
Fault�tolerant Dynamic Scheduling of

Object�Based Tasks in Multiprocessor Real�time

Systems

INDRANIL GUPTA�

DEPT� OF COMPUTER SCIENCE

CORNELL UNIVERSITY� USA

G� MANIMARAN
�

DEPT� OF ELECTRICAL AND COMPUTER ENGINEERING

IOWA STATE UNIVERSITY� AMES� IA ������ USA

C� SIVA RAM MURTHY

DEPT� OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

MADRAS ��� ���� INDIA

gupta�cs�cornell�edu� gmani�iastate�edu� murthy�iitm�ernet�in

Abstract� Multiprocessor systems are fast emerging as a powerful computing tool for real�time
applications� The reliability required of real�time systems leads to the need for fault�tolerance in
such systems� One way of achieving fault�tolerance is by Primary�Backup �PB� approach in which
two copies of a task are run on two di�erent processors� In this paper� we compare and contrast
three basic PB approaches � �i� primary�backup exclusive� �ii� primary�backup concurrent� and
�iii� primary�backup overlapping � in the context of dynamic scheduling of object�based real�
time tasks� The objective of this paper is threefold� �a� to extend the PB�based fault�tolerant
approaches� hitherto applied only to conventional real�time tasks� to object�based real�time tasks�
�b� to compare these three approaches� in terms of schedulability and implementation complexity�
and �c� to propose a dynamic scheduling algorithm for object�based real�time tasks� which can
be used in conjunction with any of these PB�based fault�tolerant approaches� We have conducted
extensive simulation studies to evaluate the performance of these three approaches� for tasks with
resource and precedence constraints� for a variety of task and system parameters� Our simulation
studies reveal some interesting results about the relative performance of these approaches�

�� Introduction

Safety�critical real�time applications are required to be predictable and reliable� The
capability for high performance and reliability o�ered by multiprocessor systems
have made them emerge as a powerful computing tool for safety�critical real�time
applications like avionic control and nuclear plant control� In order to satisfy the

	 This work was done when the authors were at the Dept� of Computer Science and Engg��
Indian Institute of Technology� Madras� INDIA�

predictability that a real�time system demands� scheduling assumes great impor�
tance in multiprocessor systems� The problem of scheduling real�time tasks on
multiprocessors has attracted considerable research in the past� The problem of
scheduling of real�time tasks in multiprocessor systems is to determine when and
on which processor a given task executes ���	� This can be done either statically
or dynamically� In static algorithms� the assignment of tasks to processors and the
time at which the tasks start execution are determined a priori� Static algorithms
are often used to schedule periodic tasks with hard deadlines� However� this ap�
proach is not applicable to aperiodic tasks whose characteristics are not known a
priori� Scheduling such tasks require a dynamic scheduling algorithm�

In dynamic scheduling� when a new set of tasks
which correspond to a plan� arrive
at the system� the scheduler dynamically determines the feasibility of scheduling
these new tasks without jeopardizing the guarantees that have been provided for
the previously scheduled tasks� A plan is typically a set of actions that has to
be either done fully or not at all� Each action could correspond to a task and
these tasks may have resource requirements� and possibly may have precedence
constraints� Thus� for predictable executions� schedulability analysis must be done
before a task�s execution is begun� For schedulability analysis� tasks� worst case
computation times must be taken into account� A feasible schedule is generated if
the timing constraints� and resource and fault�tolerant requirements of all the tasks
in the new set can be satis
ed� i�e�� if the schedulability analysis is successful� If a
feasible schedule cannot be found� the new set of tasks
plan� is rejected and the
previous schedule remains intact� In case of a plan getting rejected� the application
might invoke an exception task� which must be run� depending on the nature of
the plan� This planning allows admission control and results in reservation�based
system� Tasks are dispatched according to this feasible schedule� Such a type of
scheduling approach is called dynamic planning based scheduling ���	� and Spring
kernel ���	 is an example for this� In this paper� we use dynamic planning based
scheduling approach for scheduling of tasks with hard deadlines�

The demand for more and more complex real�time applications� which require
high computational needs with timing constraints and fault�tolerant requirements�
have led to the choice of multiprocessor systems as a natural candidate for support�
ing such real�time applications� due to their potential for high performance and
reliability� Due to the critical nature of the tasks in a hard real�time system� it is
essential that every task admitted in the system completes its execution even in
the presence of failures� Therefore� fault�tolerance is an important issue in such
systems� In real�time multiprocessor systems� fault�tolerance can be provided by
scheduling multiple versions of tasks on di�erent processors� Four di�erent models

techniques� have evolved for fault�tolerant scheduling of real�time tasks� namely�

i� N �version programming ��	�
ii� Primary Backup
PB� model ��� ��	�
iii� Im�
precise Computational
IC� model ��	� and
iv�
m� k��
rm deadline model� ���	�

In the N �version programming approach� N versions of a task are executed con�
currently and the results of these versions are voted on� If N is �� single fault can

be detected� if it is �� single fault can be located� In ��	� real�time task scheduling
algorithms with fault detection and location capabilities have been proposed� In
the PB approach� two versions are executed on two di�erent processors� and an
acceptance test is used to check the result� In the IC model� a task is divided into
mandatory and optional parts� The mandatory part must be completed before
the task�s deadline for acceptable quality of result� The optional part re
nes the
result� The characteristics of some real�time tasks can be better characterized by

m� k��
rm deadlines in which m out of any k consecutive tasks must meet their
deadlines� The IC model and
m� k��
rm task model provide scheduling �exibility
by trading o� result quality to meet task deadlines�

The di�erent methods employed for error detection often make one technique
preferable to the other in certain applications ���	� The N �version programming
approach can be applied to any application� but its resource utilization and hence
the schedulability is very poor� The PB approach can be applied to most of the
applications where acceptance test exist for checking the correctness of the results�
IC and
m� k��
rm models are applicable in image processing and radar tracking
applications�

Applications such as automatic �ight control and industrial process control require
dynamic scheduling with PB�based fault�tolerant requirements� In a �ight control
system� controllers often activate tasks depending on what appears on their monitor�
If dynamic scheduling is employed in this system� when an airplane running on
autopilot experiences wind turbulence� and the additional task generated due to
disturbance cannot be executed while providing fault�tolerance� then the pilot has
the option of taking over manual control of some or all functions of the airplane�s
navigational system�

The fault�tolerant scheduling of object�based real�time tasks is a problem of grow�
ing interest and assumes signi
cance due to the following reasons� Real�time sys�
tems software is inherently large and complex� The complexity in the development
of software for such systems can be managed by using object�based design and
methodology ���	� However� even though reusable software components contained
in the object�based implementation of an application have advantages such as in�
formation hiding and encapsulation� execution e�ciency may have to be sacri
ced
due to the large number of procedure calls and contention for accessing shared
software components� Further� making object�based applications reliable is a chal�
lenging problem as protocols have to be developed to maintain the consistency of
object data stores and method calls� in the presence of faults� The problem of fault�
tolerance in object�based real�time systems is currently a wide topic of research ��	�

