
Brief Announcement: Fast Protocol Transition in A
Distributed Environment

Xiaoming Liu and Robbert van Renesse
Computer Science Department, Cornell University

Ithaca, NY 14853, USA
{xliu,rvr }@cs.cornell.edu

Adaptivity is a desired feature of the distributed systems.
Because many characteristics of the environment (network
topology, active process distribution, etc.) may change from
time to time, a good system should be able to adapt itself
and perform sufficiently well under different conditions.

Modern distributed systems are generally built from a set
of components. Such a system has the freedom to adapt
itself by switching from using one component to another.
Because most components in the distributed systems are
running protocols, an agreement must be achieved among
the processes when doing the adaptation.

The traditional approach to do the protocol switch is by
using the two-phase-commit algorithm, in which a coordi-
nator first broadcasts a "prepare" message, and all the other
processes pause their work and send back acknowledgments.
Each process is buffering messages from its own application
at this point. After the coordinator receives all the acknowl-
edgments, it broadcasts a "switch" message, and upon re-
ceiving which all the processes resume working using the
new configuration. This approach is clean and easy to im-
plement. However, it has two shortcomings: (1) the recon-
figuration is not "smooth", i.e.,, the overhead is large; (2)
it is not scalable due to the centralized scheme.

We propose a method which allows the protocol switch with
very little overhead. It is scalable as well. The method
is based on the fact that if two protocols P1 and P2 are
derived from the same abstract specification AS, there exist

converting functions f and f ' that can convert the local
state of a process in one protocol to another. We can then

build a hybrid protocol based on P1, P2, f and f ' that can
make smooth adaptation at runtime.

We briefly describe the generic algorithm of the hybrid pro-
tocol in three steps: (1) One process initiates the proto-
col switch by broadcasting a "switch" message; (2) When
a process learns about the switching, it stops the current
protocol by starting buffering application messages. It then
sends out its information that other processes may need in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the thll citation on the first page. To copy
otherwise, to republish, to post on selwers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 2000 Portland Oregon
Copyright ACM 2000 1-58113-183-6/00/07...$5.00

order to convert their local states; (3) When a process gets
all the needed information, it converts its local state to that
of the new protocol using the converting function provided.
It then starts working using the new protocol immediately.
Each configuration is associated with a timestamp, which is
tagged to the messages sent in that configuration. When a
message with a t imestamp greater than the local t imestamp
arrives, it gets buffered, and is processed after the local con-
version finishes. To ensure that there is only one reconfigu-
ration at any time, a token mechanism is being used. The
hybrid protocol is smooth, because the protocol switch is not
depend on the slowest process as in the two-phase-commit
approach. It is efficient because the local state conversion
saves many unnecessary memory operations.

As an example, we apply our algorithm to two types of
atomic broadcast protocols, namely, sequencer (S-)protocol
and token (T-)protocol. In the S-protocol, each process has
a buffer (Sbuf) holding the messages yet to be ordered by
the sequencer. In the T-protocol, each process has a buffer
(Tbuf) holding the messages to be broadcast when the to-
ken arrives. When switching from S-protocol to T-protocol,
the sequencer sends out the information including the num-
ber of the messages from each process that have been or-
dered so far. Other processes convert by transferring the
unordered messages from Sbuf to Tbuf. When switching
from T-protocol to S-protocol, the process with the token
sends the ordered information to the sequencer, and all the
processes will transfer the messages in Tbuf to Sbuf by
sending the message proposals to the sequencer.

We implement the algorithm with our group communica-
tion toolkit. The following table shows the performance of
the hybrid protocol (HYB) versus that of the two-phase-
commit protocol (2pc). In the test, each process broadcasts
100 messages in each round, when a process receives all the
messages in this round, it starts a new round. We switch
the protocol every 3 rounds. The result being shown (in
msec/round) is the average round latency of 100 rounds for
3 processes. The S-protocol and T-protocol data is of no
protocol switch and just for the comparison. The algorithm
works much better when the number of processes increases.

H YI:I [S-protocol[T-protocol [2pc
13.3 I 9.9 I 11.8 I 151

Our algorithm provides a generic way of building efficient
and scalable adaptive protocols. We believe it is a step to-
wards the modular approach to adding new functionalities,
such as adaptation, to the distributed systems.

341

