of Software Ratio

Figure 7e shows the effect of varying SofRatio in the system from 0.0 to 1.0. The
readings shown are for values ReplProb = 0.0 and T'askFreq = 300. The aim is to
see the performance of the dynamic scheduling algorithm with varying contention
for software components. Note that all the three algorithms show the same perfor-
mance as they reduce to the dynamic scheduling algorithm. As expected, guarantee
ratio rises with increasing SofRatio as the number of software components rises and
thus the contention for accesing them decreases among the different methods, thus
increasing schedulability.



4.6.  Effect of ARPC Parallelism

Figure 7f shows the effect of varying ArpcProb in the system from 0.0 to 1.0. Per-
formance of all the algorithms improves with improving ARPC parallelism.

4.7.  Effect of Read-Write Costs

Figure 7g shows the effect of varying RdRatio in the system from 0.2 to 1.8. WrRatio
is always tasken as (2 — RdRatio) to keep the task-load constant. The aim of this
experiment of to see the variation in the performance of the three algorithms when
they are used in multiprocessor systems which vary in the way a global write or
read is done. For example, a global write by a processor may involve a write to the
memory of the processor to which the write is being done to and the global read
will thus be just a read from the processor’s local memory. This would correspond
to high values of WrRatio and low values of RdRatio as a write would be costlier
than a read. On the other hand, a global write may be done by a processor on to
its own memory and a global read from the memory of the processor from which
the read is being done. This would correspond to low values of WrRatio and high
values of RdRatio. With increasing RdRatio, PS-EXCL performance does not vary
as the communication time of a bead (r(B) + w(B)) remains the same. However,
CONCUR and OVERLAP improve their guarantee ratios due to decreasing bead
communication time (r(B) + 2 X w(B) per bead) and thus decreasing system load.

4.8. Effect of Replication Probability

Figure 7h shows the effect of varying ReplProb in the system from 0.0 to 1.0.
As ReplProb rises, all three algorithms show decreasing guarantee ratio due to
increasing load (as the number of fault-tolerant beads and thus the number of bead
copies being rises). Note that all three algorithms show the same performance
at ReplProb = 0.0 as they reduce to the simple dynamic scheduling algorithm.
As ReplProb rises, OVERLAP starts performing better than CONCUR as it has
greater flexibility in scheduling and running beads.

4.9.  Conclusions from the Simulation Studies

The order of performance of the three PB approaches for the object-based model is
OVERLAP > CONCUR > PS-EXCL. This is because the object-based task model
is similar to the conventional task model discussed earlier but for tasks (here beads)
having precedence constraints due to method calls and individual bead orders in
methods.

With increasing communication (CC Ratio), PS-EXCL tends to perform better
than CONCUR as the amount of output in CONCUR and OVERLAP is twice that
in PS-EXCL. More faults occuring in the system (FaultProb) lead to a drop in the
performance of PS-EXCL while having no effect on CONCUR or OVERLAP. This



is because PS-EXCL benefits mainly from the resource time reclaimed from the
secondary copies of beads not being executed; this decreases with increasing faults
in the system.

The dynamic scheduling algorithm is able to utilize the advantage of increas-
ing ARPC parallelism by cloning (Figure 7f). Increasing dependence of software
components on the environment (EnvProb) reduce their clonability and thus the
schedulability in the system. Figure 7e shows that the dynamic scheduling algo-
rithm performs better if there is a lesser contention for software components among
methods (increasing Sof Ratio).

90 T T T T T 100 T T
e QVERLAPs——_ OVERLAP ——
80 r o PS-EXCL - | 95 ¢ PS-EXCL -+
e CONCUR o o
o /) e —— 0
T e B T g5 |
i 1 N
p 60 [ /: p e
2 2 80 r e
c c
g 50 g PR
40 + 70l
30 ¢ 1 65 |
20 : : : : : : 60 : : : :
2 4 6 8 10 12 14 16 0 0.2 0.4 0.6
Number of Processors Bead Fault Probability
Figure 7a. Effect of NumProcs Figure 7b. Effect of FaultProb
90 T T T 90 T T
OVERLAP —~— OVERLAP ——
80 | PS-EXCL - | 80 t |
CONCUR o~
° 05 ° 70 ¢
p 60 r p 60 r
0] 0]
< <
g 50 g 50 ¢
g g
3 3
O 4t O 4¢
30 ¢ 1 30 ¢
20 : : : : : : : 20 : : : :
02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
CC Ratio Environment Probability

Figure 7c. Effect of CCRatio Figure 7d. Effect of EnvProb



Figure 7.

90

80

70

60

Guarantee Ratio

30 -

20

Simulation results

50

40

OVERLAP ——

]

0 0.2 0.4 0.6 0.8 1

Software Ratio

Figure 7e. Effect of SofRatio

90

80’

Guarantee Ratio

30

20

oy I —

60

50

40

02 04 06 08 1 12 14 16 18

Read-Write Ratio

Figure 7g. Effect of RdRatio

5. Conclusions

In this paper, we have extended three different PB-based fault-tolerant approaches,
namely, PS-EXCL, CONCUR, and OVERLAP, to object-based task model. We
also proposed an algorithm for fault-tolerant dynamic scheduling of object-based
real-time tasks. The proposed dynamic scheduling algorithm utilizes the parallelism
due to cloning and ARPC. The implementation of CONCUR and OVERLAP is
harder than PS-EXCL, as each set of output actions (of a bead) have to be scheduled
twice in the former two approaches and only once in the latter. We also compared
the performance of three PB-based fault-tolerant approaches for object based task
models in the context of dynamic scheduling. From the experiments, the following

observations are made:

Guarantee Ratio

Guarantee Ratio

90

“PSEXCL -~ |
— CONC

70 [

80 |

60
50 |
a0}

30 -

20 : : : :
0 0.2 0.4 0.6 0.8 1
Arpc Probability

Figure 7f. Effect of ArpcProb

100 15 | ‘

. OVERLAP —~—

0 . PS-EXCL —— |

- __ CONCUR o

80 | \\\\\ o B 7

" .

60 | _u‘»uu+~~»u~.u‘ 1

507

40

307

2 ‘ ‘
0 02 .

0.4 0.6
Replication Probability
Figure 7h. Effect of ReplProb



In general, the PS-EXCL approach works better than the CONCUR, approach
for precedence-free tasks, but the order slowly reverses as precedence constraints
among the tasks (beads) increase. The OVERLAP approach scores over both
PS-EXCL and CONCUR in both conventional and object-based task models.

When the number of resource instances is low or resource constraints among
beads is high, CONCUR’s performance deteriorates.

As the laxity of tasks (beads) increases, the performance difference between
PS-EXCL and CONCUR, widens.

As the fault probability rises, the performance of PS-EXCL falls more steeply
than that of OVERLAP. The performance of CONCUR remains the same irre-
spective of the fault probability.

Currently, we are working on integrating different fault-tolerant techniques (TMR,
PB, and IC) with adaptive [3] selection of these in the object-based task model.

Notes

1. The IC and (m, k)-firm models were originally proposed for overload handling.

2. The general case of this is known as Recovery Blocks [17] where each task has many versions.
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