For conventional task models� three di�erent PB�based fault�tolerant approaches
exist� The two most popular PB approaches are the Primary�Secondary Exclusive

PS�EXCL� and the CONCURrent approaches� PS�EXCL� is the most widely
used PB approach where the primary and backup copies of the tasks are excluded
in space
processor� and time ��� ��	� CONCUR proposes a concurrent execution
of the primary and backup copies of each task ��� �	� This approach obviously

involves unnecessary use of resources if faults rarely occur� A third approach is
possible� namely� OVERLAP ��� ��	� This approach is a combination of PS�EXCL
and CONCUR and is �exible enough to exploit their advantages according to the
system parameters�

The objective of this paper is threefold�
i� to extend the PB�based fault�tolerant
approaches� hitherto applied only to conventional real�time tasks� to object�based
real�time tasks�
ii� to compare these three approaches� in terms of schedulability
and implementation complexity� and
iii� to propose a dynamic scheduling algo�
rithm for object�based real�time tasks� which can be used in conjunction with any
of these three approaches� This paper provides valuable inputs for the system
developers to choose an appropriate fault�tolerant approach depending on the ap�
plication requirements� To the best of our knowledge� there has been no prior work
which deals with dynamic scheduling and fault�tolerance for the object�based task
model�

The rest of the paper is organized as follows� Section � describes the object�based
task model and the application of the three PB�based fault�tolerant approaches
for this task model� In Section �� we present the dynamic scheduling algorithm
to be used with any one of the fault�tolerant schemes� In Section �� we discuss
the simulation results of these approaches� Finally� in Section �� we make some
concluding remarks�

�� Object�based Task Model and PB�based Fault�tolerant Approaches

In this section� we show how to extend the three PB approaches to achieve fault�
tolerance for object�based real�time tasks� We use the object�based task model of
���	� ��	 discusses a fault�tolerant approach for a real�time object model called the
RTO�k model� but does not focus on the scheduling aspect�

���� Programming Model

The complexity in developing object�based real�time applications is conquered by
decomposing them into a set of programs� The programs are further divided into
classes� where each class corresponds to a reusable software component� The way in
which the application is divided into di�erent programs and the way in which each
program is divided into classes� depends on the characteristics of the application�
It is assumed that the classes or reusable software components are implemented as
either abstract data types
ADTs� or abstract data objects
ADOs� ���� ��	� The
deterministic object�based task model is used� where the worst case execution time
of each method can be
xed at schedule time�

���� The Object�based Task Model

The application is designed as a number of object�based tasks� These tasks may
arrive at di�erent times at the scheduler� The structure of each task is shown

Task (Ti)

OnO2Objects O1

M2 MmM1Methods

B1 B2Beads

.......

.......

....... Bb

Figure �� Object�based task model

in Figure �� Each task contains a set of objects which are instances of software
components spread over a set of programs� The software components are either
ADTs or ADOs� Di�erent tasks may access the same method or methods of the
same object and hence contention to access the software components may occur�
Note that these access contentions may exist between tasks that have arrived at
di�erent times also� One way to resolve such contention is to clone
replicate� the
software component on another processor so that more than one data item can be
processed at a time� However� stateful software components are those which have
a state associated with them making cloning a costly operation� It is assumed
that only stateless software components are cloned� Some software components
represent the resources of the system
like� say� access to a port� and are called
environment dependent software components� It is assumed that such software
components are also not cloned� As the number of stateful software components
and environment dependent software components increases� the schedulability of
the system decreases�
Each software component or object has a set of methods operating on data en�

capsulated in the object� At run�time� the objects communicate with each other
through method calls� If the caller and the callee methods are assigned to the
same processor� then the method call can be implemented by a local procedure call

LPC�� If they are on di�erent processors� a remote procedure call is used� A remote
procedure call can be either an asynchronous remote procedure call
ARPC� or a
synchronous remote procedure call
SRPC�� In an SRPC� the caller gets blocked
after making the call and remains blocked until the callee returns� In an ARPC�
the caller can continue execution after making an RPC until the point that it will
need the results from the callee�
The methods of the di�erent software components may also require to use the

global resources� This is apart from those provided by the environment�dependent
software components� These are modeled as resource requirements of the methods�
These resource constraints may change during the execution of the method� but
only at known points� The points at which the external procedure calls are made
or return� or at which the resources required by the method change are known as

preemption points� We use the semi�preemption model wherein two consecutive
preemption points constitute a non�preemptible entity called the bead� Thus every
method is the combination of one or more such beads� each bead having some
resource requirements
or constraints�� Each bead is composed of two parts�
i� a
computation code� followed by
ii� a set of output actions�

The output actions correspond to the method calls made at the end of the bead
or any other output actions
like writing to a log� freeing some global resources�
etc�� Thus the bead becomes the smallest schedulable entity in the system� The
output actions which are part of a bead�s execution are actually global memory
writes done by the processor� In a distributed system� these output actions would
have been scheduled on the communication channel and would not be a part of the
bead execution time�

We observe that the object�based task model is analogous to the conventional
task model� The bead in the object�based model is analogous to the task of the
conventional task model� The precedence constraints among the beads are imposed
by the procedure calls and continuation of code of the same method� and the re�
source constraints determined by the contention for objects as well as the resource
requirements of individual beads� This means that any scheduling algorithm or
fault�tolerant approach which is applicable to the conventional task model must
be applicable to the object�based model also with a few changes� With this� we
are o� to adapting the three fault�tolerant schemes � PS�EXCL� CONCUR� and
OVERLAP to the object�based task model�

���� PB�based Fault�tolerance for Object�based Task Model

������ Problem Statement Our fault�tolerant schemes for object�based tasks will
try to tolerate the following types of faults�
�� a fault in the software design itself�
leading to a fault in the execution of the bead�
�� a transient fault in a processor�
leading to a fault in the execution of the bead�
�� a run�time fault in the output
action of a bead�
�� a processor crash� and
�� object data store loss or method
crash caused by local memory crash in a processor�

The problem is to design a fault�tolerant scheme so that any application program
in the object�based task model that is scheduled on a multiprocessor system prone
to these faults will be able to run consistently� correctly� and timely
within the
deadline� under the assumption that not more than one fault occurs per bead�

������ Adapting PB Approaches to Object�based Task Model The starting point
for our solution to this problem are the observations that the bead is the smallest
non�preemptible unit in this object�based task model� and that the consistency�
timeliness� and correctness of an object�based application depends on
i� all beads
being executed correctly according to the bead precedence graph�
ii� the correctness
of the output actions of these beads ��	� and
iii� consistency of the object data store
at the beginning of every bead execution�

If these conditions are satis
ed in the presence of the above listed faults� the cor�
rectness and hence fault tolerance of individual methods and object�based tasks will
be automatically guaranteed� To handle faults� we use the two�pronged approach
of fault detection and recovery from faults�

Fault Detection� The
rst three types of faults are the most di�cult to detect�
They are detected in the following ways�

� Faults of types � and � are handled by including an acceptance test
AT� at the
end of the computation code and before the output actions of a bead�

� Faults of type � can be detected by the processor executing the output action�
If the write to the global memory
which is what the output action is� completes
successfully� the output action is correct� otherwise it is faulty�

� Faults of types � and � can be detected as a processor crash�

Fault Recovery� This is done by using the PB approach� Our fault�tolerant
strategy maintains � active versions of every fault�tolerant object
object data store
segment and code� or fault�tolerant method on the two di�erent processors� These
two versions are called the primary and the secondary
or backup� versions� All
beads of a fault�tolerant method or object are replicated and scheduled on two
processors so that at run�time� if one of the beads fails� the other bead will complete
the operations and do the requisite output actions� The assumption made here for
this fault�tolerant scheme to be successful is that if the primary version of a fault�
tolerant bead fails� its secondary version completes successfully� Thus� the worst
case computation time of each fault�tolerant bead B now consists of

�� A global memory read of the
nishing status of the earlier bead
s� in the prece�
dence graph � r
B�

�� A computation code � c
B�

�� AT� followed by a write of the AT�s result into a global variable ATRrecvd
B��
present for every bead � the time for these two are included in c
B�

�� Set of output actions� followed by a write of the OSN�s result into a global
variable OSNrecvd
B�� present for every bead � w
B�

The read
�� is needed due to the following reason� A version of a fault�tolerant
method or object can be inconsistent if the last executed bead belonging to that
version terminated prematurely because of a fault� So� at the beginning of every
bead� a read is done� from the global memory� of the results of the preceding bead
s�
in the precedence graph� Thus� if a fault occurs in a bead of one version of a fault�
tolerant object or method� when the next bead copy
either primary or backup�
of this inconsistent version
on this processor� starts executing� it will read o� the
consistent state from the global memory and then move on to the computation code�
guaranteeing correct bead execution� So� the output actions of the primary copy
of any fault�tolerant bead also includes global memory writes giving information

of local method variables and object data store variables that have been modi
ed
during the bead execution� These writes actually constitute a store checkpoint and
the read actually constitutes a compare checkpoint�

Here� we give an explanation of two global variables associated with every bead
and one global variable associated with every bead copy� The former two are re�
quired for the check�pointing and the latter for setting the version type of a bead
copy� For every bead B� we have two variables namely ATRrecvd�B� and OS�
Nrecvd�B�� which are initialized to FALSE� These indicate the result
success�failure�
of the AT and the output actions respectively of the primary copy of B� Thus� if
the primary copy of B executes its AT successfully� it sets ATRrecvd�B� to TRUE�
The same holds for output actions and OSNrecvd�B�� These are to intimate to the
backup copy of B the results of the AT and the output actions performed by bead
B�s primary copy� Thus a write to any of these global variables would be a store
checkpoint and a read from any of them is a compare checkpoint� In addition�
each copy of bead B has a variable verflag which takes values PRIMARY and
BACKUP and stands for the version type of that particular copy� These are set by
the scheduler or the resource reclaiming algorithm depending on the fault�tolerant
technique� These variables are created and initialized by the scheduler and can be
destroyed when both the versions of a bead
nish� ver�ag is the global variable
that is used to �mark� the version type of a bead copy�

Have we satis
ed the three conditions set down at the beginning of this section
for the timeliness and correctness
consistency� of the object�based task model �
The read at the beginning of every bead satis
es the third condition� In the fol�
lowing three sections� we describe the application of the three PB approaches to
object�based tasks to satisfy the
rst two conditions� The fault�tolerant techniques
replicate beads in a similar way to the tasks� replication� The two copies
pri�
mary and backup� of every bead ensure that every bead executes correctly and
the intended output actions of the beads are successful and hence help to maintain
fault�tolerance for the execution of the entire object�based tasks�

Note that because of faults of the types � and � which arise from the software de�
sign stage� all the method invocations need not be fault�tolerant� Only some methods
or objects� namely those that are likely to fail can be made fault�tolerant� We will
refer to such objects or methods as fault�tolerant objects or methods� respectively�
and their beads as fault�tolerant beads� Thus this scheme has su�cient �exibility�

������ PS�EXCL Fault�tolerant Scheme to Object�based Tasks In this approach�
for each fault�tolerant bead B� its backup copy is scheduled to start execution only
after its primary copy
nishes execution� This time exclusion is maintained during
run�time also� Figure � shows the primary and backup copies as they are scheduled
onto the dispatch queues� Their execution at run�time is described below�

The primary copy of B works as follows� It does the computation� the AT and
writes the result of the AT into ATRrecvd�B�� If the AT fails� the primary terminates
execution� If the AT is correct� the primary tries to do the output actions� writes

the correctness of the output actions into OSNrecvd�B� and terminates� Note that
OSNrecvd�B� indicates the completion of the computation and output actions of
bead B� So if the primary copy fails OSNrecvd�B� will remain false when the
secondary copy starts execution�

When the secondary copy of B starts execution� it
rst checks if the primary
has
nished correctly by checking OSNrecvd�B�� If OSNrecvd�B� is true� it exits
as the primary has
nished successfully� otherwise it executes its version of the
computation code� does the AT and the output actions�

Thus this fault�tolerant scheme ensures that the computation code of every bead
is executed correctly and output actions of every bead are correct�

While the store checkpoint of the primary copy has been made into the ATR
and OSN writes
for computation and communication respectively�� the compare
checkpoint at the backup copy�s beginning has been made a part of the read�

Figure � shows how the two versions of bead B will look like when they are
scheduled� Note that the total
worst case� execution time of each version
copy�
of a bead B under PS�EXCL is
r
B� � c
B� � w
B���

CODE

READ AT

READ AT

CODE

TIME

P1

P2

primary

secondary

OUTPUT

OUTPUT

ATR

OSNATR

OSN

Figure �� PS�EXCL� Primary and secondary versions of a bead �as scheduled�

����	� CONCURrent Fault�Tolerant Scheme to Object�based Tasks In this ap�
proach� the two versions of any given fault�tolerant bead B are scheduled
and run�
concurrently or simultaneously� Figure � shows the primary and backup copies as
they are scheduled onto the dispatch queues� Their execution at run�time is de�
scribed below� The two versions are marked as primary and secondary arbitrarily
at run�time by the resource reclaiming algorithm� The primary copy of B works
as follows� It does the computation and the AT� writes the result of the AT into
ATRrecvd�B�� If the AT fails� the primary terminates execution� If the AT is cor�

READ

CODE

CODE

AT OUTPUT
1 2

1 2

ATR OSN1 OSN2

ATR OSN1 OSN2

P1

P2

TIME

primary

secondary

Figure �� CONCUR� Primary and secondary versions of a bead �as scheduled�

CODE

READ

AT

OUTPUT

OUTPUT

CODE

READ AT

1 2

1 2

ATR OSN1 OSN2

ATR OSN1 OSN2

version A

version B

P2

P1

TIME

Figure �� OVERLAP� Primary and secondary versions of a bead �as scheduled�

rect� the primary tries to do the output actions� It writes the correctness of the
output actions into OSNrecvd�B� and terminates�

The secondary copy of B works as follows� On starting execution� it
rst checks
if the primary copy of B has
nished correctly� If yes� it exits� otherwise it executes
its version of the computation code� does the AT and then checks if the primary
has executed completely and correctly� If yes� it exits� otherwise it checks if the
primary has failed� If the primary has failed� it does the output actions else it waits
for a time�out period equal to the worst case output time� Note that at the end
of this time�out� as the secondary does not start before the primary� the primary
would certainly have
nished its execution
both computation and output�� either
successfully or after a fault� Then the secondary checks if the OSNrecvd�B� is still
FALSE
meaning a fault has occurred in the primary�� If no� it exits otherwise� it
completes the output actions� Note that the total
worst case� execution time of

each version
copy� of a fault�tolerant bead B under CONCUR is
r
B� � c
B� �
� �w
B��� The worst case execution time of a bead includes twice the output time
as a fault can occur during the output actions� This did not arise in PS�EXCL
as the two copies are time excluded� The total
worst case� execution time for a
non�fault�tolerant bead B remains
r
B� � c
B� � w
B���

Thus this fault�tolerant scheme also ensures that the computation code of every
bead is executed correctly and output actions of every bead are correct� The store
checkpoint of the primary copy and the compare checkpoint of the backup have
been made into the ATR and OSN writes and reads
for computation and commu�
nication� respectively� Figure � shows how the two versions of a bead will look like
when they are scheduled�

����
� OVERLAP Fault�tolerant Scheme to Object�based Tasks In this approach�
the two versions of any given fault�tolerant bead B are scheduled
and run� in an
overlapping manner� Figure � shows the primary and backup copies as they are
scheduled onto the dispatch queues� Their execution at run�time is described below�
The scheduling of the two versions of a fault�tolerant bead is done run�time� the
bead copy starting execution
rst becomes the primary and the other copy the
secondary�
The compare checkpoint of the secondary is a part of the read at the beginning of

the bead copy� The ATR and OSN arrows shown become outputs for the primary

store checkpoints� and reads for the backup copy
compare checkpoint�� ver�ag
is set by the resource reclaiming algorithm� In this way� this fault�tolerant scheme
ensures that the computation code of every bead is executed correctly and output
actions of every bead are correct�
Figure � shows how the two versions of a bead will look like when they are

scheduled� Note that the total
worst case� execution time of each version
copy�
of a fault�tolerant bead B under OVERLAP is
r
B�� c
B��� �w
B��� The total

worst case� execution time for a non�fault�tolerant bead B is
r
B��c
B��w
B���

��	� Criteria for Comparison of the PB Approaches

A fault�tolerant algorithm is most viable when it ensures that for a task set with
resource and�or precedence constraints among the tasks� all of the above types of
faults are tolerated at run�time while the number of tasks accepted by the system
is increased� This can be primarily obtained by�

� Reducing the pre�run schedule length for a task set�

� Reducing the post�run schedule length for a task set� this can be obtained by
avoiding unnecessary execution of task copies in the absence of failures� and
also exploiting the early completion of tasks� This is called the issue of resource
reclaiming ���� ��	�

These criteria ensure that more tasks will be scheduled even if they have tight
deadlines� Also� newly arriving tasks will be more likely to be accepted if already

scheduled tasks
nish quickly� Therefore these are the two criteria in our comparison
of the PB approaches� The advantages and disadvantages� we present� for the PB
approaches will be based on these criteria� These criteria clearly re�ect in the
results of the simulation study in Section ��

�� Dynamic Scheduling Algorithm for Object�based Real�time Tasks

In this section� we
rst describe a dynamic scheduling algorithm for the object�
based task model� This can be used in conjunction with any of the three PB
approaches to fault�tolerance� This is followed by an example of the application of
this scheduling algorithm along with the PB approaches�

���� System Model

We assume a multiprocessor system with m processors and a shared global memory�
Each processor has a local memory
for storing the codes and other local variables
associated with the execution of the tasks� and a set of associated resources� which
can be accessed only by itself� The shared global memory has a set of
logical�
resources which are accessible by all the processors in either exclusive or shared
mode�

The access time of the shared memory for any processor needs to be bounded to
guarantee predictability in the system� This is assumed to be provided say� through
an interleaved access scheme to the global memory for each processor� similar to
the TDMA scheme used to guarantee bounded message delivery time in distributed
systems� Hence� the global memory access clashes among the processors are taken
into account in scheduling by just including the maximum access time for each
shared memory read�write into the worst case computation time of the tasks�

Dynamic scheduling algorithms can be either centralized or distributed� In our
simulation� we assume a centralized scheduling scheme� In a centralized scheme�
all tasks arrive at a central processor called the scheduler� from where they are
distributed to the other processors of the system� The communication between the
scheduler and the processors is through dispatch queues� Each processor has its own
dispatch queue� This organization� shown in Figure �� ensures that the processors
will always
nd some tasks in the dispatch queues when they
nish execution of
their current tasks� The scheduler runs in parallel with the processors� scheduling
the newly arriving tasks and updating the dispatch queues�The scheduler has to
ensure that the dispatch queues are always
lled to their minimum capacity
if
there are tasks left with it� for the parallel operation� This minimum capacity
depends on the worst case time required by the scheduler to reschedule its tasks
upon the arrival of a new task� If a permanent processor failure is detected� the
scheduler excludes the failed processor from the scheduling algorithm i�e�� no further
tasks are scheduled on that processor� The scheduler is susceptible to becoming
a bottleneck or even single�point failure� This can be prevented by making the

New
tasks

Task queue

Current schedule

dispatch queues

Dispatch queues
(Feasible schedule) Processors

Scheduler

Min. length of

P

P

P

1

2

3

Figure �� System model

scheduler consist of more than one processor and having the scheduling algorithm
run across these processors to achieve both faster execution and fault�tolerance�

Resource reclaiming ���� ��	 is the strategy used to reclaim resources when�
i� a
task completes earlier than its worst�case computation time or
ii� the backup copy
of a task does not get executed as the primary has already completed execution
successfully� The resource reclaiming algorithm� invoked at the completion of every
task on a processor� seeks to schedule the next task in the dispatch queue
DQ�
ahead of its scheduled start time� We use the RV algorithm ���	 for resource re�
claiming� Here� the scheduler builds a restriction vector
RV� for each task T that
it schedules� The RV is an m�component vector
m being the number of proces�
sors�� where each entry RVi
T � is the last task scheduled prior to T on processor Pi
which has a resource con�ict or precedence relation with T � When a task
nishes
execution� it runs the RV algorithm� It checks the
rst task in the DQ�s of all idle
processors and starts that task immediately if all the tasks in its RV have
nished
execution�

���� Dynamnic Scheduling Algorithm

A fault�tolerant mechanism for object�based tasks will not be complete without the
development of an e�ective dynamic scheduling algorithm for object�based tasks
which can be used in conjunction with the fault tolerant mechanism� Most al�
gorithms in the real�time scheduling area of literature today ���	 solve the dy�

namic�static scheduling problem for the conventional task model� On the other
hand� object�based tasks involve a number of methods belonging to di�erent ob�
jects and method calls between methods� This leads to a di�erent
object�based�
task model� As such� an immediate need to bridge this gap arises� a need to develop
algorithms for scheduling object�based tasks on multiprocessor systems�

Most of the existing literature in object�based scheduling tries to overcome the
di�culties in using reusable software components like execution overhead due to
large number of procedure calls and contention for shared software components
���� �����	 except ���	� where software components are assigned and scheduled on
the processors based on inter�task parallelism and processor utilization computed
using heuristic techniques� An algorithm to assign reusable software components
which exploits parallelism with minimum number of processors by the introduction
of ARPCs is described in ���	� A model for pre�run�time scheduling of object�based
distributed real�time systems that are composed of ADTs and ADOs is proposed
in ���� ��	� In addition� they present an incremental scheduling approach which
constructs an initial schedule and modi
es it by enhancing concurrency through
ARPC and cloning� till a feasible schedule is obtained� The work in ���	 presents
compiler techniques for identifying concurrency among software components via
ARPCs and cloning in the context of an incremental scheduling algorithm� ���	
considers static scheduling of periodic tasks having precedence constraints among
them� compared to the multiple independent tasks considered in ���	�

In this section of the paper� we propose an algorithm for the dynamic scheduling
of object�based real�time tasks on multiprocessors� In our algorithm� we use ARPC
and cloning to achieve better schedulability� The algorithm is based on Spring
scheduling algorithm and is shown in Figure �� The complexity of steps � to � is
O
n� each where n is the total number of bead copies to be scheduled� Step � is
O
Kn�� As K is usually a small number ���	� this is O
n�� Step � is also O
n��
Thus the entire scheduling algorithm has a complexity of O
n��

The scheduling algorithm has four steps�
i� setting the precedence constraints
among beads�
ii� clustering the beads into entities�
iii� allocation step� and
iv�
scheduling step�

������ Precedence Constraints among the Beads while Scheduling Initially� we
are given the original set of precedence constraints among the beads
without con�
sidering their fault�tolerant versions� as a set P �� P � corresponds to the precedence
constraints among the beads as per the method calls and the method bead orders
in each method� It consists of pairs of the form
A � B�� where A and B are beads
belonging to the tasks and ��� means �should be executed before�� We shall call
the precedence relation graph among the beads de
ned by P � as the Comprehen�
sive Entity Invocation Graph or the Initial Bead Precedence Graph� We construct a
precedence relation set P from P � by taking into account the precedence and fault�
tolerance constraints among the beads� This is done as follows
A and A� refer to
the two fault�tolerant copies of bead A� A is the primary and A� the backup��

P
 �

For each �A � B� in P ��
P
 P � f�A � B�g
if�A is fault�tolerant and B is not fault�tolerant�

P
 P � f�A� � B�g
else if�A is not fault�tolerant and B is fault�tolerant�

P
 P � f�A � B��g
else if�A and B are both fault�tolerant�

P
 P � f�A � B��� �A� � B�� �A� � B��g

If� PS�EXCL scheme is being used �
For each fault�tolerant bead B in P �

P
 P � f�B � B��g

We shall call the graph among the beads de
ned by P as the Bead Precedence
Graph� Our scheduling algorithm uses this graph�

������ Allocation Step � Clustering the Beads into Entities Here we cluster the
beads into entities� An entity is a bunch of beads all of which have to be allocated
to one processor only� Without cloning of methods� the entities will just be the
software components themselves� However� with cloning� we create an entity for
each

�� Fault�tolerant copy of each stateful or environment dependent ADT
as it can�
not be cloned��

�� Each fault�tolerant copy of each method invocation exported by each stateless
ADT�

For example� consider an ADT Oi having two methods Mi�
invoked once� and
Mi�
invoked twice�� Let us
rst consider the case where neither the ADT nor any
of its methods is fault�tolerant� If Oi is a stateful or environment dependent ADT�
there will be only one entity for all the beads of Oi� that is� all invocations of Mi�

and Mi��thus all beads of all invocations of these methods will be scheduled on
the processor to which this entity is allocated� However� if Oi is not stateful or
environment�dependent� three entities will be created � two for each invocation of
Mi� and one for the invocation of Mi�� Now� if any of these methods or the ADT is
fault�tolerant� there will be similar duplicate entities for the fault�tolerant versions�
For example� in the second case� if Mi� is fault�tolerant� we will have to create two
pairs of entities� each pair corresponding to a fault�tolerant invocation of Mi��

������ Declustering Heuristic and Allocation Step LetMij andMpq be two com�
municating methods� Mij denotes the jth method of entity Ei and Mpq denotes
the qth method of entity Ep� Let Mij call Mpq� NMC
Mij �Mpq� times� The net
advantage of declustering the two methods Mij �Mpq is�

NADVij�pq � �
k�NMC�Mij �Mpq�
k�� �ptk �E
Mpq��Max
ptk� crk � csk �E
Mpq�	

��

where ptk �
P

l Bijl is the sum of the execution times of the beads of Mij that can

be executed in parallel with the kth call to Mpq� csk and crk denote the amount
of data communicated from Mij to k

th call of Mpq and back during the returning
of the method call
each of csk and crk stands for the sum of the worst case read
� write times for the communication
s� in question�� The
rst term in NADV

equation �� denotes the time needed to execute Mij and Mpq if they are assigned
to the same processor� The second term denotes the time they may take if they
are executed on di�erent processors� The di�erence of the two gives the gain�loss
in declustering the two methods� For two communicating entities Ei and Ep� the
net gain�loss in declustering them is

CNADV �Ei� Ep�
 CNADV �Ep� Ei�

X

j

X

q

�NADVij�pq �NM�Mij��
 Y ���

where Y

P

q

P
j
�NADVpn�ij �NM�Mpn��

The higher the value of CNADV
Ei� Ep�� the better it is to decluster the two
entities Ei and Ep� Note that the values of CNADV for all pairs of entities can
be found in time O�number of beads in the bead precedence graph� by making a
depth�breadth�
rst search of the graph�

When the
rst bead belonging to an entity Ei comes up for scheduling� the follow�
ing heuristic ��p	 is calculated for the entity with respect to all processors p � ���m

m being the total number of processors��

��p�

G

H

ProcLoad�p�

maxmq���ProcLoad�q��
���

where G

P

All entities Ej on proc� p CNADV �Ei� Ej� and

H
 maxmq���
P

All entities Ej on proc� q with which it Ej has communication CNADV �Ei� Ej��

The second term in the above heuristic takes care of equal load distribution on
all processors and the
rst term seeks to minimize communication among beads
executing on di�erent processors� This heuristic is used as follows� The entity Ei

is allocated to processor p with the minimum value of ��p	� Thereafter all beads
belonging to that entity are scheduled on that processor only�

����	� Scheduling Step The Spring scheduling strategy is used� At every invo�
cation of the scheduling algorithm� all the beads to be scheduled are ordered in
non�decreasing order of their deadlines in a Bead Queue �BQ� At every step of the
scheduling algorithm� the myopic algorithm heuristic H is applied to schedule the
beads based on their precedence and resource constraints� However� the calculation
of EST of a bead B will involve an additional term apart from the bead resource
and precedence constraints� If B is the
rst bead of a method invocation� EST
B�
will also involve the earliest time that the entity to which that bead belongs will
become free� This is modelled in a similar way as the resource constraints� Once a
bead has been chosen from the BQ according to the H heuristic� it is
rst checked
whether the entity to which the bead belongs has been allocated to any processor�

If not� that entity is allocated to a processor using the heuristic � as explained in
the earlier section� Then the bead is scheduled as early as possible on the processor
to which this entity has been allocated� RV�s are also constructed for each of the
scheduled beads� Note that the amortized cost of calculating ��p	 for all beads is
O�Number of beads in bead precedence graph��

�� Simulation Studies

To evaluate the performance of the three algorithms for object�based tasks we con�
ducted extensive simulation studies� The performance metric used is the guarantee
ratio de
ned as the ratio of number of tasks found schedulable by an algorithm
to the number of tasks considered for scheduling� The parameters used in the
simulation are given in Table �� Each point in the performance curves
Figure ��
is the average of several simulation runs each with ��� object�based tasks with a
��� con
dence level� The values indicated for the parameters are used in all the
following graphs unless otherwise stated�

The object�based tasks were generated as follows from the above parameters�
Each object�based task generated consists of a method which calls other meth�
ods belonging to other objects and so on� MToMRatio is used to determine the
sharing of methods� The actual number of methods in the system is chosen as
MToMRatio�Total number of method invocations in the task graph of task sets
arriving at a time� SofRatio is used to determine the sharing of software compo�
nents by chosing the number of software components to be SofRatio�Total number
of method invocations in the task graph of MaxTask task sets arriving at a time� For
a given number of methods in the object�based task graph� the more the value of
SofRatio the more is the number of software components
objects� and the lesser
is the contention among the methods for accessing the objects�

Each bead is chosen to have a computation time uniformly distributed between
MinBeadCompTime andMaxBeadCompTime� The read time of a bead is the prod�
uct of CCRatio� RdRatio and a number chosen uniformly between MinBeadComp�
Time andMaxBeadCompTime� The write time of a bead is the product of a uniform
number between MinBeadCompTime and MaxBeadCompTime� CCRatio and Wr�
Ratio� In addition� the cost due to reclaiming is added as
RecCost�NumProcs�
to the total bead computation time� The resource requirements of a bead are
determined by UseP and ShareP� The probability of a bead failing at run�time
is determined by FaultProb� The actual execution times
both computation and
output� of a bead at run�time are determined using a multiplicative factor chosen
uniformly between min aw ratio and max aw ratio�

EnvProb is the probability of an object being environment dependent or stateful
and hence not clonable� The deadlines of the tasks are chosen using a laxity lying
uniformly between min laxity and max laxity� An average of MaxTask tasks arrive

� On receiving a new set of tasks� compute the
cutoffline � currenttime� schedulingtime�

� Include the beads which start after the cutoffline among the
beads to be scheduled�

� Make a depth�	rst search of the Initial Bead Precedence Graph� turning
it into the Bead Precedence Graph by making modi	cations to it as
described in section �����
� Also� for each bead�
calculate its worst case execution time by calculating the worst case
communication times according to
�a
 the amount of output required at the beginning and the end of every bead�
�b
whether they are fault�tolerant or not and depending on the fault�

tolerant algorithm being used�
and adding it to the bead�s worst case computation time�

 Make a depth�	rst search of the Bead Precedence Graph� For each bead�
�a
 Create a new entity corresponding to that bead � if not already created

�b
 If the bead has a communication with one or more beads �read�write
�

update CNADV �i� j
� where Ei is the entity this bead belongs to
and Ej is the entity the bead which communicates with this bead
belongs to�

� Make a bottom�up pass through the Bead Precedence Graph to obtain the
individual bead deadlines� This step can also be combined with the next step�

� Order the beads to be scheduled in the Bead Queue�BQ
 in
non�decreasing order of their deadlines�

� Repeat until all beads are scheduled or no schedule is possible
�a
 Calculate the H heuristic for the 	rst K beads in the BQ�
�b
 Select the bead with the least H�value�
�c
 If the entity to which that bead belongs has not been allocated

to a processor
Find the allocation heuristic � of the bead�s entity for each processor
and allocate the entity to the processor with which it has the
least heuristic value�

�d
 Schedule the bead as early as possible on the processor to which
its entity has been allocated�

� If �all beads have been scheduled before their deadlines
 then
at the cuto� time� put the newly scheduled beads onto the dispatch
queues of the processors� Construct the RV�s for all scheduled beads

else
At the cuto� time� put back the old scheduled beads into the
dispatch queues�

Figure �� Dynamic scheduling algorithm for object�based real�time tasks

at the scheduler at an average frequency of TaskFreq with exponential distribution�

NumProcs is the number of processors� K is the window lookahead in the myopic
scheduling algorithm� distance is the distance used in the PS�EXCL algorithm�
ReplProb is the probability of a method
or object� being chosen to be replicated�
This might be o�set by the EnvProb�

	��� E�ect of Number of Processors

Figure �a shows the e�ect of varying NumProcs in the system from � to ��� All
the three algorithms show an increasing guarantee ratio� which saturates and then
begins to decline slowly� Two interseting aspects are worth noting in this graph�
First� at low NumProcs� PS�EXCL performs better than CONCUR� in fact� as well
as OVERLAP� This is because the chances of
near� simulataneous scheduling of
both the copies is very less� Second� at high NumProcs� CONCUR and OVERLAP
show the same performance as a lot of processor space is available and hence most
of the time in OVERLAP scheme� both copies of a given bead get scheduled and
run simulataneosuly� In short� OVERLAP reduces to CONCUR�

	��� E�ect of Fault Probability

Figure �b shows the e�ect of varying FaultProb in the system from ��� to ���� CON�
CUR�s guarantee ratio does not vary with FaultProb as always both the copies of
every bead are executed� PS�EXCL�s guaranatee ratio falls with increasing Fault�
Prob as lesser procesor time can be reclaimed and most of the backup copies execute
as the primary copies fail�

	��� E�ect of Communication to Computation Ratio

Figure �c shows the e�ect of varying CCRatio in the system from ��� to ���� As the
CCRatio rises� the amount of communication
output� load in the system rises and
all the three algorithms show a decreasing guarantee ratio� At high CCRatio values�
the load in PS�EXCL becomes lesser compared to OVERLAP and CONCUR as
the worst case execution time of a fault tolerant bead copy is
r
B�� c
B��w
B��
in PS�EXCL and
r
B� � c
B� � �� w
B�� in CONCUR and OVERLAP� Hence�
PS�EXCL begins to overtake CONCUR in performance at a CCRatio � ����

	�	� E�ect of Environment�Stateful Probability

Figure �d shows the e�ect of varying EnvProb in the system from ��� to ���� The
readings shown are for values ReplProb � ��� and TaskFreq � ���� The aim
is to see the performance of the dynamic scheduling algorithm as more software
components become stateful or environment dependent� As all the three algorithms
reduce to just the dynamic scheduling algorithm
without any fault�tolerance� and

show the same performance� only one graph is shown� As expected� guarantee ratio
falls with increasing statefulness and dependence of software components on the
environment because cloning becomes lesser� This graph thus shows that cloning
leads to better schedulability�

Table �� Simulation parameters

Parameter Explanation Values
used

MaxCompTime Bead�s maximum worst case computation time ��
MinCompTime Bead�s minimum worst case computation time ��

CCRatio Communication to computation ratio ���
WrRatio Write ratio ���
RdRatio Read ratio ���
UseP Probability of a bead using a given resource ���
ShareP Probability of a bead using a given resource in SHARED mode ���
RecCost Cost of RV algorithm per processor ���
min laxity Minimum laxity ���
max laxity Maximum laxity ���
FaultProb Probability of a bead encountering a fault at run�time ���

min aw ratio Minimum aw ratio ���
max aw ratio Maximum aw ratio ����
EnvProb Prob� of an object being environment dependent or stateful ���

MToMRatio Determines the sharing of methods ���
SofRatio Determines the sharing software components ���
ArpcProb Probability of a method call being an ARPC ���
NumProcs Number of processors �
MaxTask Average number of tasks arriving at the scheduler at one time �
TaskFreq Average period of a task arrival at scheduler ���

K Window size in the myopic algorithm �
distance Distance factor used in PS�EXCL �
ReplProb Prob� of an entity chosen to be replicated �fault�tolerant� ���

NumResources Number of global resources in the system �
NumResQty Number of instances of each resource �

	�
� E�ect of Software Ratio

Figure �e shows the e�ect of varying SofRatio in the system from ��� to ���� The
readings shown are for values ReplProb � ��� and TaskFreq � ���� The aim is to
see the performance of the dynamic scheduling algorithm with varying contention
for software components� Note that all the three algorithms show the same perfor�
mance as they reduce to the dynamic scheduling algorithm� As expected� guarantee
ratio rises with increasing SofRatio as the number of software components rises and
thus the contention for accesing them decreases among the di�erent methods� thus
increasing schedulability�

	�
� E�ect of ARPC Parallelism

Figure �f shows the e�ect of varying ArpcProb in the system from ��� to ���� Per�
formance of all the algorithms improves with improving ARPC parallelism�

	��� E�ect of Read�Write Costs

Figure �g shows the e�ect of varyingRdRatio in the system from ��� to ���� WrRatio
is always tasken as
�� RdRatio� to keep the task�load constant� The aim of this
experiment of to see the variation in the performance of the three algorithms when
they are used in multiprocessor systems which vary in the way a global write or
read is done� For example� a global write by a processor may involve a write to the
memory of the processor to which the write is being done to and the global read
will thus be just a read from the processor�s local memory� This would correspond
to high values of WrRatio and low values of RdRatio as a write would be costlier
than a read� On the other hand� a global write may be done by a processor on to
its own memory and a global read from the memory of the processor from which
the read is being done� This would correspond to low values of WrRatio and high
values of RdRatio� With increasing RdRatio� PS�EXCL performance does not vary
as the communication time of a bead
r
B� � w
B�� remains the same� However�
CONCUR and OVERLAP improve their guarantee ratios due to decreasing bead
communication time
r
B� � ��w
B� per bead� and thus decreasing system load�

	��� E�ect of Replication Probability

Figure �h shows the e�ect of varying ReplProb in the system from ��� to ����
As ReplProb rises� all three algorithms show decreasing guarantee ratio due to
increasing load
as the number of fault�tolerant beads and thus the number of bead
copies being rises�� Note that all three algorithms show the same performance
at ReplProb � ��� as they reduce to the simple dynamic scheduling algorithm�
As ReplProb rises� OVERLAP starts performing better than CONCUR as it has
greater �exibility in scheduling and running beads�

	��� Conclusions from the Simulation Studies

The order of performance of the three PB approaches for the object�based model is
OVERLAP � CONCUR � PS�EXCL� This is because the object�based task model
is similar to the conventional task model discussed earlier but for tasks
here beads�
having precedence constraints due to method calls and individual bead orders in
methods�

With increasing communication
CCRatio�� PS�EXCL tends to perform better
than CONCUR as the amount of output in CONCUR and OVERLAP is twice that
in PS�EXCL� More faults occuring in the system
FaultProb� lead to a drop in the
performance of PS�EXCL while having no e�ect on CONCUR or OVERLAP� This

is because PS�EXCL bene
ts mainly from the resource time reclaimed from the
secondary copies of beads not being executed� this decreases with increasing faults
in the system�

The dynamic scheduling algorithm is able to utilize the advantage of increas�
ing ARPC parallelism by cloning
Figure �f�� Increasing dependence of software
components on the environment
EnvProb� reduce their clonability and thus the
schedulability in the system� Figure �e shows that the dynamic scheduling algo�
rithm performs better if there is a lesser contention for software components among
methods
increasing SofRatio��

20

30

40

50

60

70

80

90

2 4 6 8 10 12 14 16

G
u

a
ra

n
te

e
 R

a
ti
o

Number of Processors

OVERLAP
PS-EXCL
CONCUR

Figure �a� E�ect of NumProcs

60

65

70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1

G
u

a
ra

n
te

e
 R

a
ti
o

Bead Fault Probability

OVERLAP
PS-EXCL
CONCUR

Figure �b� E�ect of FaultProb

20

30

40

50

60

70

80

90

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
u
a
ra

n
te

e
 R

a
ti
o

CC Ratio

OVERLAP
PS-EXCL
CONCUR

Figure �c� E�ect of CCRatio

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

G
u
a
ra

n
te

e
 R

a
ti
o

Environment Probability

OVERLAP

Figure �d� E�ect of EnvProb

Figure �� Simulation results

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

G
u
a
ra

n
te

e
 R

a
ti
o

Software Ratio

OVERLAP

Figure �e� E�ect of SofRatio

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1
G

u
a
ra

n
te

e
 R

a
ti
o

Arpc Probability

OVERLAP
PS-EXCL
CONCUR

Figure �f� E�ect of ArpcProb

20

30

40

50

60

70

80

90

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

G
u

a
ra

n
te

e
 R

a
ti
o

Read-Write Ratio

OVERLAP
PS-EXCL
CONCUR

Figure �g� E�ect of RdRatio

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

G
u

a
ra

n
te

e
 R

a
ti
o

Replication Probability

OVERLAP
PS-EXCL
CONCUR

Figure �h� E�ect of ReplProb

�� Conclusions

In this paper� we have extended three di�erent PB�based fault�tolerant approaches�
namely� PS�EXCL� CONCUR� and OVERLAP� to object�based task model� We
also proposed an algorithm for fault�tolerant dynamic scheduling of object�based
real�time tasks� The proposed dynamic scheduling algorithm utilizes the parallelism
due to cloning and ARPC� The implementation of CONCUR and OVERLAP is
harder than PS�EXCL� as each set of output actions
of a bead� have to be scheduled
twice in the former two approaches and only once in the latter� We also compared
the performance of three PB�based fault�tolerant approaches for object based task
models in the context of dynamic scheduling� From the experiments� the following
observations are made�

� In general� the PS�EXCL approach works better than the CONCUR approach
for precedence�free tasks� but the order slowly reverses as precedence constraints
among the tasks
beads� increase� The OVERLAP approach scores over both
PS�EXCL and CONCUR in both conventional and object�based task models�

� When the number of resource instances is low or resource constraints among
beads is high� CONCUR�s performance deteriorates�

� As the laxity of tasks
beads� increases� the performance di�erence between
PS�EXCL and CONCUR widens�

� As the fault probability rises� the performance of PS�EXCL falls more steeply
than that of OVERLAP� The performance of CONCUR remains the same irre�
spective of the fault probability�

Currently� we are working on integrating di�erent fault�tolerant techniques
TMR�
PB� and IC� with adaptive ��	 selection of these in the object�based task model�

Notes

�� The IC and �m� k���rm models were originally proposed for overload handling�

�� The general case of this is known as Recovery Blocks ���� where each task has many versions�

References

�� L� Chen and A� Avizienis� �N�version programming� A fault tolerance approach to reliability
of software operation�� In Proc� IEEE Fault	Tolerant Computing Symp�
 pp����� �����

�� S� Ghosh� R� Melhem� and D� Mosse� �Fault�tolerance through scheduling of aperiodic tasks
in hard real�time multiprocessor systems�� IEEE Trans� Parallel and Distributed Systems

vol��� no��� pp��������� Mar� �����

�� O� Gonzalez� H� Shrikumar� J�A� Stankovic� and K� Ramamritham� �Adaptive fault�tolerance
and graceful degradation under dynamic hard real�time scheduling�� In Proc� IEEE Real	

Time System Symp�
 �����
�� K� Kim and J� Yoon� �Approaches to implementation of reparable distributed recovery block

scheme�� In Proc� IEEE Fault	Tolerant Computing Symp�
 pp������� �����
�� K�H� Kim and H� O�Welch� �Distributed execution of recovery blocks� An approach to uni�

form treatment of hardware and software faults in real�time applications�� IEEE Trans�

Computers
 vol���� no��� May �����
�� K�H� Kim and A� Damm� �Fault�tolerance approaches in two experimental real�time sys�

tems�� In Proc� Workshop on Real	Time Operating Systems and Software
 pp������� May
�����

�� K�H� Kim and C� Subbaraman� �Fault tolerant real�time objects�� Commun� of the ACM

vol���� no��� pp������� Jan� �����
�� J�W�S� Liu� W�K� Shih� K�J� Lin� R� Bettati� and J�Y� Chung� �Imprecise computations��

Proc� of IEEE
 vol���� no��� pp������� Jan� �����
�� K� Mahesh� G� Manimaran� C� Siva Ram Murthy� and A�K� Somani� �Scheduling algorithms

with fault detection and location capabilities for real�time multiprocessor systems�� J� Par	

allel and Distributed Computing
 vol���� no��� pp��������� June �����
��� G� Manimaran� C� Siva Ram Murthy� Machiraju Vijay� and K� Ramamritham� �New algo�

rithms for resource reclaiming from precedence constrained tasks in multiprocessor real�time
systems�� J� Parallel and Distributed Computing
 vol���� no��� pp��������� Aug� �����

��� G� Manimaran and C� Siva Ram Murthy� �An e�cient dynamic scheduling algorithm for
multiprocessor real�time systems�� IEEE Trans� Parallel and Distributed Systems
 vol���
no��� pp��������� Mar� �����

��� G� Manimaran and C� Siva Ram Murthy� �A fault�tolerant dynamic scheduling algorithm
for multiprocessor real�time systems and its analysis�� IEEE Trans� Parallel and Distributed

Real	time Systems
 vol��� no���� pp����������� Nov� �����
��� J�H� Purtilo and P� Jalote� �An environment for developing fault�tolerant software�� IEEE

Trans� Software Engg�
 vol���� no��� pp��������� Feb� �����
��� K� Ramamritham� J�A� Stankovic� and P��F� Shiah� �E�cient scheduling algorithms for real�

time multiprocessor systems�� IEEE Trans� Parallel and Distributed Systems
 vol��� no���
pp��������� Apr� �����

��� K� Ramamrithamand J� A� Stankovic� �Scheduling algorithms and operating systems support
for real�time systems�� Proc� of IEEE
 vol���� no��� pp������� Jan� �����

��� P� Ramanathan� �Graceful degradation in real�time control applications using �m�k���rm
guarantee�� In Proc� IEEE Fault	Tolerant Computing Symp�
 pp��������� �����

��� B� Randell� �System structure for software fault�tolerance�� IEEE Trans� Software Engg��
vol��� no��� pp��������� June �����

��� C� Shen� K� Ramamritham� and J�A� Stankovic� �Resource reclaiming in multiprocessor real�
time systems�� IEEE Trans� Parallel and Distributed Systems
 vol��� no��� pp��������� Apr�
�����

��� J�A� Stankovic and K� Ramamritham� �The Spring Kernel� A new paradigm for real�time
operating systems�� ACM SIGOPS
 Operating Systems Review
 vol���� no��� pp������� July
�����

��� T� Tsuchiya� Y� Kakuda� and T� Kikuno� �Fault�tolerant scheduling algorithm for distributed
real�time systems�� In Proc� Workshop on Parallel and Distributed Real	time Systems
 �����

��� J�P�C� Verhoosel� D�K� Hammer� E�Y� Luit� L�R� Welch� and A�D� Stoyenko� �A model for
scheduling object�based distributed systems�� J� Real	Time Systems� vol� �� no� �� pp �����
January �����

��� I� Santoshkumar� G� Manimaran� and C� Siva Ram Murthy� �A pre�run�time scheduling
algorithm for object�based distributed real�time systems�� Proc� �th IEEE Joint Workshop

on Parallel and Distributed Real	Time Systems
 April �	� ����� pp� ��������
��� A� D� Stoyenko� L� R� Welch� J� P� C� Verhoosel� D� K� Hammer� and E� Y� Luit� �A model

for scheduling of object�based� distributed real�time systems�� J� Real	Time Systems� vol� ��
pp� ����� August �����

��� G� Yu� Identifying and exploiting concurrency in object	based real	time systems
 Ph�D� The�
sis� New Jersey Institute of Technology� January �����

��� L� R� Welch� �Assignment of ADT modules to processors�� In Proc� IEEE Int� Parallel

Processing Symp�� pp� ������ March �����
��� J� P� C� Verhoosel� L� R� Welch� D� K� Hammer� and E� J� Luit� �Incorporating temporal

considerations during assignment and pre�run�time scheduling of objects and processes�� J�

Parallel and Distributed Computing� vol� ��� no� �� pp� ������ July �����
��� M� Joseph� Real Time Systems� Speci
cation
 Veri
cation and Analysis�� Prentice Hall In�

ternational Series� �����

